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Abstract: Current efforts towards achieving better connectivity and increasing intelligence in
functioning of industrial processes are guided by the Industrial Internet of Things paradigm and
implicitly stimulate occurrence of data accumulation. In recent years, several researchers and industrial
products have presented Historian application solutions for data accumulation. The large amounts
of data that are gathered by these Historians remains mostly unused or used only for reporting
purposes. So far, Historians have been focused on connectivity, data manipulation possibilities, and
sometimes on low-cost solutions in order to gain higher applicability or to integrate multiple SCADA
servers (e.g. Siemens–WinCC, Schneider Electric – Vijeo Citect, IGSS, Wonderware, InduSoft Web
Studio, Inductive Automation – Ignition, etc.), etc. Both literature and industry are currently unable to
identify a Historian solution that functions in fog and efficiently applies and is built upon Industry 4.0
ideas. The future is to conceive a proactive Historian that is able to, besides gathering data, identify
dependencies and patterns for particular processes and elaborate strategies to increase performance
in order to provide feedback through corrective action on the functional system. Using available
solutions, determining patterns by the Historian operator in the context of big data is a tremendous
effort. The motivation of this research is provided by the currently unoptimized and partly inefficient
systems in the water industry that can benefit from cost reduction and quality indicator improvements
through IIoT concepts related to data processing and process adjustments. As the first part of more
complex research to obtain a proactive Historian, the current paper wishes to propose a reference
architecture and to address the issue of data dependency analyses as part of pattern identification
structures. The conceptual approach targets a highly customizable solution considering the variety of
industrial processes, but it also underlines basic software modules as generally applicable for the
same reason. To prove the efficiency of the obtained solution in the context of real industrial processes,
and their corresponding monitoring and control solutions, the paper presents a test scenario in the
water industry.

Keywords: industrial internet of things; Historian; industrial automation; industry 4.0; water industry;
fog computing; big data

1. Introduction

1.1. Industrial Internet of Things (IIoT)

The Industrial Internet of Things (IIoT) [1] defines the same principles as the Internet of Things
(IoT) concept but applies them to industry instead of the consumer, general-purpose approach of
IoT. IIoT’s main goals are to generate interoperability of physical objects and to improve system
functioning by elaborating optimizing strategies through interoperation between different industrial
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entities, data analyses, and learning. Improved interfacing and communication brought by IIoT to
the industry enables interoperation and may increase the intelligence of systems, thus allowing to
significantly improve technological processes. Water industry-specific structures and functioning
provide the perfect environment for improvements in efficiency, quality, and availability using Industry
4.0/IIoT principles. The water industry is represented by highly heterogeneous and geographically
dispersed processes and technical solutions. These include legacy systems and new structures that are
in stringent need of connecting the digital and the physical worlds in the context of highly functional
process dependencies without interoperation. The current transition towards the IIoT paradigm is
stimulated by the benefits that lie ahead such as cost reduction and increases in safety, productivity,
and availability. This transition is also revealing a series of problems for the water industry. Specific to
drinking water facilities, these issues include: water source quality changes, high energy and substance
consumptions in the treatment process, and maintenance. Under the IIoT paradigm, the fog computing
concept is emerging and becoming more significant in industry. This new term defines solutions that
are placed closer to local automation and, therefore, are much more accessible and reliable.

IIoT is currently one of the most important research and development topics; it manages to
draw significant attention from both academia and industry [2]. This new paradigm is steering the
industry towards more intelligent communication between different industrial entities by connecting
computers, controllers, actuators, and sensors to the Internet [3]. This better-connected industrial
environment allows for superior information exchange between all the components involved [4].
Consequently, the IIoT paradigm is facilitating the development of more sophisticated technical
solutions and autonomous software algorithms [5–7] that can improve the working characteristics
(energy consumption, time efficiency) for industrial processes (see [8–11]).

Identifying data dependencies is a process of analyzing stored data and discovering relations and
dependencies between the characteristics/tags that have their values stored. This process is vital for
developing a proactive Historian application because it is necessary to understand the correct ways to
react and adjust the system. In order to adjust technical system working parameters, an understanding
of how the potential adjustment impacts the entire system (the rest of the working parameters) is
required. For example, if working parameter A is adjusted by the proactive Historian, the application
must know if parameter B is related or dependent on parameter A. Lack of information regarding data
dependencies can provide the possibility that the proactive Historian applies adjustments that make
the technical system unstable. So, data dependency identification is crucial for the rest of the processes
that follow inside a proactive Historian application.

Because of the heterogeneity of devices that are starting to be connected under the IIoT paradigm [1],
there are many communication protocols used in the industry; research from [12] provides insight on
this problem. However, in recent years, Open Protocol Communication Unified Architecture (OPC
UA) has started to become the standard IIoT protocol (see [13–16]). The popularity of OPC UA is also
sustained by the large number of available software development kits, which makes OPC UA-based
development easy (see [17–19]).

1.2. Interoperability and Historian

The water industry contains a very large variety of systems/solutions. These solutions are also
highly dispersed chronologically and by location. The authors presented in [20,21] solutions for OPC
UA wrapping with a high technology readiness level (TRL) applied at water distribution companies.
The solutions led to interoperability.

