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Abstract: Glaciers are recognized as key indicators of climate change on account of their sensitive
reaction to minute climate variations. Extracting more accurate glacier boundaries from satellite
data has become increasingly popular over the past decade, particularly when glacier outlines are
regarded as a basis for change assessment. Automated multispectral glacier mapping methods based
on Landsat imagery are more accurate, efficient and repeatable compared with previous glacier
classification methods. However, some challenges still exist in regard to shadowed areas, clouds,
water, and debris cover. In this study, a new index called the automated glacier extraction index
(AGEI) is proposed to reduce water and shadow classification errors and improve the mapping
accuracy of debris-free glaciers using Landsat imagery. Four test areas in China were selected and
the performances of four commonly used methods: Maximum-likelihood supervised classification
(ML), normalized difference snow and ice index (NDSI), single-band ratios Red/SWIR, and NIR/SWIR,
were compared with the AGEI. Multiple thresholds identified by inspecting the shadowed glacier
areas were tested to determine an optimal threshold. The confusion matrix, sub-pixel analysis,
and plot-scale validation were calculated to evaluate the accuracies of glacier maps. The overall
accuracies (OAs) created by AGEI were the highest compared to the four existing automatic methods.
The sub-pixel analysis revealed that AGEI was the most accurate method for classifying glacier edge
mixed pixels. Plot-scale validation indicated AGEI was good at separating challenging features
from glaciers and matched the actual distribution of debris-free glaciers most closely. Therefore,
the AGEI with an optimal threshold can be used for mapping debris-free glaciers with high accuracy,
particularly in areas with shadows and water features.

Keywords: automated glacier extraction index (AGEI); classification accuracy assessment; edge pixels;
least squares regression

1. Introduction

Mountain glaciers are a significant part of the cryosphere and constitute one of the most important
factors of the global climate system [1]. Glacial changes are among the clearest signals of continuing
global warming trends [2,3]. In recent decades, the increasing magnitude of climate change and human
activities has led to substantial area and volume losses in mountain glaciers [4]. Mountain glaciers are
extensive in arid areas of Northwestern China, and glacier advance or retreat significantly impacts local
ecosystems and people’s lives [5]. As a result, monitoring glacier changes is essential for governments

Water 2019, 11, 1223; doi:10.3390/w11061223 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/11/6/1223?type=check_update&version=1
http://dx.doi.org/10.3390/w11061223
http://www.mdpi.com/journal/water


Water 2019, 11, 1223 2 of 24

to understand ecological impacts. However, glaciers are commonly located in inaccessible remote
high-mountain terrain, and traditional ground-based measurements infeasible for monitoring glaciers
over a large area [6]. Thus, satellite observations commonly provide the only feasible technique for
repeated-mapping of glaciers in an integrated and cost-effective manner [7–9]. Among the numerous
types of remote-sensing data sets, Landsat data are widely acknowledged as highly valuable for glacier
mapping due to the large swath width (185 km), medium spatial resolution (30 m), and long temporal
series [10–12].

Over the years, delineating glacier boundaries using satellite data has become increasingly
popular. Understanding the accuracy of these boundaries is especially significant when glacier outlines
are intended as a basis for change assessment [13]. Numerous methods for multispectral glacier
delineation have been developed and can be roughly categorized as two types: (1) Full manual on-screen
digitization [14] and (2) automated and semi-automated methods. The former has high accuracy
but is time-consuming, which significantly limits its reproducibility when analyzing glacier changes
over long time periods. Conversely, automated and semi-automated methods are time-efficient in
detecting debris-free glacier boundaries. Specific automated and semi-automated methods include: (1)
Thresholding of ratio images [15,16], (2) unsupervised and (3) supervised classification [17,18], (4) the
normalized difference snow index (NDSI) [19,20], and (5) principal component analysis (PCA) [21].
These five methods utilize the extremely low spectral reflectance of ice and snow in the shortwave
infrared (SWIR) and the high reflectance in the visible and near infrared (VNIR) to identify glaciers [6].
The simple band ratio method has emerged as a ‘best’ (i.e., most simple, fast, accurate and robust)
method, which includes the Red/SWIR ratio and the NIR/SWIR ratio [6,22]. On one hand, the Red/SWIR
ratio identifies glaciers well under thin clouds and in shadow regions but tends to map most water
features like glaciers, which is less common with the NIR/SWIR ratio. On the other hand, the NIR/SWIR
ratio is inclined to miss regions with shadowed glaciers and may classify shadowed vegetation as
glaciers [6,23,24]. In fact, the importance of correctly detecting shadowed areas increases at the
point of minimum snow cover at the end of the melt season when the sun angle is lower. Therefore,
band combination preference depends upon the amount of shadowed terrain and water within the
image. However, both are present in almost every image.

To overcome these deficiencies in glacier-mapping, we propose an automated glacier extraction
index (AGEI) that weighted averages the Red and NIR bands to improve the accuracy of debris-free
glacier delineation. The objective of this study is to: (a) Improve accuracy of glacier mapping by
automatically distinguishing glaciers in shadow and from adjacent proglacial lakes, (b) evaluate the
accuracy of the AGEI in comparison with existing classification techniques, and (c) test the robustness
of the AGEI in four study sites and compare Landsat results with Sentinel-2 data.

2. Study Area and Data

2.1. Study Areas

The performance and robustness of the AGEI were tested using several debris-free glaciers under
different conditions in China ranging in location from Tibet to Xinjiang. Areas with challenging features
including proglacial lakes and shadowed glaciers were deliberately selected as the four test sites,
which are denoted as Region I, II, III, and IV (Figure 1).

Region I is in the CN5O262A0037 Gunnonggabu glacier (central longitude 84.633◦ E, central
latitude 29.798◦ N), located in the Tibetan plateau, China. The glacier has a plateau semi-arid climate,
the average altitude of 5848 m ranging from 5514 m to 6173 m and drains northward from mountain
summits down a valley. The background of Region I includes bare land, seasonal snow, proglacial
lakes, and shadowed areas. It should be noted that the Region I contains debris-covered glacier.

Region II is in the CN5Y725B0010 glacier (central longitude 88.362◦ E, central latitude 43.816◦ N),
located in Xinjiang, China in a temperate continental climate. The average elevation of Region II is
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3897 m, ranging from 5416 m to 3438 m. The background of Region II includes bare land, proglacial
lakes, seasonal snow, and shadowed areas.

