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Abstract: Groundwater hydraulic head (H) measurements and point-estimates of hydraulic
conductivity (K) both contain information about the K field. There is no simple, a priori estimate
of the relative worth of H and K data. Thus, there is a gap in our conceptual understanding of the
value of the K inversion procedure. Here, using synthetic calibration experiments, we quantified
the worth of H and K data in terms of reducing calibrated K errors. We found that normalized K
error eK could be approximated by a polynomial function with first-order terms of H and K data
densities µH and µK, which have been normalized by the correlation lengths of the K field, and a
mutually inhibitive interaction term. This equation can be applied to obtain a rough estimate of the
uncertainty prior to the inversion for a case with a similar configuration. The formulation suggests
that the inversion is valuable even without K data. The relative worths of H and K depend heavily
on existing data densities and heterogeneity. K can be ten times more informative when it is sparse.
Noise perturbation experiments show that we should incorporate noisy K data when K is sparse, but
not a large amount of low-quality K estimates. Our conclusions establish a crude, baseline estimate of
the value of calibration. A similar assessment method for information content can be employed for
more complex problems.
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1. Introduction

The hydraulic conductivity (K) is a porous media property that is of great importance to various
applications including integrated hydrologic modeling [1,2], contaminant fate and transport predictions,
evaluation of groundwater resources [3], and analytical modeling [4]. On the one hand, K can be
inferred from pumping tests [5] or lithological estimates. Typically, K values are not independently
distributed but auto-correlated in space [6]. Therefore, one K measurement provides some information
not only about the site, but also about the adjacent region. On the other hand, K can also be estimated
inversely by calibrating a suitable groundwater flow model to an observed hydraulic head (H) using
a prescribed recharge. There are mature inversion packages such as model-independent parameter
estimation and uncertainty analysis (PEST) [7], which adjust K values, so that simulated H is close to
observed data. Often, they make use of available (but sparse) known K data points and geostatistical
models to constrain (or, in machine learning terminology, regularize) the inversion process. Therefore,
both H and scattered K data help reduce the uncertainty, i.e., they both carry information content about
the K field.
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Despite a significant body of literature on the information content (or data worth) of K
measurements, which we will summarize below, a conceptual knowledge gap exists regarding
the relative value of H data and the K inversion process. Recently, integrated hydrologic modeling
studies, e.g., [8–11], have relied on large-scale estimates of hydraulic conductivity, e.g., [12], for
parameterizing K, but these estimates may not offer adequate resolution and accuracy for local
groundwater modeling purposes. Integrated modeling studies often skip the step of K inversion.
A part of the reason may be that, prior to conducting the calibration, there is no method to estimate
how much uncertainty can be reduced by this process. On the other hand, it is common to find studies
where the calibrated K fields are presented without associated uncertainty estimates. Given the amount
of available data, how much uncertainty in the K field can be reduced by calibrating K to H? What is the
value of adding point-scale K measurements, which are inherently noisy, for improving the accuracy
of calibration? What is the value of securing more K or H measurements? A-priori answers to these
questions may help gauge the expected return of the calibration effort prior to carrying out the work.

Sifting through literature, we found that there are no simple answers to these inquiries. Previous
studies on optimal experimental designs have provided valuable contributions to understanding the
data worth of K measurements [13–15]. Their objectives were mostly to design the optimal way of
obtaining new K data points for different purposes. For instance, James et al. [13] used a Bayesian
data-worth framework to determine the location of data points that maximize their value in reducing
the total remediation cost, where the pollutant plume was uncertain with regard to both location
and extent. Neuman et al. [15] extended data-worth analysis by using the Bayesian model averaging
approach to maximize the cost-benefit of K data points. Freeze et al. [16] also optimized the locations of
measurements to minimize uncertainties with aquitard continuity and K distribution, while considering
minimized economic regret. Tucciarelli et al. [17] employed a chance-constrained stochastic technique
to find the best number and locations of additional measurements, which could result in a minimum
total cost of data acquisition and groundwater reclamation. One similar chance-constrained model
was coupled to an integer-programing sampling network design model in Wagner [14] in order to
optimize pumping and sampling strategies. The worth of data can also be evaluated via sequential
data assimilation methods such as ensemble Kalman filtering [18,19].

Despite the large body of literature, to the best of our knowledge, no work compared the value
of H data in the calibration of K. In other words, the information content of H data was not given
sufficient attention. However, the comparison between H and K values can be both challenging and
nuanced due to the many strategies that were utilized to optimize spatial locations of data points,
each with different objectives, constraints, and results. Therefore, we turn to a more modest question,
“With a fixed, regularly spaced configuration of data locations, what is the value of H and K data,
respectively?”