The superior interoperability provided by the OPC UA in the IIoT context enables horizontal
interoperation between systems placed at the same hierarchical level (see [22,23]). The benefits of
interoperation are proved for the water industry in study [24] on a wastewater network, which
started from a cascaded wastewater pumping station (WWPS) towards the wastewater treatment plant
(WWTP). In a fog computing scenario, by using a noninvasive control algorithm and interoperation, the
solution from [24] optimizes clogged pipes failures, WWPS blockages, and supplementary stormwater
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at the inlet of the WWTP. By using interoperability, a noninvasive approach over existing functioning
structures, and data accumulation, the study from [25] also presents a solution to reduce energy
consumption in a WWTP.

Emergence of data accumulation leads to a different view from the IIoT perspective. Currently,
data gathering in industry is usually implemented with Historian applications placed at the supervisory
control and data acquisition (SCADA) level. The need of Historian applications in the water industry
is emphasized by the research from [26], which also proposes standardized directions for different
types of water industry-specific objectives.

Currently, most Historian applications available for industry are still offered by well-known
automation/SCADA software producers and are very expensive. Therefore, they are placed only at the
top supervisory levels. However, recent research has proposed different approaches for Historians.

In [27], the authors proposed an improved Historian structure that could handle large amounts
of data. However, they used International Electrotechnical Commission 61850 protocol, which is an
electricity domain-specific protocol, thus making the Historian not suitable for other industries.

A more general approach is presented in [28], where the authors proposed a low-cost and
lightweight Historian based on OPC UA, which made it potentially available for a wide range of
industries. The solution embedded Node-RED into a Java application and stored the collected
data inside an SQLite database. At the same time, it was a platform-independent and complete
hardware/software solution. The proposed Historian application was successfully applied in the
water industry.

In [29], the authors proposed a distributed Historian framework, which allowed configuration of
a Historian application by using an organizational model of a hierarchical system.

On a slightly different note, research from [30] presented an efficient data archiving method
designed specifically for storing historical sensor data.

Because of progress recently made in data accumulation, new opportunities are arising regarding
usage of the collected data [31,32]. This data can be used as input for software algorithms that can
run autonomously and eventually optimize the technical systems from where the data was collected.
This kind of software algorithm can bring great benefit to the industry by reducing costs and improving
efficiency of various technical systems. There are numerous possible development directions in the
stored data analysis area, but few researchers are currently integrating the IIoT context.

1.3. Towards a Proactive Historian Application in the Water Industry

Practical implementations resulting from this research paper were considered and deployed in the
water industry. The water industry currently needs improvement in system functioning that cannot be
obtained by most manual analyses of available data in the context of currently deployed data gathering
solutions and structuring because of several issues, which are briefly detailed as follows: there is a large
geographical spread of systems in this industry; Historian applications are currently available only at
the top supervisory level because of the high costs that a classic Historian solution implies; collected
data are filtered according to the hierarchical level of vertical integration and the implicit local process
understanding level (a data processing operation closer to the technical systems (fog computing) would
enable cost reduction and efficiency improvements); there is lack of significant pattern identification
capabilities that are adaptable to the highly heterogenous water industry processes; there is lack of a
process-aware Historian; and there is lack of proactive solutions that identify an applicable recipe and
react over the local process in the form of corrective actions.

The proposed solution is conceived according to Industry 4.0 principles by offering superior
connectivity and flexibility; therefore, it is applicable to the wide variety of local systems in the water
industry. This is achieved by using the Node-RED platform [33], which offers various nodes that enable
interfacing local industrial systems (e.g., OPC UA, Modbus (TCP and serial), S7, TCP/IP Ethernet, etc.)
and offer the possibility to add other interfacing nodes in case of a nonpopular protocol. The proposed
solution can connect (gather data and also to react) to local and regional SCADA systems, and also
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to programmable logic controllers (PLCs)/human machine interfaces (HMIs)/gateways, offering a
low-cost alternative to the current Historian applications available.

The water industry requires data accumulation and optimization techniques based on knowledge
from gathered data to increase functioning efficiency. Studies need to be industry focused and
applicable because various research findings have been purely theoretical without a chance to connect
or to apply them on real water facilities. Drinking water treatment and distribution are critical processes
with many parameters, and improvements in functioning are necessary. The treatment process is
intensively studied, and in [34] the authors proved that the treatment process itself determined the
impact that climate changes had over the drinking water systems. Water quality indicators are also of
high importance, and various methods are studied to implement their increase. Efficiency of the entire
process relies also on the cost aspects. The cost issue is intensively analyzed and related to certain
parameters (e.g., consumption of substances, energy, and maintenance costs). In [35], the authors
proved the efficiency of substance usage over water quality indicators. Some studies (see [36]) present
a fuzzy solution to determine water quality, and it would be interesting to observe if the method will be
adopted by water distribution companies. The cost issue is studied in [37] but without a specific concern
over the water sources and the treatment process. Some studies focused on the cost issue considering
automation techniques. For example, proof of reducing costs was provided in [38] when pumps
were used with frequency converters. This also impacted water sources and proved that the optimal
solution for water wells was for them to be equipped with a pump that had frequency converters,
which, therefore, contained local flow and leveled referenced closed-loop control algorithms. A very
complex study regarding cost perception was provided [39]. The cost was presented from various
perspectives including the impact of parameters and equipment evaluation on the cost (e.g., energy
consumption of equipment, equipment faults, maintenance costs, etc.), optimizing techniques in the
water distribution network, etc. But, the study from [39] was focused on the distribution network, and it
did not deal with the water treatment process. In the same context, authors in [40] presented a strategy
to optimize reservoir functioning to minimize economic losses caused by pollution, and authors in [41]
detailed an energy consumption reduction conceptual solution and its impact on swimming pool
water distribution. Another important issue was presented in [42] regarding the influence of raw
water over the treatment process. The study from [43] showed water quality degradation for drinking
water sources in a complex and long-term study (441 water supply systems using 18 years of data).
The outcome of [43] was relevant to the current paper’s research perspective: it was necessary for
water quality of each water source to be determined considering that, in practice, there are no quality
sensors on a water well, and all information must be derived from complex monitoring, analyzing, and
learning procedures. The importance of data gathering, analysis, and learning is presented in several
studies. In [44], turbidity levels of the water sources were predicted using data mining techniques,
and an early warning system was implemented. In [45], a burst detection in metering areas of water
distribution was presented based on functional patterns of water demand with supervised learning.
The same type of research was developed in [46], where based on SCADA, bursts were detected over
a long-distance network. As data are highly important in quantitative research, in [47], the authors
presented a solution to impute missing data for water distribution systems.