Region III is in the CN5O270C0018 Bilang Glacier (central longitude 90.407◦ E, central latitude
30.339◦ N), in a plateau semi-arid climate. The average elevation of Region III is 5890 m, ranging from
6153 m to 5660 m. The background of Region III includes bare land, proglacial lakes, and shadowed
areas. In Region III, seasonal snow can be ignored.

Region IV is in the CN5O212A0165 Wujiu Glacier (central longitude 90.51◦ E, central latitude
28.196◦ N). It has a semi-arid continental climate and has an average altitude of 3897 m, ranging from
5416 m to 3438 m. The background of Region IV includes bare land, proglacial lakes, seasonal snow,
and shadowed areas.
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2.2. Data Sources and Pre-Processing

The first step in delineating accurate glacier boundaries from satellite data was selecting suitable
images. Landsat data with no clouds and less seasonal snow was preferred, and the best scenes were
collected in late summer [23]. Landsat TM and Landsat 8 images were acquired from the United
States Geological Survey (USGS) website (https://glovis.usgs.gov/). All Landsat images accessed
were product type L1T and had a scene quality score of nine. Sub-scenes were all free of clouds.
As L1T Landsat products are geometrically corrected using the raw digital number values [24], further
pre-processing (e.g., sensor calibration or topographic correction) was not needed. An atmospheric
correction using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
module in the Environment for Visualizing Images (ENVI) 5.3 (Harris Geospatial, Broomfield, CO,
United States) was used during the ML supervised classification and NDSI.

In addition to Landsat imagery, Sentinel-2 MSI data, which has a 10 m spatial resolution in visible
bands and a 20 m spatial resolution in SWIR bands were also used in this study. Sentinel-2 MSI data were
downloaded from the European Space Agency (ESA) website as level-1C (https://sentinel.esa.int) [25,26].
Before application of the glacier extraction index, Sentinel images were atmospherically corrected
using Sen2Cor [27], which was available through the ESA’s Sentinel toolbox in the Sentinel Application
Platform (SNAP).

https://glovis.usgs.gov/
https://sentinel.esa.int
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Google Earth images, glacier inventory data, and manual glacier delineations using summer
Landsat images from the same period as the experiment data were used as references for accuracy
assessment. The acquisition dates of the reference data and experiment images were matched
to minimize the influence of seasonal changes on the accuracy assessment. The Second Glacier
Inventory Dataset of China 1.0 was provided by the “Investigation on glacier resources and their
change in China” (2006FY110200) and Cold and Arid Regions Science Data Center at Lanzhou
(http://westdc.westgis.ac.cn/) [28]. Glacier inventory outlines in the four test regions were extracted
and showed good agreement with our manually delineated glacier boundaries. Detailed descriptions
(data and date) of the satellite images and the reference data used in accuracy assessment are described
in Table 1.

Table 1. Description of experimental scenes and corresponding reference data.

Test Site Satellite Sensor Scene Reference Data and Sources

Place GLIMS_ID Experiment data Google EarthTM

image
Landsat data SCGI

Region I G084633E29798N
Landsat-8 OLI 16 October 2016

1 December 2016 14 September
2016

30 January 2009
Sentinel-2 MSI 23 October 2016

Region II G088362E43816N Landsat-5 TM 3 October 2011 5 October 2011 23 July 2011 13 August 2010
Region III G090407E30339N Landsat-5 TM 16 January 2008 29 October 2007 8 July 2007 2 November

2009
Region IV G090510E28196N Landsat-5 TM 18 November

2003
17 December
2003

12 May 2004 6 February 2010

3. Methods

The method can be divided into six major steps: (1) Applying radiometric and atmospheric
corrections to Landsat and Sentinel imagery, respectively, (2) selecting pure pixels, (3) comparing
the pure pixel difference between glacier and non-glacier surfaces and developing a new index to
remove water and distinguish shadowed glaciers, (4) using multiple thresholds to complete the
glacier mapping, (5) assessing the accuracy of glacier extraction comprehensively using different
measurements, (6) analyzing the correlation between the Landsat and Sentinel results. The specific
process is shown in Figure 2.
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3.1. Existing Classifiers for Glacier Mapping

Equations for calculating the four existing Landsat glacier classifiers are presented in Table 2.
The supervised ML classification uses the selected region of interest (ROI) samples to define training
areas for image classification. ML classification accuracy relates to sample quantity and quality. With no
prior knowledge, supervised ML classification may lead to misclassifications. In addition, this approach
still has limitations in glacier mapping when using multi-temporal images at large scales. Just as
the normalized difference vegetation index has been widely used for mapping vegetation, NDSI is
an index used to map glaciers using green band and SWIR band reflectance [29,30]. NDSI ranges from
-1 to 1, and glacier features are likely to have positive values, while bare land and shadows generally
have negative values. Due to the high atmospheric scattering in TM2 (green), NDSI requires more user
interaction, and the path radiance has to be subtracted beforehand [31]. Thresholding of ratio images
uses band ratios to maximize the difference between the target glacier and background. The Red/SWIR
ratio and NIR/SWIR ratio both rely on the high reflectivity of snow and ice in the visible and near
infrared and very low reflectivity in the shortwave infrared. The Red/SWIR ratio works better for
shadows and thin debris-cover compared to the NIR/SWIR ratio [32]. However, the NIR/SWIR ratio is
good at removing water features whose spectral reflectance is similar to glaciers. Thresholding of ratio
images can be completed using raw digital number (DN) values, top-of-atmosphere (TOA) reflectance
values, or spectral reflectance values [33]. Since the Red/SWIR ratio and NIR/SWIR ratio work best
with raw DN values [5,6], only DN values were selected for simple band ratio calculations.

Table 2. Comparison of the information about different classifiers for glacier mapping.

