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Abstract: Non-point source pollution (NPS) is difficult to manage for watersheds, due to the scattering
of pollution sources and uncertainty over the time it takes to accumulate. Since local agriculture and
poultry rearing prevail, NPS occupies a large proportion of local pollution. In this paper, we modified
the runoff module of the Soil and Water Assessment Tool (SWAT) to study the distribution properties
and the effect of control of NPS in the Binjiang watershed in Southern China. The model was run
from 2005 to 2014. The runoff simulation’s accuracy had apparently improved compared to the
original model, as the Nash coefficient (Ens) had improved from 0.72 to 0.89, and the determination
coefficient (R2) had improved from 0.75 to 0.91, an improvement in accuracy of 23.61% (Ens) and
21.33% (R2). Thus, the modified model (SWAT-m) is more adaptable for the simulation of extensive
non-urban watersheds in subtropical monsoon climates. The validated model was used in further
analysis. The results show that 82–90% of total nitrogen and 83–89% of total phosphorus were
concentrated in the period from April to September annually. Through the introduction of the
pollution generation potential parameter Φi, we obtained the descending order of all sub-basins in
terms of their pollution generation potential. The critical source areas (CSAs) were found to be the
northeast sub-basins in lower terrain that is used mainly for agricultural applications, accounting
for 53% of the total watershed. The accumulation time is April to July, occupying 69% of annual
generation. The simulation of management measures showed that NPS control has a good effect,
with a 15 m filter strip in CSAs. Ammonia nitrogen and total phosphorus can be reduced apparently
by 32% and 43%, respectively. The results may provide support for the management of NPS in
watersheds under similar conditions.

Keywords: non-point source; critical source areas; watershed; runoff simulation; distributed hydrological
model; SWAT

1. Introduction

The Binjiang watershed, located in Qingyuan City, Guangdong Province, China, is an important
source of local water supply for agriculture. It covers the area of latitude 23◦44′30′′ N–24◦16′04′′ N,
longitude 112◦32′40′′ E–113◦4′50′′ E, as illustrated in Figure 1. Since local agriculture and poultry
rearing prevail and there is abundant precipitation from the subtropical monsoon climate, non-point
source pollution (NPS) occupies a large proportion of local water pollution. NPS is a form of pollutant
that flows into underground or surface water from dispersed, wide-ranging, and traceable sources [1].
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Compared to point-source pollution, NPS has more a complex composition of pollutants, a larger
range of distribution, and more uncertain transmission paths. The distribution properties of NPS are
important for NPS control and management.Water 2019, 11, x FOR PEER REVIEW 3 of 21 

 

 
Figure 1. The location of the research area. The upper half is the location of China, the lower half 
shows the contours of Guangdong Province, and yellow area in the middle depicts the research area. 
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The distributed hydrological model Soil and Water Assessment Tool (SWAT) has a modular 
structure and consists of hydrology, sediment, and chemical subroutines applicable to watershed 
scales. The hybrid model is spatially based on hydrological response units that include both physical 
and conceptual methods [17]. The hydrologic cycle as simulated by SWAT is based on the water 
balance equation [18]. The in-stream kinetics used in SWAT for nutrient/pollutant routing are 
adapted from a widely used stream water quality model, QUAL2E [19]. In this study, nitrogen and 
phosphorus are the main nutrients/pollutants. 

Surface runoff is flow that occurs along a sloping surface. In the runoff module of SWAT, the 
surface runoff volume is computed using a modification of the Soil Conservation Service (SCS) curve 
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Figure 1. The location of the research area. The upper half is the location of China, the lower half shows
the contours of Guangdong Province, and yellow area in the middle depicts the research area.