In the context of water resource management, various issues are considered and analyzed. Using
hydraulic modelling, research from [48] studied hydraulic regimes using different datasets associated
to flood and low-flow events. The study from [49] presented a historical review of the evolution and
problems of water sources and distribution. In [50], authors presented the importance of meteorological
data integration in the water domain. In [51], the seepage effect on river dikes was investigated, which
could affect the quality and availability of surface of water sources. Through IIoT, the impacts of the
encountered problems may be reduced, or even eliminated, while the functioning of respective water
treatment and distribution processes may be improved.
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Following the above-mentioned status regarding IIoT, Historians, and the water industry, the next
question arises: how do we efficiently use the accumulated amount of information to obtain maximum
benefits for the water industry?

Data accumulation refers to Historians in automation and SCADA domains. An industry-oriented
analysis, which considered both literature study and the authors’ many years of experience in the water
industry, concluded that classic Historian solutions from automation-/SCADA-producing companies
were: very expensive and therefore placed only at the top supervisory level (less than 5% of the
encountered SCADA control rooms had separate Historians); used only for data accumulation and
reporting purposes; provided only manual (Excel-type) data manipulation possibilities; were mostly
unusable by operators because of process and application understanding issues; and were, many times,
platform-dependent. No Historian was encountered in the water industry that used accumulated data to
automatically identify data dependencies, that elaborated on optimizing strategy-related conclusions,
nor that reacted over local process controls to increase its efficiency in any way. The currently
implemented Historians in the water industry were not aware of interfaced process characteristics;
therefore, they cannot have any process-related objective [52,53].

Industry requirements from Industry 4.0, and implicitly from IIoT and industrial automation,
include advantages such as cost reduction, improved safety, wider availability, and an increase in
productivity. Interoperability is essential and it is dependent on equipment and automation/SCADA
solutions. Further research towards interoperation, data analysis and pattern identification, objective
function definition, and model-based analysis is process-dependent. Water distribution companies are
concerned about cost reduction (energy efficiency, substance consumption, and good maintenance
strategy) but also about water quality. The water industry includes various geographically and
chronologically dispersed local processes and implementations. Consequently, the best solutions
should be fog-based so they can be close to local automation, noninvasive over existing control solutions,
and adaptable to the individual processes and control procedures in order to identify dependencies by
analyzing and understanding gathered data and to react through algorithms that augment existing
structures. No such solution was encountered in practice nor in the literature.

Therefore, the general objective of the initiated research is to answer the above-mentioned question
by providing an approach that will increase industrial efficiency through data accumulation and
analysis. The current paper proposes a reference architecture for a proactive Historian that consists
of a multilevel algorithm hierarchy. The proposed architecture facilitates creation of an autonomous,
proactive Historian able to optimize and influence a functional system without human assistance.
Extending the research from [28], where a basic low-cost Historian was developed, the current
research presents a stored data analysis algorithm that identifies data dependencies between measured
characteristic and reference characteristic, establishes degrees of dependency, and exposes functional
patterns. The proposed solution is aware of the process, so that computing or process-related degrees of
freedom are considered (e.g., parameter and functional limitations, output possibilities). The associated
process is from the water industry, a domain where physical and digital entities are currently trying
to find common ground in the context of Industry 4.0 (e.g., SC5-11-2018 Horizon 2020 European
Commission research project call from 2018: “Digital solutions for water: linking the physical and
digital world for water solutions”). Considering drinking water treatment and distribution processes,
the specific objectives of this research are to provide the reference architecture for the Historian, the
data dependency identification algorithm, degrees of dependency between characteristics, process
awareness, interoperability and interoperation possibilities, an integrated solution that is applied and
tested on a real system, and a step-ahead view in increasing the energy efficiency by improved water
source manipulation.

The conceived research is applicable to any industry as long as the reference tags, the limitations,
and the objectives are defined at the beginning so that the Historian will understand the purpose and
the degrees of freedom of the analysis.
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The following section presents processes that take place inside a typical drinking water treatment
plant (DWTP), presents the proposed proactive Historian reference architecture, and provides an
algorithm description. Section 3 details integration of the algorithm into the Historian application
developed in [28], illustrates test scenarios from the water industry, and provides insight into improving
a DWTP. Section 4 discusses the results and findings, while Section 5 concludes this paper.