Name of Classifier Center Wavelength
(µm)

Design Algorithm Value Used

Maximum-Likelihood
classification

Multispectral
combination

Select ROI samples Spectral reflectance
values

NDSI Band (Green):0.561
Band (SWIR):1.609

ρGreen−ρSWIR
ρGreen+ρSWIR

Spectral reflectance
values

Red/SWIR Band (Red):0.655
Band (SWIR):1.609

DNRed
DNSWIR

Raw digital number
values (DN)

NIR/SWIR Band (NIR):0.865
Band (SWIR):1.609

DNNIR
DNSWIR

Raw digital number
values (DN)

AGEI
(this work)

Band (Red):0.655
Band (NIR):0.865
Band (SWIR):1.609

α·DNRed+(1−α)·DNNIR
DNSWIR

Raw digital number
values (DN)

3.2. Automated Glacier Extraction Index (AGEI)

3.2.1. Pure-pixel Selection

A pure pixel is a pixel that only contains one type of land cover information, and DN values are
the theoretical basis for identifying different surfaces. Pure pixels are chosen to look for cues of spectral
differences between glacier and non-glacier surfaces, then provide a reference for the newly proposed
index AGEI. “Pure” pixels are sampled from the Landsat 8 image of Gunnonggabu glacier, acquired
on Oct. 16, 2016. This location was chosen for pure pixel extraction because Gunnonggabu includes
all the major challenging features affecting glacier mapping accuracy: Debris-free glaciers, bare land,
vegetation, proglacial lakes, and shadowed glaciers.

Extracting pure pixels of the selected land cover types was performed using the minimum noise
fraction transform (MNFT), pixel purity index (PPI) and n-dimensional visualization. MNFT is applied
to reduce noises and improve image quality. PPI is used to find the "purest" pixel in the image. Higher
PPI value indicates higher pixel purity. With the help of n-dimensional visualization, the purest
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pixels in the data set were located, identified, and aggregated. However, not all obtained pixels were
considered pure pixels. We also identified pure pixels through multi-temporal images and Google
Earth images. Ultimately, pure pixel samples for glacier were taken from the glacier cap. To avoid
mixed edge pixels, water/bare land pure pixel samples were taken from the middle of lakes/land.
Similarly, vegetation samples were selected from a densely vegetated area. With the help of digital
elevation model (DEM) and high spatial resolution aerial image from Google Earth, pure pixels of
shadowed glaciers were determined.

One hundred fifty-five pure pixels were extracted from the six reflective bands of the Landsat
8 image. Distributions of pure pixels DN values of major land cover types and band ratio values of
different methods are shown in Figure 3. All DN values are scaled down by a factor of 10,000.
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3.2.2. Formulation of AGEI

Compared to all other automatic glacier delineation techniques, the simple band ratio method
with DN values emerged as a “best” (i.e., most simple, fast, accurate, and robust) [6,15,31]. Commonly
used ratios include the Red/SWIR ratio and NIR/SWIR ratio. The DN value of Red band is much
larger than that of the NIR band for both water feature and shadowed glacier (Figure 3d,e). However,
DN values for the SWIR band for both water feature and shadowed glacier are almost the same.
Therefore, Red/SWIR values for both water feature and shadow glacier are larger than NIR/SWIR
values. Figure 3f,g gives the Red/SWIR and NIR/SWIR ratio for each of the five typical features using
the DN. Typical threshold values are in the 2.0 ± 0.5 range for the ratio methods [6,22,32]. Both the
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Red/SWIR ratio and NIR/SWIR ratios can distinguish debris-free glaciers well because their ratio values
are all much larger than 2.0 (the values of the glacier are distributed above the horizontal dashed line)
(Figure 3f,g). The influence of bare land and vegetation can be suppressed using both ratios because
ratio values are far less than 2.0 (the values of bare land and vegetation are distributed below the
horizontal dashed line). For water pixels, the NIR/SWIR ratio is commonly smaller than 2.0, while the
Red/SWIR ratio is larger than 2.0. For shadowed glacier pixels, the Red/SWIR ratio is mostly larger
than 2.0, while the NIR/SWIR ratio is commonly smaller than 2.0. If we implement simple band ratio
and use a 2.0 threshold, the Red/SWIR ratio tends to map most water surfaces as glaciers (the values of
water are distributed above the horizontal dashed line) and the NIR/SWIR tends to miss shadowed
glaciers (the values of shadow glacier are distributed below the horizontal dashed line). In order to
reduce these errors, we propose an automated glacier extraction index (AGEI) which uses a weighted
Red and NIR DN’s to substitute for the Red or NIR band. The expression of AGEI is as follows:

AGEI =
α·DNRed + (1− α)·DNNIR

DNSWIR

where α ∈ [0,1] is a weighted coefficient. An increment of 0.1 for α from 0.1 to 0.9 was set to test the
AGEI algorithm. Specifically, if α=0, the AGEI is identical to the NIR/SWIR ratio, and when α = 1,
the AGEI becomes the Red/SWIR ratio. Meanwhile, 2.0 can be considered an available threshold for
AGEI results. When α is assigned an appropriate value, the ratio value of water pixels is smaller
than 2.0 (the values of water are distributed below the horizontal dashed line), and the ratio value
of shadowed glacier pixels is larger than 2.0 (the values of shadow glacier are distributed above the
horizontal dashed line) (Figure 3h). Therefore, the AGEI can automatically remove water bodies
from glaciers and classify shadowed glaciers as glaciers without manual correction. In this paper,
four different sites were selected to test AGEI performance and four existing automated methods.

3.3. Optimization of Weighted Coefficient and Threshold

3.3.1. The Weighted Coefficient “α” of the AGEI Equation

As the main purpose of determining an optimal α is to automatically remove proglacial lakes
and distinguish shadowed glaciers without manual correction, we assumed that in the Red/SWIR
ratio image the value of proglacial lake pixels and shadowed glacier pixels was a1 and b1, and in the
NIR/SWIR ratio image the values were assumed to be a2 and b2 respectively. The rules for selecting the
optimum weighted coefficient are summarized as follows:

We know that:
Proglacial lake Red

SWIR
= a1 , Shadow glacier Red

SWIR
= b1

Proglacial lake NIR
SWIR

= a2 , Shadow glacier NIR
SWIR

= b2

AGEI =
α·DNRed + (1− α)·DNNIR

DNSWIR

In order to suppress water information and enhance shadowed glacier information, the value of
water calculated from AGEI must be less than that of the shadowed glacier.

a1·α+ a2·(1− α) < b1·α+ b2·(1− α)

as α > 0, the optimum weighted coefficient α is in this range:

0 < α <
b2 − a2

a1 − a2 − b1 + b2
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In conclusion, the optimum weighted coefficient α was between 0 and b2−a2
a1−a2−b1+b2

and should be
adjusted within this range and determined using accuracy assessments.

