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Abstract: Three carbonaceous porous materials (biochar and activated carbon) were developed from
the Tectona grandis tree sawdust. The applied process of two-stage preparation included pre-treatment
through hydrothermal carbonization at 190 ◦C and subsequent pyrolysis at 800 ◦C. Two chemical
activating agents (K2CO3 and ZnCl2) were used to prepared activated carbons (K2CO3-AC and
ZnCl2-AC), respectively. They were characterized by textural property, morphology, and surface
element components and applied to remove Cr(VI) from solution at various solution pH values and
initial Cr(VI) concentrations. Results showed that the textural parameters (SBET and VTotal) of the
prepared material were 1757 m2/g and 1.027 cm3/g for Zn-Cl2-AC, 1013 m2/g and 0.418 cm3/g for
K2CO3-AC, and 792 m2/g and 0.345 cm3/g for biochar. The adsorption process reached the highest
efficiency at pH 3.0. The Langmuir maximum adsorption capacity indicated the decreasing order:
ZnCl2-AC (127 mg/g) > K2CO3-AC (103 mg/g) > biochar (83.5 mg/g). The removal mechanism of Cr(V)
from solution was regarded as an adsorption-coupled reduction, namely (1) partial reduction of Cr(VI)
into Cr(III) during the adsorption process and (2) adsorption of the Cr(VI) anions through electrostatic
attraction and pore filling and the reduced Cr(III) cations through complexation, Cπ–cation interaction,
cation exchange, and pore filing. Therefore, the prepared biochar and activated carbon can server as
promising adsorbents to efficiently remove both Cr(VI) and Cr(III) from water.

Keywords: hydrothermal carbonization; activated carbon; biochar; adsorption mechanism;
hexavalent chromium; adsorption-coupled reduction

1. Introduction

Industry often releases a large number of potentially toxic metals into surface water and
groundwater. The existence of hexavalent chromium (Cr(VI))—which is a strong oxidizing agent and
highly toxic chemical substance—in the water environment has caused more potential health risk
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for human beings (especially cancer risks) [1,2]. This is because of its carcinogenic and mutagenic
nature [3]. Meanwhile, Cr(III) that is classified as a hard acid can be easy to complex with some oxygen
and donor ligands in solution [2]. Therefore, in 2004, WHO establishes a maximum allowable limit
for total chromium (hexavalent chromium and trivalent chromium) concentration in drinking water
at 50 µg/L. Similarly, the US Environmental Protection Agency sets a limitation of total chromium
concentrations at 100 µg/L for potable water [1].

As reported in the literature, hexavalent chromium can be efficiently eliminated from water
media through many advanced methods. These potential water treatment technologies include
ion exchange [1], chemical precipitation [4], chemical coagulation and electrocoagulation [5],
electrochemical method [6], biological treatment [7], physical filtration process using nanofiltration
and microfiltration [8], and adsorption [9]. Among these existing removal methods, adsorption might
be a selection priority, because of its great advantages, such as a low operation cost, high regeneration
capacity, and excellent efficiency of hexavalent and trivalent chromium removal from water media
even at low concentrations [2,9–11]. In water treatment, activated carbon (AC) and biochar have been
acknowledged as promising adsorbents to remove both Cr(VI) anions and Cr(III) cations from the
water media and widely applied in many potable water purification and sewage treatment plants.
This is presumably because they exhibit an excellent level of porosity (i.e., larger surface area and
high total volume), a high concentration of oxygen-containing functional groups (i.e., carboxylic and
phenolic), and high mechanical strength [12–17]. According to an industrial research report [18], the
global demand for AC is expected to increase by 4.2% per year and be up to 2.2 million metric tons by
2022, and the global AC market size is estimated at approximately USD 4.75 billion in 2022. However,
the high cost of commercial AC restricts their large-scale use in industries [19,20].