2. Materials and Methods

2.1. Drinking Water Treatment Plant (DWTP) Typical Processes

Figure 1 presents processes that take place inside a typical drinking water treatment plant (DWTP).
The inlet of a DWTP comes from water sources. Water sources are usually represented by underground
water wells or surface water sources. In case of very dry climate, the water may come even after a
complete recirculation of the water from wastewater facilities. The DWTP usually takes over the water
from the sources and initiates the treatment. The phases of water treatment are aeration, filtering with
sand and charcoal, disinfection (chlorine), and sludge treatment. Aeration is realized with blowers
that maintain an oxygen level inside the tank. The first pumping station moves the water from the
aeration tank to the sand filters, to reduce turbidity, and then to the charcoal filters. Aeration and
charcoal filtering are essential to obtain the desired pH and conductivity levels of the treated water.
The filters are cleaned frequently using air (additional blowers) or water. Cleaning with water is
usually realized using other pumps, but in some situations the first pumping station may function
in two functioning regimes (filter regime and washing regime). Chlorination is realized through a
chlorine station. Chlorine levels are measured at different points in the DWTP, and corresponding
dosing rates are associated inside closed-loop control procedures. Usually, an elementary water
flow-based chlorine control strategy is added with a higher-level, closed-loop chlorine control loop
that has residual chlorine on feedback. Continuous water flow is necessary at the DWTP inlet because
large periods are necessary to obtain an efficient chlorine control (e.g., 30 min). Output of the DWTP is
sent to the water distribution network using a second pumping station and eventually a water tower.
Also, the sludge treatment phase consists of various energy consumer objects.
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Considering the mentioned steps in water treatment and practical DWTP monitoring using the
developed Historian, the following dependencies and issues are identified:

• Growth of water acidity/alkalinity (pH) and lowering conductivity levels are implicitly assured
through energy and chlorine consumption (e.g., aeration blowers, chlorine station, and
maintenance of charcoal filters).
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• A high turbidity level implicates possible clogging, respectively high energy consumption and
water losses, which result from cleaning the filters with air and water.

• A level control loop in the water distribution tank complemented with a flow-based control
loop, which calls water sources according to the actual flow demand from the water distribution
network, assures a very useful, anticipative character of the entire water distribution when high
water consumption is identified in critical periods of a day. At night, however, water sources are
usually stopped when the upper hysteresis limit is achieved in the water tank. If water losses are
present in the water distribution network, then the flow control loop will activate water sources.
If the flow setpoints in the flow-based closed-loop control algorithms at the water sources are too
high, or are set at fixed values, the water source pumps may start and stop multiple times during
the night, causing pump and water source wear out.

• Besides the previously mentioned problem, successive starting and stopping of the water sources
causes activation/deactivation of the entire DWTP for short periods. This leads to perturbed
filtering and chlorination processes.

• Water sources have different characteristics; therefore, some of them may provide higher flow
values and some better water quality. Monitoring residual chlorine, blower functioning times,
and filter washing cycles over longer periods of time, together with chosen water sources that
are currently functioning (provided water flow values), water source quality indicators can be
identified. Using suitable water sources, specific consumptions can be reduced (flow distribution).

• Water source quality indicators change over time.
• The water level in the water distribution tank cannot be kept inside two hysteresis limits because

water consumption variation in the distribution network perturbs the level control algorithm.
Consequently, inconsistencies of water reserves in the tank may be identified including higher
energy consumption and possible water treatment process disturbances.

• Proper equipment functioning hours and number of starts is essential to consider because
maintenance/replacement is expensive.

Many of the previously mentioned ideas are usually not solved nor identified in classical
developments. The most proper and efficient recipe cannot be identified with classical structures.
Implementation of automation/SCADA solutions for the physical dependencies in Figure 1 is usually
made in phases. Entrepreneurs commission systems using their best knowledge at the time, following
pending documentation without long-term testing and without any optimizing solutions.

Considering the above-mentioned ideas, monitoring and storing process values is essential, but
more must be developed in order to increase efficiency. The best recipe has to consider the available
variables (usually thousands of tags) and their dependencies following a cost objective. The cost
objective is influenced by many factors (e.g., reducing functioning hours of one equipment decreases
maintenance costs, but it may negatively influence quality indicators). Most times the recipe cannot be
identified by operators or engineers, which is an essential scope of IIoT and Industry 4.0.

The other important issue relates to interfacing, communication, and the ability to implement
noninvasive changes over process automation. Practically, the ability of a system to react after
connecting, collecting, and processing procedures makes it a proactive system that is able to apply the
identified best recipe.

2.2. The Reference Architecture

In order to develop a proactive Historian, which can collect data from a technical system and
then autonomously analyze the stored data and influence the technical system in order to meet clearly
defined objectives with no human assistance, a reference architecture regarding the software algorithms
is imperatively needed. A reference architecture defines the software modules involved, and it delimits
the used algorithms into distinct categories based on their main functionalities. The finalized proactive
Historian will be a complex software application consisting of numerous independent modules with
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multiple interactions. Also, in order to compute the exact adjustment that needs to be applied to the
technical system in order to meet the defined objective, multiple software algorithms must be involved.
Each software algorithm will have different functionalities, characteristics, inputs, and outputs, and
only the collective effort of all those algorithms can produce the desired end result (correct adjustment
to the technical system). In this context, lack of a reference architecture leads to chaotic development
with a lack of overview, which makes both software development and software maintenance much
more difficult. Although [54] proposed a system architecture suitable for Industry 4.0, the approach
was too general, and a more specific architecture must be defined for a proactive Historian application.

A simple Historian application can only be used to store different measured characteristic values
(tags) of a technical system in a database, but it does not analyze data nor does it establish parameter
behavioral patterns. As such, it does not optimize solutions nor does it influence in any way the
technical system it monitors.