Centered around the abovementioned main question, this paper is organized to answer the
following three sub-questions: (1) In a uniformly distributed data setting, can we describe calibrated
K and H errors as functions of (preferably dimensionless) data densities, and are errors functions
of recharge and boundary conditions? (2) How do the worths of K and H compare under different
scenarios of H and K densities? (3) How do uncertainties with known K values impact our analyses?
In the interest of reducing the dimensionality of the problem, we seek to non-dimensionalize data
densities and errors with respect to the spatial heterogeneity of K. We will verify that the resulting
numbers are truly non-dimensional characterizations of system features. Dimensionless numbers have
been used in hydrological analysis with success. For example, see Haitjema and Mitchell-Bruker [20]
for the water table ratio and Li et al. [21] for the six dimensionless numbers characterizing watershed
hydrologic response types. These dimensional numbers, when verified, reveal underlying hydrologic
dynamics and allow the conclusion to be migrated to different scales.
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The advantage of the simple configuration is that the cause (data density and other factors) and
effects (calibrated K error) can be clearly ascertained. While we acknowledge that such a configuration
is rare, and the real-world is much more complex, our effort at least provides a baseline scenario
that sheds insights and allows comparison with other strategies. As a result, it is a step forward in
improving our understanding. Although they play important roles in groundwater modeling, the
storage coefficient and transient modeling are outside of the scope of the present study. Furthermore,
even though groundwater can be studied using Richards equation [22–26] as an integrated component
of the hydrologic system [27], or the Boussinesq approximation [28], we focus on the saturated
groundwater flow.

2. Methodology

2.1. Experimental Design

As discussed above, we used uniformly distributed H observations to make the study tractable.
A prescribed fraction of the H data points were randomly sampled and assumed to have K estimates.
Several realizations of such selections were prepared and tested in the calibrations. The collocation of
H and K data points occurs because when a fine-scale K estimate is recorded, e.g., from pumping test, a
water level reading can normally be obtained. We assumed a steady-state, 2D unconfined aquifer with
uniform recharge.

The worth of data, in the context of this paper, is defined as the reduction of calibrated H and
K error due to the inclusion of more data. As inverse modeling error is relative to the range of K
variability, its absolute value has limited meaning, and is also not transferrable. Hence, we defined a
dimensionless calibrated K error, eK, as the normalized root-mean-squared logarithmic error (RMSLE)
between log-transformed calibrated and synthetic K:

RMSLE =

√∑N
i=1

[
log

(
Ko

i

)
− log

(
Kc

i

)]2

N

eK =
RMSLE

log(P90) − log(P10)

(1)

where Ko
i and Kc

i are the synthetic and calibrated hydraulic conductivity values at the i-th location in
the domain, respectively. N is the total number of cells in the domain, and log(P90) and log(P10) are
the 90th and 10th percentiles of synthetic conductivity values, with their differences characterizing the
variability. Using these values instead of maximum and minimum values avoids skewing the error
estimate by extreme values in the stochastically generated K fields. Other percentiles may also be
considered. We will show that the normalization removes the dependence of error on the variability of
the K field.

Similarly, the normalized error of H, eH, was calculated for the collection of synthetic wells, as a
normalized root mean squared error (RMSE).

RMSE =

√∑n
i=1

(
Ho

i −Hc
i

)2

n

eH =
RMSE

Hmax −Hmin

(2)

where Ho
i and Hc

i are the “observed” and simulated groundwater head at the i-th synthetic H observation
locations, respectively, and Hmax and Hmin are the maximum and minimum groundwater head across
the domain corresponding to the synthetic K field.
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2.1.1. Synthetic Domain

Our computational domain is a rectangular unconfined aquifer. Six random K fields (Figure 1)
distinguished by different spatial correlation lengths, λ, were generated with FIELDGEN, a
supplemental utility for the model water flow and balance simulation model (WaSiM) [29]. We
manually varied the mean, standard deviation, and correlation length when running FIELDGEN to
generate the fields with different λ. The number of fields was chosen as a balance of the total work load
and the representation of heterogeneity. The range of λ that we tested ensured that, at the largest λ,
there are at least several clusters of high and low K values. Further increasing the range of λ will make
it too labor intensive and computationally expensive to complete our numerical experiments. The K
fields are all of log-normal distribution, with K values between 0.5 m day−1 to 200 m day−1. It needs to
be noted that the absolute value of this range is irrelevant if non-dimensionalization of the system is
valid, which means the conclusions are only dependent on the dimensionless numbers. Then, we fitted
a spherical model to the extracted empirical semi-variogram. The formula for the spherical model is:

γ(h) =

 c
[
1.5 h

λ − 0.5
(

h
λ

)3
]
, i f h ≤ λ

c, i f h > λ
(3)

where γ(h) is the empirical semi-variogram calculated from the generated field, h is the lag distance, c
is the sill, and λ is the correlation length. We used a bound-constrained version of the “fminsearch”
command from Matlab® [30] to find the c and λ that minimized the sum of squared differences
between the theoretical model in Equation (3) and the empirical variogram. We cut off the empirical
semi-variogram at 8000 m before fitting the variogram model.