In essence, AC can be prepared through a chemical or physical activation process. For the chemical
activation, AC can be developed through some processes: one-stage, two-stage, and three-stage [21,22].
Although the one-stage chemical activation process is commonly used to prepare AC, the two-stage
one through pre-hydrothermal carbonization can produce AC with a higher density of micro-porosity
and larger specific surface area than the others [14,16,22–24]. Moreover, biochar—a carbonaceous
porous material that has a similar characterization to AC—has served as an effective-cost adsorbent
for water and wastewater treatment [19]. In general, biochar can be directly prepared through a
pyrolysis process under a certain oxygen-limited condition (one-stage process) [17,19,20] or indirectly
prepared though pre-hydrothermal carbonization and subsequent pyrolysis (two-stage process) [23,25].
Similar to AC, biochar was developed from the two-stage process exhibited a high concentration of
micro-porosity [23].

Therefore, in this study, we developed advantageous activated carbons derived from the
lignocellulosic wood chips of Tectona grandis sawdust tree through the two-stage activation process
using K2CO3 or ZnCl2 as potential chemical activating reagents. In addition, Tectona grandis
sawdust-derived biochar was prepared simultaneously without any presence of chemical activating
reagent. They were applied to remove Cr(VI) from solution under different solution pH values and
initial Cr(VI) concentrations. The relevant adsorption mechanism was also explored and proposed.

2. Materials and Methods

2.1. Preparation of Biochar and Activated Carbon

The tropical hardwood sawdusts of Tectona grandis tree—used as the feedstock (raw) material
to prepare the carbonaceous materials—were collected, washed repeatedly with distilled deionized
water, dried over-night at 80 ◦C, and then sieved into relatively uniform particles (0.106–0.215 mm).
The carbonaceous porous materials were prepared through the two-stage process. First, approximately
10 g of the feedstock was mixed with distilled deionized water in a 150 mL beaker for 30 min.
Subsequently, the mixture was transferred into a Teflon autoclave and heated at 190 ◦C for 24 h
to produce hydrochar. After the hydrothermal carbonization process, the brown hydrochar was
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filtrated, washed intensively with distilled deionized water, and dried over-night at 105 ◦C. Second,
approximately 10 g of dried hydrochar (denoted as the precursor) was mixed with a certain activating
agent (K2CO3 or ZnCl2) at different impregnation ratios (w/w) of the activating reagent/precursor (i.e.,
0.75:1, 1:1, 1.25:1, 1.75:1, and 2:1). The mixtures of activating reagent/precursor were then dried at 80 ◦C
for 24 h to remove water. Subsequently, they were pyrolyzed at 800 ◦C for 4 h under an oxygen-limited
condition (using a porcelain crucible covered with a lid) to obtain ACs. Notably, the biochar sample
was directly prepared from hydrochar (without any activating agents) through the pyrolysis process at
800 ◦C for 4 h.

The carbonaceous porous materials (i.e., biochar and AC) were washed with 0.1 M HCl and then
distilled deionized water until the pH value of filtrate reached around 7.0. They were dried at 105 ◦C
until their moisture content was less than 5% and stored in some brown bottles until further use.
Notably, a primary adsorption test demonstrated that the optimal impregnation ratio of the activating
reagent/precursor was obtained at 1.75:1 for ZnCl2 and 0.75:1 for K2CO3. In other words, the AC
samples prepared at the impregnation ratios of ZnCl2:hydrochar (1.75:1; denoted as ZnCl2-AC) and
K2CO3:hydrochar (0.75:1; denoted as K2CO3-AC) exhibited an excellent adsorption capacity compared
to those prepared at the other impregnation ratios (data not shown). As a result, the AC (ZnCl2-AC
and K2CO3-AC) and biochar (as the blank adsorbent) samples were characterized and used as selective
adsorbents in this study. Furthermore, a commercial activated-charcoal (CAC, Norit RB4C) purchased
from Sigma–Aldrich used for the comparison of the adsorption efficiency. The textural property of
CAC has been published in our recent work [26].