The architecture of a simple Historian application that only stores data from a technical system
is already available [28], so this paper emphasizes the architecture of algorithms that optimizes the
technical system. The proactive reference architecture proposed by this paper is detailed in Figure 2.
The architecture is generic, so it does not limit itself to a specific industry or domain. The proposed
architecture can be successfully applied in any technical domain.

The proposed architecture consists of a multilevel software algorithm structure that logically
separates the involved algorithms into three distinct levels. Each of the three levels contain more than
just one algorithm.

The main purposes of Level 1 algorithms are to identify relations and dependencies between
technical system characteristics. This is important both for estimates of future evolution and for
decisions regarding adjustments of the technical system. In order to predict future evolutions, Level
2 algorithms must understand what relations exist between different characteristics and how the
characteristics influence each other. Level 1 algorithm outputs are a set of relations and dependencies
between the measured characteristics. This output must also provide quantitative results, showing to
what extent characteristics are related or influenced by other characteristics or context data.

Level 2 algorithms must predict the future evolution of measured characteristics. In order to
make any adjustments to a technical system, it is required to know how the measured characteristic
values evolve in the future. Level 2 algorithms must have two distinct inputs. First, relations and
dependencies between characteristics identified by Level 1 algorithms are required because the technical
systems are usually very complex with interconnected characteristics, so an isolation of the prediction
to only one characteristic without analyzing the implications to the entire system (and on related
characteristics) would lead to erroneous results. Secondly, in order to greatly improve the accuracy of
the future estimated evolution, Level 2 algorithms must also receive context data as an input future.
These data would also represent a prediction, so the accuracies of Level 2 algorithm outputs are
influenced by the accuracy of this future context data. The future context data needed are closely
related to the particularities of the industry in which the technical system runs. For example, water
industry or agriculture are influenced by meteorological data. If the technical system is related to
the water industry and it has a characteristic which represents the inlet of a wastewater treatment
plant, then the meteorological rainfall forecast must be fed at the input of Level 2 algorithms. Level 2
algorithms can produce an erroneous wastewater inlet prediction if the rainfall forecast is not taken into
account. Accuracy of the meteorological forecast influences the accuracy of Level 2 algorithm outputs.
The outputs of Level 2 algorithms are the predicted future evolution of the measured characteristics of
the technical system. For better accuracy, as many technical system characteristics as possible should be
taken into consideration when starting the analysis to identify all possible implications/dependencies.
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Level 3 algorithms are responsible for deciding how to influence the technical system in order
to meet a defined objective. These algorithms must have two distinct inputs. The first input is the
predicted future evolution of the technical system, computed by Level 2 algorithms. The second input
is an objective (or even a set of objectives) that must be provided by a technical system manager.
For example, the technical system manager can choose to reduce costs by reducing the value of a certain
characteristic (e.g., in the water industry reduce the overall power consumption of water pumps) or to
improve general cost efficiency. Based on those two inputs, Level 3 algorithms must compute how to
adjust the system in order to achieve the desired objective. The outputs of Level 3 algorithms would be
the exact influence that needs to be applied and can be applied to the technical system. The output of
Level 3 must be directly applicable to the technical system; therefore, Level 3 algorithms must have a
comprehensive understanding of the technical system and the tags that can be modified to augment
the process setpoints without invasive/destructive interference.

The proposed proactive Historian architecture consists of a repetitive loop, whereby the evolution
of the technical system is recorded, analyzed, predicted, and then technical system evolution is altered
from the prediction in order to achieve predefined goals. The objectives can be changed along the way.
From a different point of view, the algorithms that transform the simple Historian application into a
proactive Historian application work in a pipeline architecture. Each algorithm level uses outputs of
lower level algorithms as inputs.

2.3. The Implemented Solution—Algorithm Description

This section presents a Level 1 algorithm from the reference architecture detailed in the previous
section. Being a Level 1 algorithm, its main goal is to identify data dependencies between different
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characteristics of a technical system. In the implemented version, the algorithm only used historical,
stored data as input without taking into account external context data, but this algorithm represented
only a part of Level 1 from the reference architecture.

The proposed algorithm used a reference characteristic and, starting from the evolution of the
reference measured values, it determined if the other characteristics were connected somehow to the
reference. In case the algorithm determined that the measured values of a characteristic were related
(regarding the evolution in time) to the measured values of the reference, it also computed the degree
of impact regarding the dependency (the two characteristics could be very tightly related or could
have a very low influence one over another).

The input for this algorithm was historically stored data that represented measured values of
different characteristics (e.g., water pressures, water debits, water tank levels, energies, functioning
hours, substance consumptions, etc.) sampled at different intervals (the sampling step should not
necessarily be the same). In the analysis, the sampling step used was one day, so the input data
were prepared before analysis by computing daily averages of the measured values. This allowed
variation of the sampling period. Also, as input, the user indicated which characteristic would be used
as reference.

Regarding the output, the algorithm returned two main pieces of information for each of the
analyzed characteristics in relation to the reference: Proportionality and Quantity.

Proportionality information had three different possible values: directly proportional, inversely
proportional, and not proportional. This information showed if the analyzed characteristic was
proportional to the evolution of the reference.

Quantity information was provided by the algorithm in the form of a percent, which indicated
to what extent the evolution of the measured characteristic values was affected by the evolution of
the reference values. This quantitative information was relevant only when the first information
(Proportionality) values were either directly proportional or inversely proportional. To substantiate
Quantity information, some examples follow:

• Quantity information is 100%—indicates a 1:1 ratio between the analyzed characteristic and the
reference, meaning that if the reference value changes by 20%, then the analyzed characteristic
value also changes by 20%.