The model domain spans 8000 m in both horizontal coordinate directions. The top and bottom
elevations were 150 m and −100 m, respectively. Except for the ones that test the effects of recharge
(Section 2.4), all experiments employed a uniform recharge of 500 mm/year. Again, if the dimensionless
analysis is found to be valid, what is important for the groundwater flow system is the ratio of recharge
to conductivity. By default, the eastern side was assigned a specified head (Dirichlet) boundary
condition, with a water head of 130 m, while the three other sides were set as no-flow boundaries.
However, the eastern and western boundary conditions were varied to test the effects of different
recharge and boundary conditions.

2.1.2. Synthetic Observations of H and K

The calibration of a K field requires observed H values and optionally known K values [31,32]. The
locations of synthetic H observations were evenly distributed throughout the domain, with an interval
of 500 m leading to 256 virtual wells (Figure 2). While the data may look dense, if the correlation length
is small, the data is relatively sparse. In terms of calibrated K error, as we will show later, the problem is
dimensionless, in the sense that only the ratio between data density and correlation length matters. For
a field with a small λ as in Figure 1a, the data is not dense after all. The water head at each observation
well was extracted from a forward simulation with the aforementioned synthetic K fields, recharge,
and boundary conditions. We randomly assigned known K values to x% of the observation wells.
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Figure 2. Locations of observation points (black) and pilot points (red). Boundaries of cells constituting
the domain grid are shown with black grid lines. The elevation of the ground surface is uniformly set
at 150 m. North and south sides of the domain are no-flow boundary conditions while the eastern side
is Dirichlet with a value of hBC2; hBC2 is 130 m by default but varied during the tests for the effects of
recharge and boundary conditions (Section 2.4). The Western side of the domain is no-flow by default
but Dirichlet was also tested during in the experiments about boundary conditions.

2.2. Inverse Modeling

We used MODFLOW-2000 [33] as the groundwater flow model, and the model-independent
parameter estimation and uncertainty analysis (PEST) [34] as the inverse modeling tool. PEST estimates
K with the assistance of pilot points, each of which carries an initial K value that is used in calibrations
and interpolated to all the grid cells in the domain. We set pilot points at the centroid of each
600 × 600 square box of the domain (see Figure 2). The inversion procedure in PEST adjusts K with an
iterative approach to minimize the following objective function:

Φm = (Ho
−M(K))TQ(Ho

−M(K))

Φg = Φm + αΦr

Kc = argmin
K

(
Φg

) (4)

where Φm is the unregularized objective function, Φr is a regularization term with α as a parameter,
Φg is the global objective function, vector K contains the conductivity values of the field, Ho is
the observation, and Q is a weight matrix used to define greater contributions of certain pairs of
observations. In the present simulation, a uniform weight is assigned to all K observations. M is the
model that predicts the system responses, given the parameter set K, and Kc is the calibrated K field
that minimizesΦg.

WithoutαΦr, the inversion process can be non-unique, which means that different sets of parameter
values may produce similar outcomes. K could be overfitted, which may lead to large errors when used
in the predictive mode [31,34]. To reduce overfitting, αΦr implements a penalization procedure called
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Tikhonov Regularization [35], which introduces geospatial structure as a constraint in the calibration.
‘Regularization’ here is synonymous to ‘penalization.’ The regularization term is:

Φr = (d−R(K))TQr(d−R(K)) (5)

where Qr is a diagonal matrix consisting of squared weights assigned to each observation, R is a
regularization operator that expresses a certain geostatistical constraint, e.g., the difference between
a trial parameter value and the parameter value at a site, given neighbors’ values (and a variogram
model), and d is a ‘system-preferred’ state, which is 0 in this case.

In PEST, α is estimated together with calibration. With the help of a definition for an ‘acceptably
good’ Φm value, Φ1

m, PEST found the α that minimizes Φr while satisfying that Φm is no greater than
Φ1

m. This regularization penalizes parameter values that are far from the value expected of geostatistical
models (built from data). The system can estimate more pilot points than there are observations,
because each new pilot points is automatically accompanied by a spatially interpolated value. The
algorithm attempts to ensure that the extra degrees of freedom, which carry little information, are
discarded [36]. The interpolation method we selected was Kriging with a spherical model. The number
of pilot points was set to 40% of H data points across all experiments. Considering the objective of the
study, we did not test the fraction of pilot points as a control variable.

2.3. Non-Dimensionalization of Data Density and Errors

If we draw our conclusions as a function of dimensionless numbers, they are more broadly
applicable than dimensional ones. The density of observation data needs to be examined relative to
the spatial heterogeneity of the field, which is characterized by λ. Smaller λ indicates a more rapid
varying K in space, which requires more observational data to constrain. To reduce the degrees of
freedom, we propose a dimensionless number, the effective data density, µH, which quantifies the ratio
between the correlation length and square root of data density:

µH =
λ

dH
=

λ
√

A/n
(6)

where A is the domain area, n is the number of wells where H is measured, and dH measures the
average distance between data points. µH can be interpreted as “the square root of the number of H
data points in a square box with an area of λ2”. A greater µH indicates a slower variation of K relative
to the distance between measurement points, and thus, more information about the H field.