2.2. Characterization of Biochar and Activated Carbon

The prepared carbonaceous materials were characterized by various advanced techniques.
Their textural properties were calculated from the adsorption/desorption isotherm of nitrogen gas
(Micromeritics ASAP 2020; ATS Scientific Inc., Burlington, ON, Canada). Scanning electron microscope
(SEM; Hitachi S-3000N, Hitachi Scientific Instruments, Tokyo, Japan) was applied to analyze their
surface morphology. The main elements on the surface of materials were determined by X-ray
photoelectron spectroscopy (XPS; Thermo Fisher K-Alpha; the Thermo Scientific, Waltham, MA, USA).
In addition, the XPS technique was applied to confirm the presence of chromium species on the surface
of laden carbonaceous materials. This technique plays an important role in confirming the relevant
adsorption mechanism. The surface charge of carbonaceous materials (pHPZC) was determined by the
common drift method [19,22,26].

2.3. Batch Adsorption Study

A stock solution (1000 mg/L) of Cr(VI) was prepared from pure potassium dichromate (K2Cr2O7;
purchased from SIGMA). The working Cr(VI) solutions were directly diluted from the stock solution.
The adsorption process of Cr(VI) onto the carbonaceous porous materials was conducted under batch
experiment. Approximately 0.02 g of adsorbent was added into a series of 150-mL Erlenmeyer Flask
containing 50 mL of Cr(VI) at different initial Cr(VI) concentrations (5–200 mg/L). The pH value
of the solution was adjusted and maintained during the adsorption process using 1 M NaOH and
1M HCl. The parafilm-covered flasks were shaken at 150 rpm for 24 h at 30 ◦C. After the complete
adsorption process, the mixture of laden adsorbent and adsorbate was separated by a glass fiber
filter (0.2-µm). The concentration of chromium in solution was determined by the atomic absorption
spectrometry technique (Avanta/AAS, GBC). The AAS technique can determine the concentration of
total chromium (hexavalent and trivalent chromium) in solution. The amount of chromium adsorbed
onto the carbonaceous porous materials (qe; mg/g) at equilibrium was calculated based on the mass
balance equation (Equation (1)).

qe =
Co −Ce

m
×V, (1)
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where Co and Ce (mg/L) are the chromium concentrations in solution at beginning and equilibrium,
respectively; m (g) is the mass of used carbonaceous porous materials; and V (L) is the volume of the
working chromium solution. All adsorption studies were conducted in triplicate, and the data were
reported as average ± standard deviation (SD).

2.4. Adsorption Isotherm Model

In general, the parameter of each adsorption isotherm model has different meanings. Depending
on the main purposes of study, the isotherm model can be selected and applied for appreciation. In this
study, we applied some common and helpful models to model the experimental data of adsorption
equilibrium. They include the Langmuir [27], Freundlich [28], and Redlich–Peterson [29] models.
In addition, to minimize the respective error functions, the non-linear optimization technique was
used to calculate the relevant adsorption parameters of the selective models [30].

The Langmuir equation:

qe =
Qo

maxKLCe

1 + KLCe
. (2)

The Freundlich equation:
qe = KFCn

e . (3)

The Redlich–Peterson model:
qe =

KRPCe

1 + aCg
e

, (4)

where Qo
max (mg/g) is the maximum saturated monolayer adsorption capacity of adsorbent; KL (L/mg)

is the Langmuir constant related to the affinity between an adsorbent and adsorbate; KF ((mg/g)(L/mg)n)
is the Freundlich constant, which characterizes the strength of adsorption; n (dimensionless) is a
Freundlich intensity parameter; KRP (L/g) and aRP (mg/L)−g are the Redlich–Peterson constants; and g
(dimensionless) is an exponent whose value must lie between 0 and 1.