• Quantity information is 50%–150%—if the reference value changes by 20%, then the analyzed
characteristic value changes by 10%–30%.

Some steps of the implemented algorithm are detailed in Figure 3.
To elaborate a conclusion, each step contained data structured in a one-day sampling period, and

each analyzing step stored a one-day conclusion after data processing.
In the meantime, the Historian was connected with process variables to gather data. The current

case scenario was built on the Industry 4.0 and IIoT main protocol: OPC UA. Therefore, the connection
to each variable was realized in a publish–subscribe manner with a permanent link between the
Historian tags and process tags. The Historian followed implicitly the PUSH principle for the variables.
The PUSH principle means that, guided by the local automation sampling period, values were
transmitted to the Historian only when they changed (e.g., when a blower started, the value was
transmitted to the Historian). Thus, large numbers of data transfers and processing times were saved.
For other interfacing options, the sampling times were adjustable.

Data were inserted for storage in a reduced manner on an hourly basis. The reduction strategy
may be an average, but it also exceeded the related limit.

The identified dependencies were stored using a one-day sampling period.
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3. Results

3.1. Water Industry Application

The developed algorithm was applied in the water industry integrated in the previously developed
Historian application. Having data gathering capabilities, the data analysis module was implemented
towards developing a completely autonomous software solution capable of optimizing different
industrial systems.
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The augmented Historian was associated with a drinking water facility consisting of water wells
as well as water treatment and distribution facilities. The existing process control structures in relation
with the tested Historian (see Figure 4) were as follows:

• Water wells S7-314 type PLCs were all integrated in the S7-315 PLC, which was responsible for
water distribution using the S7 protocol. Level- and flow-based control loops that were responsible
for automatic water requests from the wells were implemented in the S7-315. Local flow-based
control loops were implemented at each S7-314 PLC.

• The entire water treatment process was guided by two redundant S7-412-5H type PLCs.
• The S7-315 PLC responsible for water distribution and the redundant PLCs responsible for the

water treatment process were integrated in the WinCC 7.2-based SCADA system, which consisted
of two redundant servers and two clients. Since connectivity packs were configured at each server,
OPC UA servers were available and assured interoperability.

• The solution was implemented on a Raspberry Pi 3 B (because of its reduced physical dimensions
and the availability of industrial cases, which makes it suitable for industrial environments) using
the Node-RED environment and an embedded Java application. The OPC UA client (several
nodes were used: OpcUa-Browser, OpcUa-Client, TCP, etc.) was used to interface the entire
system for data gathering and for noninvasive interventions over the local process. Having a
complete local redundancy for the water treatment control structures, the Historian connection to
the SCADA system was enough, but the S7 node was prepared for backup interfacing in case of a
total SCADA failure. S7 protocol allowed for the current study to interface all PLCs. Details about
the already developed Historian application can be found in [22]. This application was used as a
starting point, to which the data dependencies identification algorithm was added.

• An OPC UA server (Node-RED flow was created to define the OPC UA folder/tag structuring
inside the secured endpoint in order to constantly populate the address space with values and to
propagate an eventual tag change) was implemented to assure higher-level interoperability of
the Historian.
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Regarding integration of the proposed algorithm into the Historian graphical user interface (GUI),
a new tab (‘Analyzer’) was added to the interface. Figure 5 presents the Historian GUI with the newly
added tab. The new tab’s content was divided into two areas: ‘Input’ and ‘Result’. In manual regimes,
the ‘Input’ area allowed the user to choose the input that will be sent to the algorithm. From the ‘Source’
drop-down control, the user could choose the desired table from the SQLite database to be analyzed by
the algorithm. This control was necessary because of the Historian internal data management system
(the division of stored data in different tables, having one table per each stored variable list). More
details about how the Historian handles data and stores it in different tables can be found in [28]. Also,
in the ‘Input’ area, the ‘Interval’ control allowed the user to choose a subinterval of time from the
entire interval available in the table chosen at ‘Source’. This allowed the algorithm to run over custom
periods, thus offering greater flexibility for the user. Finally, the ‘Reference’ control allowed the user
to choose one of the variables that had values stored in the table selected at ‘Source’, a variable that
was a reference for the algorithm. Input data that were chosen by the user were processed before
being fed to the algorithm. Preprocessing of input data consisted of different checks and verifications,
and it computed the daily averages of all the analyzed measured characteristics by using a complex,
dynamically generated SQL query. After being processed, input data were inserted into specific data
structures (classes and lists implemented in Java), which were then used by the algorithm.
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The ‘Result’ area of the tab was used for displaying the output of the algorithm analysis. This area
also implemented an export feature, which built a PDF document containing the results displayed
in the text area on the GUI. This feature facilitated the extraction of the algorithm output outside of
the Historian application. Figure 5 presents an example of the results displayed on the Historian GUI
after a successful analysis made on real data, which was collected from the water industry by the
Historian application.

3.2. Test Scenario

As it was integrated into the Historian application, the algorithm was successfully tested on
different sets of real-world data with promising results, thus providing added value applications in
the water industry. Figures 6–9 were added with the purpose of offering a graphical representation
of some of the analyzed characteristic value evolutions in time, alongside output of the algorithm
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after finishing the analysis. Graphical representations were made using real world data collected by
the Historian.