The NPS model is an extended hydrological model that includes additional modules for assessing
the release, migration, and leakage of pollutants from land sources, soil erosion, and sediment
transport [2]. Rapid advances in remote sensing and geographical information systems (GISs) during
the past three decades have provided an enormous number of opportunities for hydrology research [3].
The GIS-based distributed hydrological model Soil and Water Assessment Tool (SWAT) was developed
by the USDA (United States Department of Agriculture), and is currently being utilized in several large
basin projects, such as the HUMUS (Hydrologic Unit Model of the United States) project [4]. This model
is also used as a decision tool [5] to predict NPS pollution load [6] and for the assessment [7] of NPS
pollution reduction effects of various control measures [8]. Through the combined use [9] of land
use changes [10] and climate changes [11], it is also used to predict the impact of future climate/land
use scenarios [12] on hydrology [13] and pollution in basins [14]. However, researchers have usually
focused on the total outflow load or concentration per hectare of NPS rather than the NPS’s properties,
such as the generation potential. Nevertheless, the runoff module of the original SWAT has some
limitations. Several researchers have found that the simplification of the surface runoff equation
of SWAT does not comply with real runoff generation under certain conditions [15,16]. Therefore,
we modified the surface-runoff module of SWAT, and the modified SWAT-m model was applied to
do this research. As for the NPS outflow load per unit area, it is difficult to tell whether a certain
amount, say 1 t/ha annually, is high or low, as this depends on local pollution or different precipitation
conditions. The only standard of a certain outflow load per hectare could be a violation of justice
when deciding on the NPS critical source areas (CSAs). Thus, we introduced a new dimensionless
parameter Φi to measure the NPS generation potential of each sub-basin impartially. Through this,
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we can compare the NPS contribution of different sub-basins and pollutant components under various
circumstances and, therefore, accurately position NPS CSAs.

Through the combination of remote sensing and GIS, we established this model to study the
hydrology and NPS in a subtropical monsoon watershed. Further study of NPS, especially the
distribution properties of NPS outflow and generation, the accurate positioning of NPS CSAs, and the
impact of different filter strips on NPS pollutants, will contribute to NPS control and management in
watersheds under similar conditions.

2. Model and Methods

2.1. The Modification of the Hydrological Model

The distributed hydrological model Soil and Water Assessment Tool (SWAT) has a modular
structure and consists of hydrology, sediment, and chemical subroutines applicable to watershed scales.
The hybrid model is spatially based on hydrological response units that include both physical and
conceptual methods [17]. The hydrologic cycle as simulated by SWAT is based on the water balance
equation [18]. The in-stream kinetics used in SWAT for nutrient/pollutant routing are adapted from a
widely used stream water quality model, QUAL2E [19]. In this study, nitrogen and phosphorus are the
main nutrients/pollutants.

Surface runoff is flow that occurs along a sloping surface. In the runoff module of SWAT, the surface
runoff volume is computed using a modification of the Soil Conservation Service (SCS) curve number
method [20]. The equation for the SCS curve number method is as follows:

Qsur f =

(
Rday−Ia

)2

Rday−Ia+S
(1)

where Qsurf is the accumulated runoff or rainfall excess (mm), Rday is the rainfall depth for the day
(mm), Ia are the initial abstractions, which include surface storage, interception, and infiltration prior
to runoff (mm), and S is the retention parameter (mm). The retention parameter varies spatially due to
changes in soils, land use, management, and slope and temporally due to changes in soil water content.
The retention parameter S is defined as:

S = 25.4
(1000

CN
−10

)
(2)

where CN is the curve number for the day. The initial abstractions, Ia, are commonly approximated as
0.2S in SWAT, which is the limitation of this module. In the original equation, the relation between Ia

and S is described by another parameter λ. Here, λ is fixed at 0.2, where we would modify the module.

S = λ Ia (3)

Many researchers have proved that the fixed initial abstraction 0.2 does not match well with their
study area. Researchers have taken measures to find out that the initial abstraction λ ranges from 0
to 0.3 [15,16,20]. Woodward [21] also proved by his research that, in the experience of almost 90% of
researchers, λ should be less than 0.2. In order to avoid deviation in the simulation caused by a single
initial abstraction, this paper adopts the method of a segmentation value to improve the model, that is,
a different initial abstraction λ is adopted according to the curve number (CN) value ranges of different
regions. Based on data about local precipitation and hydrology events, we have obtained the initial
abstraction values under different conditions through the event analysis and back calculation method.
For instance, for an area covered by a natural forest with sandy-loam soil, the CN value is about
50–65, and the corresponding initial abstraction is relatively high: λ is about 0.12. For a concentrated
residential area with clay soil, the CN values are relatively high, approximately 85–95, and the initial
abstraction is relatively low: about 0.05. For cross-sectional conditions, such as clay soil farmland,
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the CN value is between 65 and 85, and the corresponding initial abstraction is around 0.08. According
to the above classification method, we used Equation (1) to obtain the flow equation as follows:

Qsur f =



(Rday−005S)
2

(Rday+0.95S)
(CN ≥ 85)

(Rday−0.08S)
2

(Rday+0.92S)
(85 ≥ CN ≥ 65)

(Rday−0.12S)
2

(Rday+0.88S)
(65 ≥ CN)

. (4)

Through the modification of the surf.f, main.f, and simulate.f functions from the source code of
SWAT in Visual Studio, we recompiled the modified code into the swatuser.exe program for further
simulation and research. The modified version of SWAT is denoted SWAT-m. We compare the modified
model with the original model in the next section.

2.2. Establishment of Databases

Spatial and attribute databases were established to build up the model. The databases include
topography, land cover, soil classification, and weather data.

Firstly, topography data were extracted from a digital elevation model (DEM). The data used
in this study is from the International Scientific Data Service Platform [22]. We performed slope
classification and hydrological analysis based on the DEM.

Secondly, we used as a source of land cover condition data the National Earth System Science
Data Sharing Infrastructure [23]. The classification of land use conditions in the study area is shown in
Table 1.

Table 1. The classification of land use conditions of the study area.

Classification Land Use Code Area (km2) Percentage (%) Details

Waters WATR 19.76 1.16 streams and lakes
Forest FRST 1145.8 67.14 natural and artificial forest

Pasture PAST 101.44 5.94 shrub and herbaceous plants
Farmland AGRL 260.57 15.27 cropland, rice paddies, and other farming activities
Resident URBN 68.25 4.01 human residents

Agriculture UINS 110.67 6.49 sparse woods, livestock, poultry breeding, and others

Thirdly, the soil classification and soil properties were extracted from the 1:500,000 scale
FAO-UNESCO (Food and Agriculture Organization of the United Nations) Digital Soil Map of
the new comprehensive Harmonized World Soil Database, as shown in Figure 2. Most of the soil
properties that were obtained refer to “Guangdong soil” [24] and Soil Science, Chinese Academy of
Science [25]. Additionally, daily weather data from six stations in the watershed from 2005 to 2014
were obtained from the China Meteorological Science Data Sharing Service Network [26], which is
shown in Figure 3.
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The remaining data, such as point source, agricultural, and water supply volume data,
were extracted from local chronicles and environmental survey reports from the local Environmental
Protection Agency. According to the input data requirements, all geographical coordinates of spatial
data need to be unified. In this study, the projection coordinate system used was Gauss Kruger
Projection from the Beijing 54 Coordinate System.

2.3. Delineation of Sub-Basins and the Hydrologic Response Unit

To simulate runoff in a watershed with a river network, we should first delineate its sub-basins.
The model obtains the flow direction of each grid by the maximum gradient method, with the D8
algorithm, on the DEM, and then counts the number of flows through the grid to estimate the cumulative
flow [27]. Through the process of water delineation, the study area is divided into 31 sub-basins,
which are shown in Figure 3.

Based on the division of the study area into sub-basins, the model applies an algebra calculation to
the land use layer, the soil classification, and the slope classification to generate the smallest hydrological
response unit (HRU). The slope classification refers to cultivated land gradients: less than 15 degrees;
15–25 degrees; and greater than 25 degrees. According to the local conditions, the multiple HRU
threshold of land use, slope gradient, and soil classification was set to 20%, 20%, and 10%, respectively.
After the raster calculation, 749 HRUs were generated in the study region. Runoff was predicted
separately for each HRU and routed to obtain the total runoff for the watershed. Now, we are ready to
run the model.

2.4. Calibration and Validation

In this study, the model was calibrated by the SUFI-2 algorithm method through the model
SWAT-CUP. The measured data from 2005 to 2009 were used to calibrate the parameters, and the data
from 2010 to 2014 were used to validate the model. To evaluate the simulation’s accuracy, we applied
three indicators: determination coefficient (R2), relative error (Re), and Nash coefficient (Ens) [28,29].