3.3.2. Threshold Selection and Optimization

Multiple thresholds around 2.0 were manually chosen and tested to find the optimal threshold
with the smallest total errors. Before applying a threshold to the whole scene, the optimal threshold
needs to be selected after inspecting the shadowed glacier areas, which are the most sensitive to the
threshold value [15,22]. The selected threshold was used to convert the ratio image into a binary glacier
map. In addition, a 3 × 3 majority filter to the binary glacier map was used to remove noise [15,23].

3.4. Accuracy Validation Methods

3.4.1. Overall Accuracy Evaluation of Classified Glacier Maps

Four accuracy measures were applied, including overall accuracy, kappa coefficient, glacier
total error, and non-glacier total error to evaluate the per-pixel accuracy of the classification results.
The Second Glacier Inventory Dataset of China 1.0 and manual glacier delineations using summer
Landsat images from the same period as the experiment data were used as references to evaluate the
accuracy of classified results. The accuracy assessment procedure is summarized by the following
four steps. Firstly, with multiple thresholds selected, glacier index images were classified into binary
maps which only contained glacier and non-glacier areas. Next, the projection of the classified images
and glacier inventory data was set to Universal Transverse Mercator (UTM)/World Geodetic System
1984 (WGS84) projection. Thirdly, glacier boundaries were manually digitized according to outlines
extracted from The Second Glacier Inventory in order to evaluate the accuracy of each classified image.
The above four accuracy measures were calculated based on the confusion matrix.

3.4.2. Mixed Edge Pixels Accuracy Assessment

The sensitivity of AGEI and the four existing glacier extraction classifiers to various mix edge
pixels of glacier and non-glacier was evaluated using sub-pixel accuracy analysis. For quantitative
sub-pixel accuracy assessment, Google Earth images and an overlay analysis in ArcGIS were used [34].
Any pixel that contains both glacier and non-glacier surfaces is considered a mixed edge pixel (Figure 4).
The specific validation method is as follows: (1) The Google Earth and Landsat classified images were
georeferenced in the four regions, (2) “true” glacier outlines were generated by manual digitizing
on the Google Earth image, (3) an overlay analysis between the “true” glacier outlines and classified
glacier maps was performed, (4) the proportion of each individual mixed edge pixel covered by glacier
in the four test regions was calculated, (5) graphs were drawn showing the cumulative frequency of
mixed pixels classified as a glacier. It was assumed that a single mixed pixel consisting greater than
50% glacier should ideally be classified as the glacier. Conversely, when the glacier portion is less than
50% of a single pixel, the mixed pixel was considered to be non-glacier. In other words, if a mixed
pixel was classified as glacier, the portion beyond the "true" boundary was considered as a commission
error (over-estimation) at the sub-pixel level. Similarly, if a mixed pixel was classified as non-glacier,
the fraction of it that fell inside the “true” boundary was deemed to be a sub-pixel omission error
(under-estimation). A total of 2582 mixed edge pixels were selected from four test regions for sub-pixel
accuracy assessment. The influence of misregistration was assumed to be insignificant.
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3.4.3. Challenging Features’ Assessment at Validation Plot Scale

In order to reduce possible problems due to georeferencing of the Landsat and high-resolution
data, 10 × 10 pixels validation plot samples for the TM and OLI images (300 × 300 m) were adopted
for both the high-resolution images and classified glacier maps. The process of validation at plot
scale is as follows: (1) The location of plot samples should be selected with challenging features: (a)
Debris-free glaciers, such as glacier cap and glacier tongue, were randomly selected as plot samples,
(b) challenging land features containing the debris-covered glacier and shadowed glacier were taken
into consideration for plot sample selection, (c) non-glacier reference sites which are spectrally similar
to glacier, including water and seasonal snow, were also added to plot samples. (2) A total of 1120
validation plot samples from four test regions were adopted for both the Google Earth images and the
classified glacier maps in the locations selected in step 1. (3) Glacier area was classified by manually
digitizing the shape of glaciers within each plot area using Google Earth imagery and compared with
the glacier area derived from the five different classifiers, using overlay analysis and spatial connection
in ArcGIS. (4) The correlation between the high-resolution glacier areas and the classified glacier areas
derived from different classifiers was determined using an ordinary least squares regression.

3.5. Comparison Glacier Maps with Different Sensors

In order to test the robustness of AGEI and other four classifiers using different sensor data for
glacier mapping, Landsat 8, and Sentinel-2A MSI imagery with similar acquisition times in Region
I was employed [35]. We used Landsat 8 data acquired on 16 October 2016, and MSI data acquired
on 23 October 2016, for the comparative analysis of Region I. It was assumed that surface conditions
did not change substantially within these seven days. In this section, five classified glacier mapping
results using Landsat data were overlaid with that based on Sentinel data. At the same time, the pixel
percentages of the overlapped region and the non-overlapped region were calculated. The detailed
results were described below.

4. Results

4.1. Comparison of Glacier Mapping Results

In this section, glacier information detected using five classifiers in four different study sites is
presented. A simple visual inspection indicates that the ten classified images for the four regions all
clearly show most debris-free glaciers. However, some commissions and omissions occurred (Figures 5
and 6).
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The subscenes containing hard to classify features were generally not classified correctly using
automated methods. Region I contained 380 × 353 pixels, covering 120.726 km2. Major influence
factors included proglacial lakes, mountainous shadows, seasonal snow, and debris-covered glaciers.
For Region I, comparing the Landsat image, glacier inventory data, and Google Earth image, the NDSI
and the Red/SWIR ratio produced inaccurate results (Figure 5I c,f). Numerous proglacial lake pixels
were misclassified as glacier features. In contrast, the AGEI, ML supervised classification and NIR/SWIR
ratio classified proglacial lakes correctly (Figure 5I d,e). By combining multitemporal images with
contemporaneous high spatial resolution imagery from Google Earth, glacier inventory outlines,
and Digital Elevation Model (DEM), noisy results produced by shadows were located. Although
the Red/SWIR ratio, ML supervised classification, and NDSI successfully distinguished shadowed
glacier, extra snowfields were also classified as glaciers (Figure 5I c,e,f). The NIR/SWIR ratio tended to
ignore shadowed glaciers because the value of classified proglacial lakes and shadowed glaciers was
always higher/lower than the optimal threshold (Figure 5I d). Compared with the other four classifiers,
AGEI can better delineate between water and glaciers and enhance the recognition of shadowed
glaciers. In areas with debris-covered glaciers, none of the five classifiers could distinguish debris
because the spectral reflectance of debris was similar to surrounding rocky or sandy areas in the visible
to near-infrared bands.