Similarly, we can quantify the relative density of wells with known conductivity values, which
are implemented by randomly assigning synthetic K values to x% of observation wells. It gives rise to
the average distance between known K values, dK:

dK =
dH
√

x%
(7)

where x is the fraction of H observation wells with known K values. Then, similar to Equation (6), the
dimensionless factor to quantify conductivity data acquisition µK is derived as:

µK =
λ√

A/(n× x%)
(8)

The use of µH and µK allows us to greatly reduce the number of experiments and simplify the
experimental design. If they can effectively and adequately characterize the system, we can avoid
simultaneously varying the number of data points and spatial heterogeneity. Instead, we can adjust
only the latter. To verify the validity of the dimensionless numbers, we compared the errors of
calibrated K from a series of experiments, which contained different combinations of λ, n, and x%
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and produced similar dimensionless numbers. Five different µH values and five different µK were
tested while keeping other variables constant. For each x% value other than zero, three sets of random
locations were chosen for known K, leading to three separate calibrations. The results were then
averaged to obtain the final calibration errors.

2.4. Recharge and Boundary Conditions

We examined the impacts of recharge and boundary conditions (BC) on calibration errors. Six
recharge levels ranging between 100 mm/year and 1000 mm/year and two values of µH were tested. To
prevent the recharge from raising the water table above the ground surface, the Dirichlet boundary
was set to 115 m. Other model settings were identical to the default.

We also tested the impacts of the Dirichlet boundary conditions. For this test and this test only,
we applied another Dirichlet boundary to the western domain boundary (Figure 2 right panel). We
ran model calibrations with six µH values, while fixing µK at zero. We also ran five µK values while
keeping µH at 4.18. We compared calibrated H and K errors from these different recharges and BCs.

2.5. Experimental Design and Multivariate Polynomial Curve Fitting

We tested a total of 31 pairs of (µH, µK). For each pair, where µK is non-zero, we ran three random
realizations of K fields. This experimental design resulted in a total of 79 calibration experiments. All
experiments had the same domain geometries and locations of water head observations. Different µH
was achieved by employing K fields with different λ (Figure 1), while keeping n constant.

We fitted error as a polynomial function (maximum second order) of µH and µK values:

e(µH,µK) = P×
⇀
µ (9)

where P is a vector of coefficients in polynomial fitting,
⇀
µ =

(
1, µH, µ2

H , . . . ,µK, µ2
K ,µHµK

)
is the

vector of predictors, and e(µH,µK) is the calibration error. Our experiments were constrained within
the range of µ values. P was fitted using Matlab® curvefitting Toolbox. The term µHµK in Equation (9)
represents an interaction term. A probability value (p-value) was calculated for the null hypothesis that
the coefficient is equation to zero based on t-tests for each of the curve fitting coefficients. Furthermore,
the goodness of fit was evaluated using the coefficient of determination (R2) and the root mean of
squared error between the calibrated K/H errors and the values predicted by the polynomial function.

2.6. The Influence of Measurement Noise

The known K values that are supplied to the inversion algorithm can be estimated from pumping
tests, lithology, specific capacity, and drawdown data, or conductivity test of samples [5]. In practice,
regardless of which method is used, there will be errors. To study the impacts of K measurement noise
on the calibrated K, we conducted perturbation experiments, where we added a synthetic noise to the
observations. Since the K field is assumed to be log-normally distributed, we perturbed K values as:

log(K) = log(K∗) + ε (10)

where K∗ is the true conductivity value, K is what is supplied to the calibration algorithm, and
ε ∼ N(0, σn) is a Gaussian noise with a standard deviation of σn. If σn is 0.2, it means 33% of the data
points are perturbed to be either 50% larger or 37% smaller than K∗. If σn = 1, then 33% of the K data
points are perturbed by more than an order of magnitude. The influence of the noise is quantified as
an amplification factor:

β =

( eK
e∗K

)
(11)

where e∗K = eK(µH,µK, σn = 0) is the average calibrated K error of the calibrations with noise-free K
data, as defined in Equation (1), and eK is the error for calibrations with added noise. The experiment
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was very labor-intensive, as we tested M realizations of the noise and random selections of K positions.
We could not regularly sample the three-dimensional parameter space of (µH,µK, σn) space as we did
earlier. Instead, we explored a few lines in that space. In addition, since the readings of groundwater
head (or depth to the water table) are generally more accurate compared to the K noise, we ignored H
errors to reduce the dimensionality of the analysis. For comparing the results to the cases without any
K data, we also defined β0:

β0 =
eK(µH,µK = 0, σn = 0)

eK(µH,µK, σn = 0)
(12)

β0 is the ratio of errors between cases calibrated “without K data” and “with noise-free K data.”
It can be compared with other βs because they have common denominators.