3. Results and Discussion

3.1. Property of Prepared Biochar and Activated Carbon

Specific surface area plays a key role in estimating the adsorption capacity and mechanism of
various contaminants onto a certain adsorbent. The determining method of specific surface area is often
based on the nitrogen adsorption/desorption isotherm at 77 K. The specific surface area (SBET; m2/g)
of a material is commonly determined by the Brunauer–Emmett–Teller (BET) equation. Meanwhile,
the total pore volume often is calculated by the relevant amount of nitrogen adsorption at a relative
pressure (p/p◦) of around 0.99 [23]. Figure 1 provides the isotherms of nitrogen physisorption of
three carbon samples. According to the International Union of Pure and Applied Chemistry (IUPAC)
technical report [31], the gas physisorption isotherms can be classified as Type Ia for biochar and
Type Ib for activated carbons (K2CO3-AC and ZnCl2-AC), suggesting that these materials exhibited
a high quantity of micropore volume. Notably, a hysteresis appears in the multilayer range of the
nitrogen physical adsorption isotherm by ZnCl2-AC, implying that ZnCl2-AC exhibited a micropore or
mesopore structure.
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Figure 1. Nitrogen adsorption/desorption isotherm of the biochar and activated carbon (AC) samples.

Table 1 summaries some corresponding textural properties of three prepared samples. As expected,
the chemical activation process (using K2CO3 and ZnCl2 as chemical activating agents) can effectively
simulate the porosity development of the feedstock material compared to the pyrolysis process alone
(without any chemical activating agents). The SBET values of three adsorbent solids decreased in the
following order: 1757 ± 8.81 m2/g (ZnCl2-AC) > 1013 ± 1.62 m2/g (K2CO3-AC) > 792 ± 0.52 m2/g (biochar).
Therefore, it can be concluded that the ZnCl2 (an effective dehydration reagent) can act as a more
effective chemical activating reagent than K2CO3 (a dehydrogenation reagent). An identical conclusion
was obtained by Chen and coworkers [12] for the preparation of tobacco stem through chemical
activation process using K2CO3 and ZnCl2. Three prepared carbonaceous porous materials with
large specific surface area and high total pore volume (Table 1) were expected to have an outstanding
adsorption capacity towards chromium ions in a water environment.

Table 1. Textural property of the prepared biochar and two activated carbon (AC) samples and CAC.

Adsorbent SBET (m2/g) VTotal (cm3/g) Pore Width (nm)

ZnCl2-AC 1757 1.027 2.34
K2CO3-AC 1013 0.418 1.65

Commercial AC 1026 0.502 1.95
Biochar 792 0.345 1.74

The morphological property of the prepared samples was analyzed by the SEM technique. Figure 2
shows the different morphologies among there porous materials samples. The biochar sample exhibited
a rough surface morphology with little porosity (Figure 2a). In contrast, the typical irregular and
heterogeneous surface morphology with sponge-like structures were observed in the AC samples
(Figure 2b–c). The formation of well-developed pores in AC during pyrolysis was caused by the
strong evaporation of K2CO3 or ZnCl2 under the high carbonization temperature of 800 ◦C. Moreover,
Figure 2d indicates that the primary element composites were carbon and oxygen. Clearly, biochar and
activated carbon are carbon-enriched materials that are approximately 86% to 91% carbon. In addition,
three prepared samples had a high content of oxygen, suggesting that they might exhibit a high
content of oxygen-containing functional groups on their surface [12,13,15,32]. The oxygen-bearing
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functionality has been known as the most active groups in adsorbing various potentially toxic metals
through inner-sphere complexation and out-sphere complexation [33,34].
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(d) their surface element component.

3.2. Effect of pH on Adsorption Capacity of Prepared Biochar and Activated Carbon

The solution pH is the most important parameter in the adsorption study because it greatly affects
the dominant species of adsorbate and the surface charge of adsorbent under a working solution.
According to the relative distribution of aqueous hexavalent chromium as a function of pH and Cr(VI)
concentration, hydrogen chromate (HCrO4

−) anion is regarded as the dominant anionic chromium
species than the others (H2CrO4, CrO4

2−, Cr2O7
2−, and HCr2O7

−) in a solution within the solution pH
range from 1.0 to 6.5 [2,9,35,36]. In addition, when the chromium concentration in solution is higher
than 1000 mg/L, dichromate (Cr2O7

2−) anion is naturally formed in solution [2,35]. In this study, the
maximum concentration of Cr(VI) is around 200 mg/L; therefore, the dominant species of Cr(VI) in
solution is HCrO4

− anions. Moreover, the pHPZC values of prepared carbonaceous materials were
higher than 8.0, suggesting that the surface charge of such materials was dominantly positive when the
solution pH values were lower than 8.0. Therefore, Cr(VI) anions in solution can be electrostatically
attracted by the positively charged surface of the carbon materials.