The data dependencies identifying algorithm brought enhancements to the processes of a DWTP.
For example, the following energy consumption-oriented scenario was considered. For a specific
period, only water well no. 1 (WW 1) was used. During this time, the Historian recorded and
analyzed the overall energy consumption and the water flow for the WW 1. After this first test period,
only WW 2 was used over the same amount of time. The testing process included individual or
concomitant functioning of multiple wells, and water flow differences were taken into consideration.
Thus, dependency between the water flow of each well and the overall energy consumption was
identified. By comparing those dependencies, it was possible to identify which water well generated
minimum energy costs. In more detail, if WW 1 and WW 2 were both directly proportional to overall
energy consumption, but WW 2 influenced the energy to a lower degree, then it should be prioritized
in front of WW 1 in order to increase the efficiency of the DWTP. This result was difficult to identify in
the absence of data dependency identifying algorithms because of both the large amounts of data that
were recorded and because the water flows of each drilling varied depending on current drinking water
network demands. Also, many other system tags influenced the general cost, and data analysis was
complex. Figure 6 presents a water well output flow and a water facility overall energy consumption,
while Figure 7 presents data representing the water flow from a different water well and the energy
consumption. Although the result of data dependency analysis identified that both water flow values
were directly proportional to the overall energy consumption, the “Quantity” information provided
important details: the WW from Figure 6 required less energy to be treated than the one from Figure 7,
so the first WW should be prioritized.

A different test scenario was presented in Figure 8, where WW 1 functioned throughout the entire
test case time period, and WW 2 started occasionally during this period. Figure 8 presents WW 2 water
flow as reference and the overall water turbidity (the turbidity of the mixed water coming from both
sources) as an analyzed characteristic. Results of the algorithm (inversely proportional) signified that
WW 2 had an inverse effect on turbidity when compared to the water from WW 1.
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The test case scenario from Figure 9 presents a water well output flow as reference and the overall
working time of a different equipment in the treatment plant as an analyzed characteristic. Because the
algorithm found that those two values were not related, it meant that the usage of that specific drilling
did not influence the maintenance of the equipment (did not wear down the technical system faster
than usual).
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3.3. One Step Further to Improve a Drinking Water Facility

Taking the previously presented results of the current research one step further, the authors used
the obtained dependencies and chose to experiment with one important cost factor reduction: the
consumed energy. To test the impact on the consumed energy, the following steps were necessary:

• After analyzing the accumulated data using the presented solution, patterns were identified, and
quality indicators for the water sources were conceived and set.

• Other research activity results (not published yet) were used to convert the water source quality
indicators and the functioning hours into priorities that influenced the requested amount of water
from each source in order to optimize water treatment. According to the determined priorities for
the water sources, flow references were calculated and considered for each well.

The scenario consisted of a DWTP (Figure 1) with an inlet provided by six water wells (WWs).
Figures 10–12 present an example of real parameter evolutions. Over a long period, the authors
identified that only four WWs functioned with a reference flow provided manually by the operator in
automatic mode (WW2, WW3, WW4, and WW7), and the other two WWs were stopped manually (see
Figure 10). Figures 11 and 12 show water treatment/distribution process input and output parameters.

The current solution provided results for the four functioning WWs and, therefore, the
corresponding water quality indicators were determined. The quality indicators may have values in
the 0–10 interval. Initially, all quality indicators were set to 10 since no related previous knowledge
was available. The following main parameters guided the data dependency analysis:

• DWTP output water quality indicators that were kept inside limits: pH, conductivity, and turbidity.
• Overall energy consumption was the cost reduction objective.
• Chlorine consumption was kept under a limit.
• Filters were washed no more than 1 cycle/filter/day.

The algorithm required longer data gathering because the water wells functioned according to
water requirements from the distribution network and followed a rotation algorithm based only on
functioning hours. Data dependencies were identified by the algorithm, and water quality indicators
for each well were determined according to the degree of dependence. The best encountered water
well was always the first reference when adjusting the quality values.
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Since the Historian could permanently gather and analyze data, the Historian was able to adjust
water quality parameters as time passed. This was an important characteristic, considering that water
quality parameters of water sources change over time.
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Water quality indicators were applied as input parameters for other research activities in order to set
a WW priority based on quality indicators. Based on previously determined water quality indicators
and the functioning hours of the water wells, priority indicators were defined by a normalizing
procedure in the 0–10 interval. A total WW priority indicator was defined as the weighted sum of the
quality priority indicator and the functioning hours-based indicator (e.g., P f = α× PH f + β× PQ f ;
where Pf, PHf, and PQf are the total priority indicator, the functioning hours and the well quality based
priority indicators, respectively; and α and β are weighting factors). The total priority indicator guided
the decision regarding the activation of water sources. The setpoint regarding the requested flow for
each WW was then determined using the WW quality priority indicator and the local flow limitations

(e.g., Fw_ f = F f _min + γ×
(
F f _max − F f _min

)
×

PQ f
10 ; where Fw_f, Ff_min, and Ff_max are the flow setpoint,

the minimum flow limit, and the maximal flow limit, respectively; and γ is a weighing factor that
influences the maximum possible flow value for the WW). Each WW contained a local flow-based
control loop that functioned according to the determined flow setpoint. The algorithm of the existing
system applied the WW rotation rule based on functioning hours. This algorithm was augmented
according to the energy consumption reduction strategy. Figure 13 presents an example of how the
total priority indicator was influenced by the quality and functioning hours priority indicators.
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Treated water was distributed to the population and took into consideration the water pressure
in the distribution network. However, the actual flow of water requested from the sources and
treated in the DWTP was established following the level in the water distribution tank and the output
flow in the distribution network, respectively. Other limitations from the DWTP ensured the correct
treatment process. Considering all the mentioned requirements, the flow setpoints for each WW over
six hours of evolution of the priority indicators from Figure 13 resulted in the evolution in Figure 14.
As experimented by the authors, by applying and adjusting flow setpoints for the local WW control
loops following priority indicators, at least a 9% reduction in energy consumption was reached.