2.7. Relative Data Worth

We can calculate the reduction of K error with respect to one measurement point: ∆eK
∆nH

and
∆eK
∆nK

. These values can be approximated numerically by calculating the increments in eK or eH (given
by Equation (9)), as the number of data points increase. They can also be derived from the fitted
polynomials in Equation (9). Then, we can examine two ratios that measure the relative worth of data:

Rµ =
∂eK

∂µH
:
∂eK

∂µK

Rn =
∆eK

∆nH
:

∆eK

∆nK

(13)

Rµ is the relative data worth ratio with respect to a unit increase in µH or µK and is only a function
of these two factors. Since µ is a nonlinear function of n, far more data points are needed to increase a
unit of µ when µ is high. This relationship can make Rµ difficult to interpret and use. Rn indicates
whether it is more beneficial to add an H or a K data point, which has a direct practical meaning.
However, Rn has three control variables: nH, nK and λ. We will show the influence of nH, nK under two
different λ values.

We considered the following two scenarios when calculating Rn: (A) A new K data point is always
accompanied by a new H data point, which is relevant when we plan to install new wells. In this
scenario, ∆µH

∆nK
=

∆µH
∆nH

= λ
2
√

AnH
; (B) we can add a K measurement without adding H data. This scenario

is relevant when we can conduct a pumping test from an existing well, or extract K estimates from
interpreting existing literature. Under this scenario, ∆µH

∆nK
is 0. We denoted R′n as the data worth ratio

calculated under scenario (B).

3. Results and Discussion

3.1. Verification of the Effectiveness of Non-Dimensionalization

Given similar µH and µK values, the normalized conductivity error eK is tightly clustered (Figure 3),
although λ, n, and x% varied substantially (Table A1). This behavior verified that µH and µK are
effective dimensionless numbers to characterize eK, which allowed us in only altering λ in later
experiments. In addition, Figure 3 suggested eK can be described as a smooth function of µH and µK.
In these preliminary experiments, we did not observe any non-monotonicity or fluctuations. Such
smoothness and monotonicity serve as the basis of fitting a polynomial function to the relationships
between normalized error and data densities.
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Figure 3. Verifications of normalized data densities as effective dimensionless numbers for eK (a) and eH

(b). A–G annotate clusters. When we tested the effectiveness of µH (blue circles), µK was kept constant.
Similarly, when we tested µK (green squares), µH was kept constant. In the three blue circle clusters,
water head is the only synthetic observational data in the model. Thus, their µK are zero. From the
clustering pattern in the left panel, it is clear that eK is similar for similar (µH, µK) pairs, even though
the correlation lengths and the number of data points are different. This figure suggests (µH, µK) are
effective dimensionless parameters controlling eK. However, it is not the case for eH. The experimental
configurations and results for the clusters on these figures are provided in Table A1.

However, we did not obtain a clustering pattern for water head error. The eH values showed
obvious scattering even with similar µH and µK. Therefore, it is meaningless to further test eH.
In summary, µH and µK are effective dimensionless numbers to characterize the system for eK but
not for eH. As a result, the conclusions to be drawn later for eK as a function of µH and µK were
applicable to different λ, x%, n combinations, while those for eH were only valid for µH and µK values
that we specified.

3.2. Impact of Recharge and Boundary Condition on Model Calibration Errors

Normalized errors are independent of recharge (Figure 4a,b). Various recharge inputs lead to
different water head ranges and, consequently, different absolute error values. However, after the error
is normalized on the ranges of H and K, they become flat and non-responsive to recharge. In summary,
these experiments show that the influence of recharge is linear, and can be removed by normalizing the
error with respect to the range of values in the domain. Therefore, we no longer considered recharge in
our factorial experiments.

Comparing eK ∼ µH and eK ∼ µK curves obtained with two different boundary conditions, we
noted that the boundary condition had little impact and the two sets of curves almost overlapped
(Figure 4c). The two boundary conditions tested were Dirichlet and Neumann, which approximate
lakes, rivers (Dirichlet), impervious mountain blocks (Neumann), and so on. However, the same
cannot be said about eH: There are gaps between Dirichilet and Neumann BCs and the gaps are not
constant (Figure 4d). The addition of Dirichlet boundary increases the water head error eH and makes
calibration results more stochastic. These patterns mean that the conclusions to be drawn later in
this paper with regard to eK, but not eH, can be generalized for many different situations, with little
impact from the environmental settings. As we will primarily focus on eK, we will remove BCs from
further consideration.
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Figure 4. Rescaled water head error (a) and conductivity error (b) as functions of recharge under two
different H data densities. The errors are obviously impacted by µH, but at each µH level, recharge
does not influence eK or eH. This pattern allows us to remove recharge as a control variable from our
experiments. (c,d) eK (c) and eH (d) as functions of normalized data densities. BC1 means domain with
one Dirichlet boundary and BC2 stands for the domain with two Dirichlet boundaries. Since different
boundary conditions generate the same curves, it indicates our analysis of eK can be valid for different
boundary conditions.