In general, to obtain the accurate comparison of adsorption efficiency of an adsorbate (i.e.,
potentially toxic metals) onto a certain adsorbent (i.e., carbon-based materials), the Langmuir maximum
adsorption capacity (Qo

max; calculated from Equation (2)) is often recommended instead of using the qe

value (obtained from Equation (1)) [2,30,37,38]. In addition, the experimental data of Cr(VI) adsorption
onto the carbon materials well fitted the Langmuir model. Therefore, in this study, we discussed the
pH-dependence on the maximum adsorption capacity (Qo

max) of the biochar and activated carbons
(Figure 3). The results demonstrated that the adsorption capacity of three carbonaceous materials
remarkably decreased when the solution pH values increased from 3.0 to 7.0. The decreasing adsorption
capacity of the biochar and activated carbon at a higher solution pH value resulted from decreasing
electrostatic attraction between the positively charged surface of materials (i.e., —COOH2

+, —OH2
+,

and —NH3
+) and the HCrO4

− anions in solution. A similar trend adsorption was reported by the other
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scholars for the adsorption of Cr(VI) onto biochar [10,11,15], prepared activated carbon [13,32,39–41],
commercial activated carbon [41], and multiwalled carbon nanotubes [42].

Water 2019, 11, x FOR PEER REVIEW 7 of 14 

 

activated carbon [13,32,39–41], commercial activated carbon [41], and multiwalled carbon nanotubes 
[42]. 

 
Figure 3. Effect of pH values on the Langmuir maximum adsorption capacity (Qomax; mg/g) of the 
prepared biochar and two activated carbons toward Cr(VI) in solution (Note: the data are represented 
as average ± standard error). 

3.3. Adsorption Isotherm 

The adsorption isotherm plays an important role in identifying the region whether the 
experimental data of Cr(VI) adsorption onto the carbonaceous materials are located. According to 
[43], the adsorption isotherms of Cr(VI) by the prepared biochar and activated carbon (Figure 4) were 
classified as the F(Freundlich)-type or possible L(Langmuir)-type; a concave downward curve is 
typical identification of such types. The result suggested that the prepared carbonaceous materials 
exhibited a high affinity of chromium ions in the solution. 

 
Figure 4. Adsorption isotherm of Cr(VI) by the prepared biochar and activated carbon samples (Note: 
the data are represented as average ± standard deviation). 

Figure 3. Effect of pH values on the Langmuir maximum adsorption capacity (Qo
max; mg/g) of the

prepared biochar and two activated carbons toward Cr(VI) in solution (Note: the data are represented
as average ± standard error).

3.3. Adsorption Isotherm

The adsorption isotherm plays an important role in identifying the region whether the experimental
data of Cr(VI) adsorption onto the carbonaceous materials are located. According to [43], the adsorption
isotherms of Cr(VI) by the prepared biochar and activated carbon (Figure 4) were classified as the
F(Freundlich)-type or possible L(Langmuir)-type; a concave downward curve is typical identification
of such types. The result suggested that the prepared carbonaceous materials exhibited a high affinity
of chromium ions in the solution.
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As shown in Table 2, the experimental data of adsorption equilibrium can be satisfactorily
described by the selective models of adsorption isotherm, with the coefficient of determination (R2)
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being higher than 0.98. Figure 4 shows the modeling of the Langmuir model for the experimental data
under the given experiment conditions. According to the corresponding parameters of the Langmuir
model in Table 2, the maximum adsorption capacity (Qo