In Region II, there were 218 × 218 pixels, covering 42.772 km2. Shadows and snowfields were
major influence factors in this site. The Red/SWIR ratio, ML supervised classification, and NDSI made
a number of commission errors (Figure 5II c,e,f). Large amounts of snowfields in the shadows were
classified as glaciers. Conversely, the NIR/SWIR ratio could correctly classify shadowed snowfields as
non-glacier features, but some shadowed glacier pixels were neglected (Figure 5II d). The Red/SWIR
ratio and NDSI also failed to exclude proglacial lakes (Figure 5II c, f). In contrast, AGEI achieved
a good balance between suppressing water and enhancing shadowed glaciers.

Region III with 342 × 334 pixels covers 102.805 km2, contains proglacial lakes and shadows,
and lacks snow masses. A simple visual inspection indicated that compared with AGEI, the Red/SWIR
ratio and NDSI were inclined to classified non-glacier features as a glacier (Figure 6III c,f) while the
NIR/SWIR ratio and ML supervised classification tended to omit shadowed glaciers (Figure 6III d,e).
Region IV is 259 × 311 pixels, covers 72.4941 km2, and displays similar results to those of the first
three regions. All methods other than the AGEI largely misclassified proglacial lakes and shadows
(Figure 6IV c–f). None of the five classifiers could remove a large amount of seasonal snow from the
image due to the similar spectral response between the glacier and seasonal snow. Therefore, suitable
images with no clouds and less seasonal snow should be selected if possible.

The AGEI matched the actual distribution of debris-free glacier most closely (Figures 5 and 6).
This result indicates that the AGEI managed to suppress proglacial lakes and enhance glacier information
in shadowed regions in the four test sites.
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Figure 5. Glacier masks comparing two methods. Areas in grey were identified by both methods as
being a glacier, red areas only by the first method, and black areas only by the second method in Region
I and II. (a) Superimposed map of manual glacier delineations and Landsat images of test sites; and (b)
high resolution Google Earth images of test sites. The compared methods are: (c) Red/SWIR and AGEI;
(d) NIR/SWIR and AGEI; (e) supervised ML classification and AGEI; (f) NDSI and AGEI.
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Figure 6. Glacier masks comparing two methods. Areas in grey were identified by both methods as
being a glacier, red areas only by the first method, and black areas only by the second method in Region
III and IV. (a) Superimposed map of manual glacier delineations and Landsat images of test sites;
and (b) high resolution Google Earth images of test sites. The compared methods are: (c) Red/SWIR
and AGEI; (d) NIR/SWIR and AGEI; (e) supervised ML classification and AGEI; (f) NDSI and AGEI.
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4.2. Accuracy Assessment of Glacier Mapping

4.2.1. Overall Accuracy Evaluation of AGEI with Different Coefficients

In this section, four accuracy measures: OAs, Kappa coefficients, glacier total errors,
and non-glacier total errors were applied to evaluate AGEI performances with various coefficients.
Glacier mapping results using AGEI with different α values were tested to find the optimal α value.
An α increment of 0.1 ranging from 0.1 to 0.9 was set to obtain different AGEI outputs. Four AGEI
accuracy distributions with different α values were calculated for the four test sites (Figure 7). The OA
and kappa coefficient of Region I (red line) calculated using AGEI with coefficients from 0 to 0.5 were
higher than those with coefficients from 0.6 to 1 (Figure 7a,b). Glacier total errors (Figure 7c) and
non-glacier total errors (Figure 7d) in Region I (red line) calculated using AGEI with coefficients from 0
to 0.5 were lower than those with coefficients from 0.6 to 1. The influence of non-glacier total errors
on accuracy is more significant when α is greater than 0.5 (Figure 7c,d). This was probably caused
by water bodies, which primarily affect the accuracy of Region I results. On the whole, the trend line
of OAs and kappa coefficients of Region I (red line) increased first and then decreased. Conversely,
the trend line of glacier total errors and non-glacier total errors of Region I (red line) decreased first and
then increased. Similarly, the four trend lines of the other three test regions were consistent with the
trend of Region I. The peak OA and Kappa coefficient calculated by AGEI was achieved when α = 0.5
in Regions I, II, and III, as well as α = 0.5, 0.6 in Region IV (Figure 7). AGEI with α = 0.5 in Regions I, II,
and III, as well as α = 0.5, 0.6 in Region IV had the lowest glacier total errors and non-glacier total
errors compared with other α values. The AGEI achieved the best glacier mapping results in four test
sites when α = 0.5.
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4.2.2. Overall accuracy evaluation for the five classifiers with multiple thresholds

Results of mapping accuracy derived using the five classifiers in the four test sites are summarized
in Table 3. The various thresholds were applied to the five classifiers images for the four test sites to
obtain the highest accuracy of glacier binary maps. Numerous tests concluded that the accuracy of all
investigated approaches could be partially improved by changing threshold values but at the expense
of incorrect results elsewhere. Ultimately, the four appropriate thresholds for the five classifiers were
determined respectively in the four regions. In the four test sites, AGEI accuracy was higher than that
of the other four methods (Table 3). Quantitative assessment of Region I showed that the maximum
OA value is 90.249% (AGEI), followed by 89.54% (NIR/SWIR), 89.122% (ML supervised classification),
89.02% (Red/SWIR), and 88.094% (NDSI), respectively, and kappa coefficients is 0.785, 0.765, 0.761,
0.741, and 0.737, respectively. In Region II, the maximum OA and kappa coefficient was (AGEI)
86.10%, 0.710, followed by (Red/SWIR) 85.60%, 0.697, (NIR/SWIR) 85.359%, 0.695, (ML supervised
classification) 82.336%, 0.614, and (NDSI) 79.552%, 0.540. In Region III, AGEI performed best with
the highest OA 89.794% and kappa coefficients 0.769, followed by NDSI 88.96%, 0.752, Red/SWIR
88.76%, 0.748, NIR/SWIR 88.593%, 0.744, and ML supervised classification 88.024%, 0.734. Similarly,
in Region IV, OA values and kappa coefficient were ranked from high to low respectively: AGEI
86.673%, 0.716, NIR/SWIR 85.691%, 0.699, Red/SWIR 85.218%, 0.692, NDSI 84.527%, 0.676, and ML
supervised classification 82.691%, 0.650. Averaged over the four test sites, AGEI glacier total error,
and AGEI non-glacier total error were all lower than that of NDSI, ML supervised classification,
Red/SWIR ratio, and NIR/SWIR ratio.