3.3. Errors as a Function of Normalized Data Densities

When we hold µH constant and increase µK, eK gradually decreases as one expects (Figure 5a).
The decline in eK is almost linear. The slopes of the equi-µH lines decrease slightly for higher µH values,
and the gaps between the lines become smaller at higher µK, indicating a moderate interaction between
µK and µH. The eK ∼ µK curves become flatter when µH is higher, suggesting that when µH is higher,
the marginal gain attained by the addition of µK decreases. eH shows a generally similar trend, but
there is a more noticeable quadratic trend (Figure 5b).
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Figure 5. Normalized K error (a) and H error (b), and dimensionalized K error (c) and H error (d), as
functions of normalized data densities. Each point on the plot represents the mean of three calibrations,
except when x% = 0. It is obvious that eK decreases as µK or µH increases and eK ∼ µK at each µH level
is almost linear.

Toward higherµK, we should be able to build a more accurate variogram model for the interpolation
procedure during calibration. However, at least in the tested range between µH and µK, such a benefit
is hardly observable. At the same time, as eK is computed from comparing “observed” and calibrated K
of the entire domain, the monotonously and smoothly varying eK suggests the regularization approach
is effective in reducing overfitting errors.

Viewing the data in a different way, when we keep a constant x%, the error apparently decreases
smoothly, as we increase the effective data densities (Figure 5c,d). In this Figure, as µH increases, µK
also increases proportionally. When x% is increased from 0 m to 10%, the reduction of both RMSE and
RMSLE are more significant than when it increased from 10% to 20%. As mentioned previously, this
pattern is perhaps due to the moderate interaction between µH and µK.

3.4. Multivariate Polynomial Curve Fitting

Stepwise multiple regressions show that high-order terms (i.e., the second order) are statistically
insignificant for eK so that the system is mostly linear in the range of tested µK and µH (Table 1). The
small value of the coefficient for (µH,µK) compared to the other terms confirms that the interaction
between the two variables is mild. We created a 3D surface using three terms: µK, µH, and µKµH.
Therefore, the final fitted equation can be written as:

e(µH,µK) = p0 + p1µH + p2µK + p5µHµK (14)
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where p0 to p5 are fitting parameters contained in P of Equation (9). Meanwhile, the quadratic term,
µ2

K, is statistically significant (p-value = 0.001) for eH. However, the R2 without the quadratic term is
adequately high, and adding the term does not increase it notably. In the interest of parsimony, we
chose not to include µ2

K in the fitted formula for eH either. As there are no effective dimensionless
numbers that characterize eH, we focused on eK.

Table 1. Multivariate polynomial curve fitting for the following equation: e(µH,µK) = p0 + p1µH +

p2µK + p3µ
2
H + p4µ

2
K + p5µHµK. p-value is the probability of the null hypothesis that the corresponding

coefficient is equal to 0 according to the t-statistic.

Calibration Errors
Coefficients in Fitting Equation Fitting Goodness

p0 p1 p2 p3 p4 p5 R2 ef

eK
p-Value 0 0 0 0.946 0.697 0

0.975 0.0162Value 0.464 −0.0533 −0.061 0 0 0.0075

eH
p-Value 0 0 0 0.939 0.001 0 0.973 0.00043
Value 0.012 0.0011 −0.00156 0 0 0.00015 −0.982 −0.00035

Note: The p-value of p4 coefficient for eH is small but still set to be 0. The two values inside the parentheses are the
values including the quadratic term µ2

K when fitting eH .

For the first-order terms, the difference between p1 and p2 is~15%. Therefore, in regions where the
first-order terms dominate and µH and µK are similar, the data worth of new H and K data points are
comparable. This finding suggests, at least across the range tested, groundwater head observations
have great value in reducing uncertainties in the K field, and we do not necessarily require knowledge
of K values to reduce eK. Also, since eK is normalized to the range of variability of K, we cannot
transfer eK to dimensionalized uncertainty estimates without some knowledge about the K field.
Meanwhile, since p1 and p2 are both negative and p5 is positive, the interaction terms exert a mutually
inhibitive effect: The existence of each type of data reduces the marginal benefit of the other type of
data. For example, when H observations are dense, because ∂eK

∂µK
≈ −0.061 + 0.0075 µH, additional K

observations do not help as much as when H data density is lower. This almost linear relationship with
mutual inhibition is a novel finding. Although we might have an intuitive expectation of an inhibitive
relationship, this study is the first to quantitatively determine its relative magnitude.