max; mg/g) of the prepared carbonaceous
porous adsorbents followed the decreasing order: ZnCl2-AC (127 mg/g) > K2CO3-AC (103 mg/g) >

biochar (83.5 mg/g). Clearly, the tendency of Cr(VI) adsorption onto the biochar and activated carbon
samples (Table 2) was well consistent with that of their SBET values (Table 1). Their specific surface
area (SBET; m2/g) values were ranked as follows: ZnCl2-AC (1757 m2/g) > K2CO3-AC (1013 m2/g)
> biochar (792 m2/g). This means that the activated carbon prepared through ZnCl2 activation
exhibited an excellent adsorption capacity to Cr(VI) ions and large specific surface area compared to
that through K2CO3 activation. In addition, the maximum adsorption capacity of the biochar and
ACs was overwhelmingly higher than that of their precursor (hydrochar; Qo

max = 4.5 mg/g) and
raw material (Tectona grandis sawdust biosorbent; Qo

max = 3.8 mg/g), confirming that the prepared
carbonaceous porous materials exhibited a higher affinity toward chromium ions in the solution than
their precursor and raw material. Interestingly, in the same experimental conditions, the prepared
biochar and AC samples (83.5–127 mg/g) exhibited a higher Langmuir maximum adsorption capacity
than commercial activated-charcoal did (52.6 mg/g), suggesting that they have a potential application
in large-scale industry.

Table 2. Corresponding parameter of chromium adsorption isotherms onto the biochar and ACs.

Unit Biochar K2CO3-AC ZnCl2-AC

1. Langmuir model

Qo
max (mg/g) 83.5 103 127

KL (L/mg) 0.030 0.094 0.071
R2 — 0.995 0.984 0.990
χ2 — 3.373 20.9 18.6

2. Freundlich model

KF (mg/g)(L/mg)n 15.4 43.0 41.3
n — 0.300 0.165 0.212

R2 — 0.996 0.989 0.997
χ2 — 2.40 14.2 6.34

3. Redlich–Peterson model

KRP (L/g) 5.86 216 71.2
aRP (mg/L) 0.212 4.86 1.54
g — 0.802 0.841 0.809

R2 — 0.996 0.986 0.996
χ2 — 2.66 18.9 8.24

Notably, Figure 5a provides the XPS survey spectra of the biochar and ACs. The presence of
Cr element on the spectra assuredly confirmed that chromium was successfully adsorbed by the
carbon materials. In addition, the oxygen content of three adsorbent samples (%atomic determined
by X-ray photoelectron spectroscopy; Figure 2d) significantly increased after the adsorption of Cr(VI)
in solution, namely increasing from 9.49% to 25.8% (for biochar), 13.9% to 25.0% (for K2CO3-AC),
and 8.6% to 19.3% (for ZnCl2-AC). An analogous result was reported by Chen and colleagues [32]
for the Cr(VI) adsorption by commercial activated carbon, they reported that the oxygen contents
of commercial activated carbon (CAC) before and after adsorption of Cr(VI) was 18.4% and 20.5%
(%atomic determined by XPS), respectively. An increase in oxygen content of the biochar and activated
carbon samples after adsorption resulted from the additional presence of oxygen element derived from
the HCrO4

− oxyanions.
Furthermore, a comparison of the maximum adsorption capacity (Qo

max; mg/g) of Cr(VI) onto the
biochar and activated carbon samples in this study and other kinds of relevant adsorbent materials in
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the literature is provided in Table 3. The comparative performance corroborated that two activated
carbons (103–127 mg/g) and biochar (83.5 mg/g) reported this study exhibited a higher Qo

max value
that most prepared activated carbons (23.6–55.2 mg/g), commercial activated carbons (48.5–52.6 mg/g),
functionalized multiwalled carbon nanotubes (85.8 mg/g), and biochars (2.15–24.6 mg/g) in the previous
studies. Accordingly, they are expected as a promising adsorbent for real application in removing
chromium ions from water and wastewater.