The AGEI showed a 1%–2% accuracy improvement compared with other methods. Although
this improvement seems small, the impacts of this 1%–2% improvement should not be neglected.
Firstly, AGEI aims to enhance glaciers in shadowed areas and remove water bodies adjacent to
glaciers. In the test region, noise factors, such as shadows and proglacial lakes, obviously account
for a small proportion of subscenes. Therefore, if noise factors were inhibited, the corresponding
accuracy improvement percentage would be relatively small as well. Secondly, according to data
from the World Glacier Monitoring Service (WGMS) and Global Land Ice Measurements from Space
(GLIMS), 0.01 km2 were identified as the optimal minimum size in glacier mapping based on Landsat
and other medium-resolution remote sensing data [36–38]. The glacier area of the four test sites was
49.899 km2, 29.193 km2, 50.243 km2, and 55.411 km2, respectively. An accuracy improvement by
1%–2% indicates that at least 0.998 km2, 0.584 km2, 1.005 km2, and 1.108 km2 glacier areas in the four
regions, respectively, were correctly classified using AGEI. Although these data cover a small area,
on a large scale, ignoring them could result in a large number of glaciers being removed. By the
end of 2013, the Second Glacier Inventory of China had compiled most of glaciers in western China
(86%) with a total area of 43,087 km2 [39]. A 1% improvement in accuracy means that 430.87 km2

more of glacier areas would be accounted for. On a global scale, the numbers would be even larger,
which has important implications for accurate water resources and climate change predictions. Thirdly,
these noise factors are few but widespread. The AGEI can automatically remove proglacial lakes
from glaciers and correctly classify shadowed glaciers without manual correction, minimizing the
post-processing workload.

Based on the above analysis, we concluded that the AGEI outperforms the RED/SWIR ratio,
NIR/SWIR ratio, NDSI, and ML supervised classification in terms of debris-free glacier mapping
especially with water (proglacial lakes) and shadowed areas.
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Table 3. Summary of per-pixel accuracy for five classifiers in the four test regions.

Classifier Threshold Glacier
Total-Error (%)

Non-Glacier
Total-Error (%)

Overall
Accuracy (%)

Kappa
Coefficient

Threshold Glacier
Total-Error (%)

Non-Glacier
Total-Error (%)

Overall
Accuracy (%)

Kappa
Coefficient

Region I Region II

ML – 16.68 28.79 89.122 0.761 – 26.21 48.03 82.336 0.614

Red/SWIR

1.70 18.29 31.49 88.400 0.745 3.00 24.00 36.60 85.483 0.695
1.90 18.52 30.91 88.710 0.747 2.90 23.67 37.00 85.600 0.697
1.80 18.17 30.90 88.710 0.744 2.95 24.00 38.82 84.848 0.678
1.95 18.69 30.28 89.020 0.741 2.85 25.00 40.30 84.262 0.670

NIR/SWIR

1.70 18.17 25.75 89.090 0.764 2.00 25.77 35.45 85.254 0.692
1.80 18.50 24.45 89.270 0.760 2.10 25.56 35.48 85.359 0.695
1.90 17.81 24.17 89.540 0.765 1.95 25.97 36.66 84.946 0.691
2.00 18.60 25.55 89.200 0.760 2.20 24.07 37.42 84.799 0.687

NDSI

0.40 21.51 38.16 85.670 0.684 0.40 29.02 62.81 75.520 0.426
0.60 19.01 31.16 87.266 0.727 0.57 27.52 56.70 79.008 0.523
0.70 18.30 28.68 88.094 0.737 0.60 27.71 55.87 79.552 0.540
0.80 19.59 28.40 87.763 0.735 0.65 30.04 59.30 78.592 0.529

AGEI

1.80 17.02 24.74 89.870 0.772 2.50 23.76 34.00 85.630 0.705
1.85 17.00 23.50 90.249 0.785 2.65 22.98 33.90 86.100 0.710
2.00 17.17 26.90 89.910 0.774 2.55 23.03 34.82 85.777 0.705
1.90 17.78 26.11 90.020 0.775 2.70 22.45 36.00 85.532 0.696

Region III Region IV

ML – 26.85 24.01 88.024 0.734 – 31.44 35.50 82.691 0.650

Red/SWIR

1.80 24.31 25.19 88.626 0.745 3.60 25.60 36.43 85.054 0.687
1.90 24.52 23.56 88.710 0.747 3.65 25.50 35.79 85.163 0.690
2.00 24.58 24.21 88.760 0.748 3.70 25.44 35.50 85.218 0.692
2.05 25.07 24.08 88.626 0.745 3.80 25.67 35.17 85.145 0.691

NIR/SWIR

1.30 25.47 24.59 88.409 0.741 2.50 24.29 35.85 85.545 0.696
1.40 24.64 24.94 88.593 0.744 2.60 24.77 35.10 85.636 0.698
1.50 26.38 24.55 88.109 0.735 2.70 24.54 35.71 85.691 0.699
1.60 26.70 23.70 88.092 0.735 2.80 25.16 34.26 85.654 0.703

NDSI

0.30 24.05 28.89 87.592 0.724 0.4 25.29 54.49 81.673 0.582
0.35 23.37 26.20 88.560 0.743 0.5 25.77 48.75 83.164 0.626
0.40 23.32 24.82 88.960 0.752 0.7 27.59 37.03 84.527 0.676
0.50 25.08 23.89 88.643 0.746 0.8 33.52 35.41 81.364 0.667

AGEI

1.40 21.65 24.14 89.526 0.763 3.00 23.17 35.44 86.509 0.709
1.50 21.72 23.12 89.794 0.769 3.10 23.12 33.28 86.673 0.716
1.55 22.26 23.03 89.677 0.767 3.15 23.44 34.18 86.545 0.712
1.60 22.54 22.84 89.643 0.766 3.20 23.36 33.66 86.636 0.715
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4.2.3. Mixed Edge Pixels Evaluation for the Five Classifiers