The fitted surface well describes the errors as a function of µH and µK (Figure 6), as most points
are scattered closely to the surface. As we assumed µK cannot be greater than µH, the valid region is
limited to the left lower triangle of the µH~µK plane. We also provided a contour plot for the surface
for a more numerically accurate representation (Figure 7). The contour patterns between eH and eK are
similar. The contours are denser near the lower left corner, because the gradients of error with respect
to µs are larger when µ is small as a result of smaller mutual inhibition effects.
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Figure 6. 3D visualization of adjusted multiple polynomial curve fitting of eK (a) and eH (b) as a
function of normalized data densities. The data fall close to the surface. Some data points fall below
the surface and are not visible at the shown angles.
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Figure 7. Contour representation of the surface fitted to eK (a) and eH (b) as functions of data densities.
Scattered points indicate the data points used to construct the contours.

3.5. Relative Data Value

With either numerical approximation or analytical derivation, we can estimate the ratio between
marginal error reduction rates to provide us some insights. For example, Rµ becomes Rµ ≈

P1+p5µK
P2+p5µH

,
which is clearly a function of both µK and µH. The µK tested scatter mostly within the range between 0
to 4.5 (Figure 5). Given a unit increase in the effective data density, H data appears to be more effective
in reducing eK (Figure 8). Rµ is >1 for the greater part of the plane, especially for K error. It rises quickly
toward the high µH, low µK region near the upper left corner of the figure. This pattern results from
the calculation of Rµ: µ is not a linear function of n. To increase one unit in µ when µ is high, many
data points are required.

Rn is easier to interpret as it shows the ratio of information content brought in by the next data
point of H vs. K, but to examine it, we must consider the nonlinear influence of λ. When λ is small
(highly heterogeneous field, Figure 8c,d), Rn ranges between 0.1 and 0.8, which means a K data
point will always bring in more information content than an H data point. This difference may be
counter-intuitive, considering the magnitude of coefficients p1 (−0.053) is only slightly smaller than
p2 (−0.061). An important factor is that nK is always smaller than nH in our tested ranges, which is
normally the case with available groundwater data. Rn contours radiate out almost linearly in the
shape of a fan and is dense near the left edge of the figure. The linear pattern of the contours in
Figure 8a,b suggest Rn is almost a function of x% for this high-heterogeneity case (λ = 725 m). When
nK < 10, Rn < 0.1, meaning K measurement is sparse compared to H, there is 10 times more information
value in new K data points than H. However, when λ is large (more homogeneous field), we are in
a relatively data-rich environment, where the mutual inhibition effect becomes more important. Rn

becomes markedly larger and more nonlinear (Figure 8e,f). Toward the left-edge, contours are dense
and still mostly vertical. In that region, Rn mainly depends on the amount of K data, and H density has
little impact. Rn then increases toward the upper-right corner. If other conditions are equal, new K
points bring in more relative value in the small-λ case than in the large-λ case. As the fraction of K
data points increases, new H data points become increasingly useful relative to K.
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Figure 8. Rµ of K error (a) and H error (b) as functions of normalized data densities µH and µK. Bold
lines highlight the less-than-one values among the contours. (c–f) Rn and R′n as functions of nH, nK,
and λ. Rn is calculated assuming each new K data point entails a new H data point. R′n is calculated
assuming new K and H data points are independent of each other.

3.6. The Influence of Noise with K Observations

Although we looked for predictive formulations to describe the relationship between β and its
three control variables (µK, µH, σn), we have not been able to find a simple and reliable predictive
formulation with R2 > 0.5. However, we can draw some inferences from our results.
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1. When µH is fixed, β, in general, grows as a function of increasing µK (Figure 9), but when µK < 3,
the error amplification is almost close to 1 and β is not very sensitive. The largest impact in
this category is with the case (µK = 1.45, µH = 1.3, σn = 1). Recall in this case, 33% of the K
data points have been perturbed more than an order of magnitude, but the impact on calibrated
K nonetheless appears limited (β = 1.29). However, when µK is larger than 3, the errors grow
significantly. At (µK = 6.48, µH = 7.24, σn = 0.5), β = 11.6 (the upper-rightmost point in Figure 9),
which means the inversion essentially failed. Another such case is (µK = 5.12, µH = 7.24, σn = 1)
and β = 4.57 (visible in Figure 9 blue line). At (µK = 6.48, µH = 7.24, σn = 0.2), even if the
perturbation is moderate, it still causes a significant error amplification (β = 1.47, the rightmost
circle on the lower solid green line).

2. Larger µH can help inhibit error amplification. When µK and σn are kept the same and µH

is increased, β always decreases. However, this effect is small when µK < 3.5 because the
amplification is already small.

3. Even though larger µK increases the error amplification from a noise-free baseline (Figure 9),
incorporating K data points nonetheless reduces error compared to corresponding cases with
µK = 0 (note β0 in Figure 9), as long as µK is not too large. For example, under a sparse-data
scenario (µK = 0.45 or µK = 1.3), even if σn = 1, which means significant noise, the error is still
less than the case without incorporating K data.