Table 3. Comparison of the maximum adsorption capacity (Qo
max; mg/g) of the biochar and activated

carbon in this study and the other corresponding adsorbents in the literature.

Stage Activating
Agent SBET (m2/g)

VTotal
(cm3/g)

Qo
max

(mg/g) References

1. Activated carbon
Corn straw One KOH 2131 1.128 176 [13]

Tectona grandis sawdust Two ZnCl2 1757 0.418 127 This study
Tectona grandis sawdust Two K2CO3 1013 1.027 103 This study

Multiwalled carbon
nanotubes — — 87.4 0.82 85.8 [42]

Waste tires Two CO2 832 — 55.2 [41]
NORIT RB4C (CAC) Two Steam 1026 0.502 52.6 This study

F400 (CAC) — — — — 48.5 [41]
Nutshells One ZnCl2 2869 1.96 46.2 [39]

Apple peels One H3PO4 — — 36.0 [40]

2. Biochar
Tectona grandis sawdust Two No 792 0.345 83.5 This study

Wheat straw One No 26.3 — 24.6 [11]
Wicke One No 11.4 — 23.6 [11]

Banana pseudostem One No 8.53 0.044 21.5 [15]
Sawdust One No 320 — 2.15 [41]

Notes: The preparation method (in the Stage column): one-stage process (feed stock was directly polysized) and
two-stage process (feed stock was pre-treated through hydrothermal carbonization and subsequently pyrolyzed).
CAC means commercial activated carbon.

3.4. Adsorption Mechanism

As aforementioned, the solution pH has a strong effect on the adsorption mechanism of chromium.
In this study, the adsorption mechanism of chromium (the dominant HCrO4

− species) was explored at
solution pH 3.0 because three prepared adsorbents exhibited excellent adsorption capacity under this
condition (Figure 3). The biochar and ACs samples possessed large specific surface area and high total
pore volume (Table 1). In general, an adsorbent with excellent textural property has been acknowledged
to exhibit an outstanding adsorption capacity to various contaminants (including hexavalent chromium
and trivalent chromium) through the integral adsorption mechanism of pore-filling.

In essence, when Cr(VI) oxyanions in solution are in contact with some certain functionality
(acting as electron-donor groups such as —COOH, —OH, and —NH2) on the surface of the adsorbent,
they are naturally reduced to less toxic Cr(III) cations through the common redox reaction. This is
because Cr(VI) has a high redox (oxidation/reduction) potential value (usually higher than +1.35 V)
under standard conditions [9,30,44,45]. In this study, the electrons in Equation (5) were provided by
the oxygen-containing functional groups on the surface of biochar and activated carbon.

HCrO4
− + 7H+ + 3e−
 Cr3+ + 4H2O (E◦ = +1.35). (5)
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However, if reduced Cr(III) does not present on the surface of the prepared carbon materials,
the adsorption mechanism will only involve the adsorption of Cr(VI) oxyanions. In contrast, if both
reduced Cr(III) and Cr(VI) ions co-exist on the materials’ surface, the adsorption mechanism will
be an “adsorption-coupled reduction” [9,32,42,45]. To confirm the oxidation state and coordination
environment of chromium bound to the biochar and activated carbon samples, the XPS analysis of
such materials after adsorbing Cr(VI) was conducted. The narrow spectra of Cr 2p XPS indicated the
coexistence of Cr(VI) and Cr(III) on the surface of the adsorbents (Figure 5b–d). Taking ZnCl2-AC as a
typical example, Cr(VI) was identified at the binding energy of 577.9 eV (Cr 2p3/2) and 588.9 eV (Cr
2p1/2); meanwhile, Cr(III) was 576.7 eV (Cr 2p3/2) and 586.5 eV (Cr 2p1/2). Clearly, the binding energy of
Cr(III) was lower than that of Cr(VI), which is well consistent with the previous literature [15,36,46,47]
and some critical comment works [48,49]. Similarly, some authors investigated the binding energy of
relevant standard chemicals (i.e., K2Cr2O7 and CrCl3 as the blank samples) by the XPS techniques.
They also conduced that Cr(VI) exhibited a higher binding energy than Cr(III) because hexavalent
chromium is more electrophilic than Cr(III) [46,47]. Notably, the mechanism of Cr(VI) removal from
water media by various adsorbents through adsorption-coupled reduction has been confirmed by
many scholars, such as activated carbon [13,32], multiwalled carbon nanotubes [42], biochar [15,47],
layered double hydroxides [32,36], graphene oxide [50], and even biosorbent [46,51].