4. Discussion

Results of the current study were analyzed and appreciated by practitioners from the industry.
Since drinking water is a critical infrastructure, and we did not know the impact of research on the
existing functional systems, only data gathering from various drinking water facilities was first allowed
by the company. After showing data dependency results that demonstrated pattern identifications and
how cost can be reduced, two aspects were discussed: (1) how the solution could be integrated and
usable in the fog of the local system in a noninvasive manner regarding existing developments and (2)
how the structure will react over the local system without perturbing the treatment and distribution
process. Using OPC UA, interoperability is assured following correct definition of the constraints
(e.g., functional acceptable limits of parameters). Any conclusions from the data dependency analysis
algorithm will not allow any damage over some process characteristic. Also, if correct output tags are
defined for Historian reactions to local process functional adjustments (e.g., setpoints for the control
loops), then no local algorithm structural disturbance is possible.
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Hardware and software platforms were also important features in the solution validation process.
Water companies and integrators require an industry-oriented solution, with a low-cost and a high
TRL, to offer an easy transition towards automation/SCADA integrators. Raspberry Pi 3 B hardware
(Quad Core ARM Cortex-A53 64 bit 1.2 GHz processor, 1 GB RAM, WiFi 802.11n, Bluetooth 4.1,
Bluetooth LE, USB ports, Ethernet port, micro SD card, etc.) is a high-performance and very popular
product, and with currently available enclosures it can become industry-oriented. Also, with available
documentation and product maturity, it assures a high TRL for future integrators. From the software
point of view, the operator’s reaction was first studied, and the Historian GUI was proven to be
very friendly and easy. The Node-RED environment, with its flow- and node-based structuring and
browser-based development, can be assimilated easily by the integrators.

The obtained results have important practical impacts. Considering the case study on the
influence of the water well’s quality on the treatment process, the findings are important. The ability
to associate quality indicators for each water well, following a dependency analysis towards the
energy consumption as a cost objective, allowed the current well rotation algorithm to be augmented
based on functioning hours that considered only maintenance cost reduction. It is also important that
the data dependency conclusion may depend on the actual cost function of additional constraints,
which assures that the process cannot be damaged (e.g., DWTP output water quality is in legal limits,
the chlorine consumption is under a limit, etc.). Although efficiency is considerably increased by
applying the presented study, the authors consider that energy can be further reduced in the following
areas: water demand from the distribution network was very high in the current study, and only four
activated wells were functioning for long periods; local automation in many other situations is poorly
implemented; the applicability of the Historian to access and react on the real system was still reduced,
which reduced the possibility to properly compare results.

Some interesting ideas may add to the complete view regarding proper prioritizing of water
sources and cost efficiency following a long-term analysis. By having water wells in manual mode or
not active for a long time (e.g., wells 1 and 6 from the tested process or a several days-based rotation
strategy as encountered in some cases) it would be interesting to establish a minimal amount of data
needed for a stable analysis. Considering filter washing cycles, so far the energy aspect is related
to equipment energy consumption in accordance with the analyzed processes. However, in some
situations the relation between flow and filter cleaning procedures is so critical that when filters are
stopped, flow has to be significantly reduced. Also, after long-term usage, the solution will provide a
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more detailed approach towards constituting the total priority indicator for the water wells in relation
to the cost objective, which is a more exact determination of the weighting factors (e.g., α, β) associated
with the quality and functioning hours priority indicators.

5. Conclusions

The current paper presented an essential step towards developing an autonomous, proactive
Historian application that can record and analyze process parameters and then analyze and predict
the future evolution of the system following the best encountered recipe. The approach assumes
that the solution will react over the local system and adjust process functions in order to achieve
predefined objectives.

A contribution of the paper is the reference architecture, which guides future development
of an entire set of algorithms that will collectively offer the functionality of a proactive Historian.
The proposed reference architecture is generic and can be applied for any industry.

According to the gather data, the algorithm identifies data dependencies according to reference
characteristics and is able to associate degrees of dependency. Also, the algorithm allows constraint
settings that consider functional parameter value limitations or output tag definitions. Constraint
settings, together with the interfacing capabilities of the Historian, provide the noninvasive character
of the solution towards the local processes and control structures. Also, the implemented interface
assures vertical and horizontal interoperability. Eventually, contextual data integration from external
sources may influence pattern identification and decision making.

The determined dependencies are evaluated, prioritized, and structured. With the initial settings
and data dependencies, the Historian is becoming process-aware. By associating a cost objective, data
dependencies help in determining the best recipe for improvement and the possibility to react over the
local system in order to increase efficiency.

The developed solution is applied and tested with good results in the water industry. The main
test scenario consists of a water treatment facility that receives water from several water wells and
sends the treated water to the distribution network using a pumping station and reservoirs. Large
amounts of data are gathered from the entire process, and several dependencies were identified with
the purpose of reducing operational costs. The first results prove the efficiency of identifying data
dependencies (using the available data) by considering energy, turbidity, or equipment functioning
time as example reference characteristics. The next results are associated with a total energy reduction
objective function. Following the data dependency identification algorithm, quality priority indicators
are associated to each water well, and total priority indicators and flow setpoints for local control
loops are determined. To go one step further, the evolution of the local flow setpoints for each water
well are presented, which noninvasively changes local system behavior and proves at least 9% energy
efficiency improvements.
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