4. Under the combined conditions of high µK (> 3.5) (again, this means there are on average
3.52 = 12.25 conductivity data points in an area of λ2) and high noise (σn ≥ 0.5), the error
amplification skyrockets and dominates over the information content of K. For example, (µK = 5.1,
µH = 7.2, σn = 1), β = 4.57, and eK = 0.21 which is greater than the case with the same µH but
without K data (µK = 0). At µK = 6.5 and µH = 7.2, even a σn of 0.5 is sufficient to bring the error
amplification factor to 11.6. For these cases, the errors are too large, and the inversion failed.
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Figure 9. Error amplification factor β, the ratio of errors between “with noisy K data,” and “with
noise-free data” as functions of µK, µH, and σn. As explained before, since this experiment is very
expensive, we could only afford to explore a few lines. For comparison, dashed lines indicate β0.

Based on these observations, we conclude that, perhaps counter-intuitively, noise with K estimates
are more malicious under high µK scenarios. When there are only a few K data points, we should
incorporate them, even if we know they may have significant noise, provided that the log-standard
deviation of that noise is not more than 1 order of magnitude. However, when there are a great number
of low-quality K estimates, it is, in fact, better not to use them during the inversion and completely rely
on H data. It is possible that the low-quality K has made it very difficult for the inversion process to
infer a usable variogram.
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4. Conclusions

The main contribution of the paper is to expose the functional form of inverse modeling error
as dependent on data densities and the interaction between the density terms for the simplest case.
The simple dependence of calibrated K error (but not H error) on the normalized densities have not
been shown before. The conclusions of this study, i.e., Equation (14) with coefficients in Table 1, can
be applied a priori to roughly estimate the value of groundwater model calibration. For consultants
reading others’ works, which resulted from a calibration but without details concerning uncertainty,
the formula here can be helpful. We found that the calibrated K error, eK, can be well described by the
sum of a linear function of µH and µK, and a mild, mutually inhibitive interaction term, which indicates
if H density is high, the marginal value of K is reduced and vice versa. This functional form fills a
knowledge gap about the value of data and the inversion procedure itself. As the formula is derived
in dimensionless forms, it can be applied to various scales and heterogeneity settings. However,
the calibrated H error cannot be similarly described by dimensionless numbers. BCs and recharge
are found to have little impact on normalized K error. The absolute value of the coefficients of the
first-order terms are similar, but relative data worth ratio (H:K) for the next data point, Rn, is strongly
dependent on the existing data densities. If we assume that a new K observation must entail a new H
observation, across most of the tested parameter range, a new H measurement has less than 40% of
the data worth of a new K measurement (Rn < 0.4). When K is sparse, this ratio can be less than 10%
(Rn < 0.1). In a domain with higher heterogeneity, Rn is mostly determined by the fraction of wells
with K measurements.

Considering the noise inherent with known K estimates, we should incorporate K data when
there are relatively few K data points, or if the data quality is high. Especially, some knowledge about
the range of K variability is required to convert the normalized error estimates to ones with units.
However, if there are a great number of K data points with low quality, it is, in fact, better not to
incorporate them because they make it difficult to estimate a valid variogram.

5. Limitations

The findings help to build a first-order, conceptual understanding, but we must realize real-world
situations are far more complex. Certainly, the method employed in this work is simple and empirical.
The geometric configuration of the domain and measurement points is simplistic. Therefore, it only
represents a rough, a priori estimate, and it needs to be used with caution. More advanced methods
should be used to determine the optimum location to place new data points. Finally, our experiments
were carried out using the PEST algorithm in the environment of groundwater modeling system
software, and the results are, thus, conditioned on some decisions of the program, e.g., the choice of
the regularization parameter.
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Appendix A

Table A1. Experimental configurations and errors for the verifications of dimensionless numbers are
shown in Figure 3.

Cluster µH µK λ nH nK eH eK

A

3.4 0 725 1444 0 0.0041 0.3

3.5 0 1752 256 0 0.008 0.29

3.66 0 2088 196 0 0.017 0.27

B

4.8 0 2088 361 0 0.006 0.19

5 0 2401 256 0 0.007 0.2

4.8 0 2966 169 0 0.011 0.17

5 0 3621 121 0 0.014 0.08

C
7.2 0 3621 256 0 0.101 0.005

7.4 0 2966 169 0 0.980 0.004

E

1.5 0.45 725 256 25 N/A 0.36

1.4 0.64 725 256 49 N/A 0.35

1.5 0.69 1751 49 16 N/A 0.33

F

3.1 2.95 1751 256 196 N/A 0.18

3.4 3.13 2088 169 144 N/A 0.18

4.3 3.04 2088 256 121 N/A 0.16

G

4.8 4.3 2401 256 196 N/A 0.081

5.9 4.194 2966 256 121 N/A 0.08

4.7 4.2 2088 324 256 N/A 0.1
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