A sub-pixel accuracy assessment was performed by combing classified results with manually
digitized glacier boundaries from Google Earth. The recognition ability of mixed edge pixels for the
five classifiers was tested using various challenging features (Figure 8). Debris-free glacier pixels were
rarely misclassified for all classifiers, with only the NIR/SWIR ratio and ML omitting a small number
of edge pixels (Figure 8a,b). Glaciers with seasonal snow pixels, which had similar reflectance to
glacier pixels in visible bands, had greater commission errors for the Red/SWIR ratio, NDSI, and ML
(Figure 8c,d). Proglacial lake pixels, where green and red reflectance increased relative to NIR, resulted
in commission errors for the Red/SWIR ratio and NDSI methods (Figure 8e,f). Omission errors
increased for shadowed glacier pixels, where shadows reduced the glacier reflectance in visible bands
(Figure 8g,h). All classifiers produced omission errors in edge pixels for deep shadow areas, especially
the NIR/SWIR ratio (Figure 8g). The Red/SWIR ratio, and NDSI made commission errors in edge pixels
and the NIR/SWIR ratio and ML lost some glacier pixels in shadowed areas (Figure 8h). Debris-covered
glacier pixels, which had similar spectral reflectance to surrounding rocky or sandy areas in the visible
to near-infrared wavelengths, had significant omission errors for all classifiers (Figure 8i,j).
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Figure 8. Five methods for the ten validation plots, including manual digitized Google Earth reference
glacier boundaries (black outlines) and classified glaciers (grey hatched lines). Five challenging features
were selected to compare performances of the five methods: (a,b) debris-free glaciers; (c,d) glaciers
with seasonal snow; (e,f) proglacial lakes; (g,h) glaciers in shadowed areas; (i,j) debris-covered glaciers.
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Figure 9 shows the sub-pixel accuracy analysis and cumulative frequency of mixed pixels classified
as glaciers. The sensitivity of different methods to correctly recognizing edge pixels with various
mixtures of the glacier and non-glacier components was compared. The vertical line in Figure 9 presents
a single mixed pixel containing the 50% glacier-non glacier mixture. Edge pixels were predominantly
non-glacier (<50%), and the percentage of pixels classified as glacier by the AGEI is 25.5%, which is
lower than that of NIR/SWIR 27.12%, Red/SWIR 30.23%, ML supervised classification 34.51%, and NDSI
36.05%. In other words, 74.5% of mixed edge pixels classified as glacier were correctly classified by
AGEI, followed by (NIR/SWIR) 72.88%, (Red/SWIR) 69.77%, (ML supervised classification) 65.49%,
and (NDSI) 63.95%, respectively. According to the above results, AGEI performed better than the other
four methods, and NDSI realized the lowest classification accuracy for mixed edge pixels.
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4.2.4. Evaluation of Validation Plots in Different Land-Cover Backgrounds

Classification accuracy at the validation plot scale (300 × 300 m) was also evaluated to compare
the performance of different classifiers and minimize the influence of the geometric error between
the high-resolution and Landsat images. Glacier areas from the 1120 validation plots from Google
Earth images were calculated and compared with glacier areas produced by each classifier (Table 3).
An ordinary least squares regression showed the correlation between the classified glacier area and the
reference glacier area. For all methods, the glacier area was overestimated at the validation plot scale
due to commission errors. This problem may be caused by areas with snowfields and water. Omission
errors and the underestimation of glacier area were also a problem for areas with the shadowed glacier.
The performance of the classifiers at the plot scale was similar to that of per-pixel assessment and
sub-pixel assessment (Figure 10). The AGEI had the highest correlation (r2 = 0.878), followed by the
NIR/SWIR (r2 = 0.842), Red/SWIR (r2 = 0.833), supervised ML classification (r2 = 0.827), and NDSI
(r2 = 0.819) supported by slopes of 0.912, 0.897, 0.868, 0.845, and 0.845, and intercepts of 0.086, 0.088,
0.132, 0.161, and 0.158, respectively.
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4.3. Comparison Glacier Mapping of Landsat and Sentinel Imagery

Glacier distribution maps extracted using the five methods based on Landsat and Sentinel images
were overlaid and compared (Figure 11). L represented the classification results of Landsat 8 data, and S
represented the classification results of Sentinel-2 data. Four pixel types were generated, which were
referred to as L non-glacier S non-glacier, L glacier S glacier, L non-glacier S glacier, and L glacier
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S non-glacier. No matter what classifier was used, the Sentinel-2 glacial distribution was roughly
consistent with the Landsat 8 distribution because all classifiers achieved high matching rate, reaching
about 97% (sum of L glacier S glacier and L non-glacier S non-glacier) (Table 4). However, differences
also existed in partial extraction results. Most L glacier S non-glacier pixels are located near the edge of
the glacier (Figure 11 red pixels). According to the Google Earth image, Sentinel-2 data performed
better than Landsat data in accurately describing glacier edges due to the higher spatial resolution.
L non-glacier S glacier black pixels were mostly located in proglacial lakes, indicating Sentinel-2 data
was more likely to misclassify water bodies as glaciers compared with Landsat 8 data. This may be
caused by the different central wavelengths of the visible and near-infrared bands of Sentinel-2 and
Landsat 8 imagery. The pixel proportion of L glacier S non-glacier was higher than that of L non-glacier
S glacier, showing Sentinel-2 images obtained more non-glacier pixels using the five classifiers.
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Figure 11. Overlaid glacier distribution map of Landsat 8 and Sentinel-2 imagery using five methods:
(a) Red/SWIR; (b) NIR/SWIR; (c) AGEI; (d) supervised ML classification; (e) NDSI.

Table 4. Percentage of each type of pixels in the overlaid glacier distribution map.