2.5. The NPS Generation Potential Parameter

Because the specific value of the outflow load per hectare of NPS is impacted by various kinds of
pollutants, the overall pollution levels, and the precipitation conditions in different regions, the only
standard of a certain load per hectare could be a violation of justice in an NPS comparison between
different districts and various pollutants and when deciding on NPS CSAs. For instance, with the
standard of 10kg/ha for NPS CSAs, for some upstream watersheds, maybe only one sub-basin is
identified as a CSA, yet for some downstream populated watersheds, maybe all sub-basins are over
10kg/ha and thus constitute CSAs under this criteria, which is improper for CSAs and NPS management.
In order to analyze and compare the generation potential of NPS among different regions and facilitate
the accurate positioning of NPS CSAs, we introduce a new dimensionless parameter to measure the
generation potential of NPS in each sub-basin. The equation is as follows:

Φi =
Ci ×A

n∑
i=1

(Ci ×Ai)

(5)

where Φi is the generation potential parameter of sub-basin No. i of a certain kind of NPS pollution;
i stands for the number of the sub-basin, n is the total number of sub-basins in the study area; Ci stands
for the average pollutant yield per unit area in the time step, kg/ha monthly or annually; Ai stands for
the area of sub-basin No. i; and A stands for the total area of all sub-basins. Φi = 1 is the average level
of NPS generation, which means that all sub-basins have the same generation potential of a certain
pollutant. The lower the contribution is, the closer the value of Φi is to zero; conversely, the higher the
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generation potential is, the higher the value of Φi is; the maximum is less than n. For different kinds of
pollutants, the value of Φi can be added to show the multiple contributions of a certain sub-basin.

2.6. The Theory of Filter Strips for NPS Control

After obtaining the distribution properties of NPS CSAs, this section focuses on pollution control
in those CSAs, mainly sub-basins 1–11 upstream in the watershed. Among the control measures in
the Best Management Practices (BMPs), such as Terracing, Contouring, Filter Strips, and Artificial
Wetlands [7], we chose filter strips, as the NPS control effect is ideal and the construction and operation
cost is relatively low, especially in rural areas [8].

A filter strip is a plant-intensive strip that intercepts and filters runoff from an uphill or upstream
area. It can decrease the flow rate and increase the infiltration of the area to reduce runoff and pollutants.
The filter strip algorithm that SWAT uses is derived from White and Arnold’s research methods for
vegetation filter strips, which can effectively reduce sediment, pollutants, bacteria, and pesticide
components, but do not affect runoff [18,30]. A filter strip’s trapping of sediments and nutrients in the
SWAT management module is calculated as:

Trape f = 0.367×
(
Width f ilstrip

)0.2967
(6)

Trape f ,sub =

(
2.1661×Width f ilstrip − 5.1302

)
100

(7)

where Trapef and Trapef,sub are the surface and subsurface flow constituent loadings that the filter
strip traps, respectively, and Widthfilstrip is the width of the filter strip. The proper parameter of the
filter strip’s width can be found in FILTERW.mgt in the management module of SWAT. Based on the
hydro-geological conditions, we present a better design of a riparian filter strip through a scenario
simulation of a filter strip with a width of 3–30 m, and provide a reference for NPS control in similar
clay-loam areas in a subtropical monsoon climate.

3. Results and Discussion

3.1. Results of Simulations with the Model

3.1.1. Parameter Sensitivity Analysis

In this study, the model was calibrated using the SUFI-2 algorithm method through the model
SWAT-CUP. The first 12 sensitive parameters of runoff were obtained through a sensitivity analysis
and are shown in Table 2. p-values were used to determine the significance of the sensitivity (values
close to zero have more significance). t-Stat provides a measure of sensitivity (larger absolute values
are more sensitive) [31].

As for the pollutants, the sensitivity analysis showed that five parameters (nitrate percolation
coefficient, benthic source rate for NH4-N, rate coefficient for organic N settling in the reach at 20 ◦C,
rate constant for biological oxidation of NH4 to NO2, and rate constant for hydrolysis of organic
N to NH4) have a great influence on ammonia nitrogen. The phosphorus absorption coefficient,
soil phosphorus separation coefficient, phosphorus permeability coefficient, residual mineralization
rate, and rate constant for organic phosphorus transferred to dissolved phosphorus at 20 ◦C have a
great influence on total phosphorus. These parameters were applied in the calibration process.
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Table 2. The sensitive parameters for the runoff simulation.