Notably, Figure 5 shows that the Cr(III) metal is the dominant species present on the surface of
three carbon samples, with the percentage of Cr(III) accounting for 77.4% (ZnCl2-AC), 74.4% (biochar),
64.1% (K2CO3-AC). The result suggested that the majority of Cr(VI) anions was reduced to less toxic
Cr(III) cations, and the reduced Cr(III) was adequately adsorbed by the biochar and the activated
carbon samples rather than Cr(VI). Similarly, some scholars found that after the Cr(VI) adsorption, the
percentage of Cr(III) on the surface of laden adsorbent (using XPS technique) was approximately 97.1%
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for the biochar adsorbent [15] and 78.9% for the AC adsorbent [32]. According to the literature, the Cr3+

metal ions can be adsorbed by carbonaceous porous material through (1) cation–π interaction (also
known as Cπ–cation interaction) between the aromatic π-system in the carbon samples and metallic
Cr(III) cation [42,52], (2) complexation with the oxygen-containing functional groups (i.e., carboxyl and
phenolic groups) [15,50,53], cation exchange with alkaline (K+ and Na+) and alkaline earth (Ca2+ and
Mg2+) metal ions [15,51], and (3) pore filling [32]. In addition, although the adsorption mechanism of
Cr(III) involved in the precipitation of Cr(OH)3 on the surface of carbon material (i.e., biochar and
multiwalled carbon nanotubes) has been reported in the literature works [15,42], this mechanism was
ruled out in this study. This is because the adsorption study was conducted under the acidic condition.

To sum up, the removal mechanism of Cr(VI) by the biochar and activated carbon samples was
the principle adsorption-coupled reduction (Figure 6). Namely, Cr(VI) ions solution were partially
reduced into Cr(III) ions during the process of Cr(VI) adsorption. The adsorption mechanism of Cr(VI)
primarily involved the electrostatic attraction and pore filling; meanwhile, that of Cr(III) was the
complexation, Cπ—cation, cation exchange, and pore filling.
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4. Conclusions

The Cr(VI) contaminant in solution was efficiently removed by three carbonaceous porous
materials. Under the same adsorptive experiment conditions, the maximum adsorption capacity
(Qo

max) of chromium was ordered as follows: ZnCl2-AC (127 mg/g) > K2CO3-AC (103 mg/g) > biochar
(84 mg/g), which is consistent with the order of specific surface area (SBET): 1757 m2/g > 1013 m2/g >

792 m2/g, respectively. The adsorption mechanism of chromium ions onto the carbonaceous porous
material was relatively similar and primarily regarded as adsorption-coupled reduction. During the
process of Cr(VI) adsorption, Cr(VI) was partially reduced into Cr(III) through the redox reaction.
A part of un-reduced Cr(VI) anions was adsorbed by the carbonaceous porous materials through
electrostatic attraction (mainly between HCrO4

− anions and the —COOH2
+ and —OH2

+ groups on
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the materials’ surface) and pore filing. Meanwhile, the reduced Cr(III) cations were adsorbed by the
carbonaceous porous through complexation with the main oxygen-containing functional groups on the
materials’ surface, Cπ—cation interaction, cation exchange, and pore filing. It can be concluded that the
process of two-stage preparation can produce biochar and activated carbon with a high micro-porosity,
large specific surface area, and excellent adsorption capacity to chromium ions in solution.
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