Classifiers L Non-Glacier S
Non-Glacier

L Glacier S
Glacier

L Non-Glacier
S Glacier

L Glacier S
Non-Glacier

Red/SWIR 63.866 32.376 0.203 3.553
NIR/SWIR 66.149 30.832 0.624 2.393

AGEI 64.409 32.788 0.551 2.249
ML classification 59.390 37.771 0.937 1.900

NDSI 62.934 34.253 1.118 1.693

5. Discussion

The new automated glacier extraction index (AGEI) introduced in this paper can improve the
accuracy of debris-free glacier mapping. Since glacier and non-glacier features have a significant
spectral difference in the Red, NIR, and SWIR bands, the Red/SWIR ratio and NIR/SWIR ratio are
widely used methods to delineate debris-free glaciers. However, results indicated that only using the
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red band (SWIR band has always been used) may tend to classify most proglacial lakes as glaciers,
while only using NIR band may misclassify regions of shadowed glaciers. Since both proglacial lakes
and shadows are commonly included in satellite imagery, neither the Red/SWIR ratio nor NIR/SWIR
ratio can correctly classify proglacial lakes and shadowed glaciers simultaneously. In order to reduce
the number of errors, the AGEI used weighted Red and NIR band values to overcome those influences
and classify features correctly. From the distributions of pure pixel band ratio values, the AGEI value
could be larger than that of NIR/SWIR for shadowed glaciers and smaller than that of the Red/SWIR
for water features when the coefficient is properly allocated, therefore, both types of features can be
classified correctly. This method uses a simple technique to distinguish shadowed glaciers and remove
proglacial lakes without additional data.

Since a certain threshold value could not always achieve the highest accuracy, we explored
multiple thresholds interactively selected from glaciers in shadow regions, which are the most sensitive
to the threshold value. Otsu’s threshold segmentation method [40] was used for comparison. The Otsu
method selects threshold values by using the rule of the maximum between-class variance of the
background features and glacier features. However, experimental results using the Otsu method had
low accuracy, which was far less than that of interactively selected thresholds. In addition, the selection
of threshold has certain relevance with different sensors. For Landsat data, typical values of the
threshold are in the 2.0±0.5 range for the AGEI and ratio methods and in the 0.4–0.9 range for the
NDSI. As Sentinel data has a higher resolution than Landsat data, it can better identify the snow cover
around the glacier. The optimal threshold of Sentinel data is smaller than that of Landsat data under
the same image quality (the same lighting conditions, snow cover, etc.).

The weighted coefficient of AGEI can be adjusted in many scenarios to improve glacier mapping
accuracy, although the adjusting process takes a long time. Experimental results from the four test
regions revealed that a 0.5 coefficient achieved the highest AGEI accuracy and matched the “true”
glacier boundaries most closely. However, with varying scene brightness and contrast, a certain
coefficient may not always achieve the highest accuracy. Since the main purpose of determining an
optimal α is to automatically classify proglacial lakes and shadowed glacier correctly, in the course of
our experiment, we assumed that the value of proglacial lake pixels and shadowed glacier pixels in
the Red/SWIR ratio image was a1 and b1 and in the NIR/SWIR ratio image the value was a2 and b2

respectively. Many tests lead to the conclusion that the optimum weighted coefficient α was between 0
and b2−a2

a1−a2−b1+b2
. When the coefficient was 0 or 1, the AGEI forms the two special cases: The NIR/SWIR

ratio and Red/SWIR ratio. Therefore, the new AGEI should always perform better than or at least equal
to the Red/SWIR ratio or NIR/SWIR ratio.

A comprehensive accuracy assessment for the new AGEI was carried out using three different scale
validation methods: Whole-pixel, half-pixel, and plot-scale accuracy assessment. Whole pixel accuracy
assessment was used to evaluate the overall accuracy (OA) of glacier classification using a confusion
matrix based on full manual digitization according to glacier inventory boundaries. Half-pixel accuracy
assessment was adopted to verify the sensitivity to glacier edge mixed pixels based on Google Earth
images. Plot-scale validation was used to assess the ability to recognize challenging land features and
serve as a complement to the half-pixel validation for eliminating the possible georeferencing errors
between the Google and Landsat images. Generally speaking, for automatic glacier boundary extract
methods, whole pixel accuracy evaluation results are either yes or no. Based on this, half pixel area
evaluation is selected as the basis of uncertainty evaluation for edge effects [34,41]. This is particularly
significant when using satellite imagery, such as Landsat, to classify land features. Due to 30 m spatial
resolution of Landsat imagery, edge pixels cover relatively large areas that may be a mixture of glacier
and non-glacier components. The accuracy of mixed edge pixel classification may become an important
issue when using Landsat data to monitor and detect glacier changes on a global scale. With these
three different accuracy validation methods, AGEI may make glacier mapping using Landsat data
more accurate.
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The newly proposed AGEI aims to improve the accuracy of mapping debris-free glaciers.
Debris-covered glacier areas commonly have low temperature and little vegetation and are spectrally
similar to surrounding rocky and sandy terrain in the visible to near-infrared wavelengths (since
debris layer is derived from the valley rock materials) and are thus not mapped as a part of the glacier
when only using optical images. Several studies attempted to determine a technique automatically
distinguishing debris-covered glaciers [42–45]. However, all of these approaches are inefficient and
are not easily applied to other test regions [6]. In the future, highly accurate automated classification
methods for debris-free glacier and debris-covered glacier will likely replace manual digitization
of glacier boundaries. In our test cases, AGEI was tested with Landsat and Sentinel-2 data, and it
may need to be evaluated against data from other sensors. Additionally, more test sites may need to
consider a thorough evaluation of AGEI performance.

6. Conclusions

In this study, we devised a new automated glacier extraction index (AGEI) to improve the accuracy
of mapping debris-free glaciers, particularly in areas with proglacial lakes and shadowed glaciers
that are often major causes of low classification accuracy at the end of the melt season when the sun
angle is lower. The Gunnonggabu glacier, CN5Y725B0010 glacier, Bilang Glacier, and Wujiu glacier in
China were selected as four test sites. Landsat imagery was used to evaluate the performance of the
Red/SWIR ratio, NIR/SWIR ratio, ML supervised classification, NDSI, and AGEI. To obtain the optimal
threshold for mapping glaciers, multiple thresholds were selected by inspection of shadowed glacier
areas, which are most sensitive to the threshold value. During the adjustment process, the optimum
weighted coefficient was assigned as 0.5 in the four test sites. Three accuracy validation methods at
different scales were adopted. The per-pixel accuracy assessment indicated that the AGEI achieved
the highest OAs and kappa coefficients, as well as the lowest glacier total errors and non-glacier total
errors, compared with the other four methods. A sub-pixel analysis of glacier edge errors showed that
the AGEI most accurately classified edge pixels. This method might be suitable for glacier change
detection studies. Plot-scale validation indicated that the AGEI had the highest correlation and matched
the actual glacier distribution most closely. AGEI robustness was tested for Landsat and Sentinel-2
sensors. In summary, the AGEI can be used for mapping debris-free glaciers with the highest accuracy
particularly in areas with shadows and proglacial lakes.
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