No Parameter File p-Value t-Stat Details

1 ALPHA_BF gw 0.00 7.50 Base flow division coefficient
2 CH_K2 rte 0.01 −3.45 River effective hydraulic conductivity coefficient
3 CANMIX hru 0.03 2.35 Canopy maximum water storage coefficient
4 CH_N2 rte 0.11 −1.65 Main channel Manning coefficient
5 GW_DELAY gw 0.23 1.24 Ground water delay coefficient
6 BIOMIX mgt 0.26 −1.20 Biomass mixing efficiency

7 GWQMN gw 0.31 1.00 Threshold depth of a shallow water aquifer required
for return flow to occur (mm)

8 CN2 mgt 0.47 −0.75 SCS runoff curve number
9 ESCO hru 0.61 −0.55 Soil evaporation compensation coefficient

10 SURLAG bsn 0.78 0.33 Surface runoff delay coefficient
11 GW_REVAP gw 0.85 −0.17 Ground water “Revap” coefficient
12 EPCO hru 0.97 −0.05 Plant uptake compensation factor.

3.1.2. The Comparison of SWAT and SWAT-m

In order to prove that the improved model has better adaptability, the original SWAT was applied
to simulate runoff in the same area as a blank control. The input data were all the same as the inputs
into the modified model (SWAT-m). The best parameters of the calibration period (2005–2009) were
applied to the validation period (2010–2014) for verification. The comparison of the runoff simulation
accuracy of SWAT and SWAT-m based on three indicators (determination coefficient (R2), relative error
(Re), and Nash coefficient (Ens)), is depicted in Table 3.

Table 3. The comparison of SWAT and SWAT-m on the runoff simulation accuracy.

Accuracy
Parameters

Calibration Period Validation Period

SWAT SWAT-m Improved
Percentage SWAT SWAT-m Improved

Percentage

Ens 0.76 0.92 21.05% 0.72 0.89 23.61%
R2 0.82 0.94 14.63% 0.75 0.91 21.33%
Re 18% 10% 44.44% 27% 14% 48.15%

It can be seen from Table 3 that the R2 of SWAT is 0.82 and 0.75 for the calibration period and the
validation period, respectively, which is greater than the standard 0.60 [29]. The Nash coefficient (Ens)
of the original SWAT is 0.76 and 0.72 for the calibration period and the validation period, respectively,
which does not reach the standard of 0.75 [28]. These results indicate that the simulation results are
not that ideal. Apparently, the simulation accuracy is not as good as SWAT-m, especially for the
validation period. From the comparison of the Nash coefficients, the simulation accuracy of SWAT-m
has improved by 23.61%. The improvement in simulation accuracy is more obvious in the comparison
of relative error, which is as high as 27% in the validation period, and the simulation accuracy of
SWAT-m has improved by 48.15%. Therefore, if the original model is used in further NPS simulation,
the relative error generated by the runoff simulation will further increase; the principle is similar to the
butterfly effect. In summary, the improved model (SWAT-m) has higher runoff simulation accuracy;
thus, we will carry out NPS simulation using the modified model.

3.1.3. Results of Simulations with the Modified Model

The model was calibrated using observed values from 2005 to 2009 and with an optimal set of
parameters. Results of Re < 10%, R2 > 93%, and Ens > 91% were obtained. Then, we input the best
parameters and reran the model over the validation period (2010–2014). The results of the simulation
well-agreed with the observed values, with Re < 15%, R2 > 89%, and Ens > 90%. The comparison of
the simulated and measured values of runoff is shown in Figure 4a.
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As for pollutants, after calibration and validation of the runoff simulation, SWAT-m was applied
to a pollutants simulation in which the calibration and validation time was the same as in the runoff

simulation. The comparison of the simulated and measured values of the monthly average ammonia
nitrogen and total phosphorus load is shown in Figure 4b,c. The best calibration and validation results
for ammonia nitrogen were Re = 38%, R2 = 0.85, and Ens = 0.71 (calibration) and Re = 39%, R2 = 0.77,
and Ens = 0.69 (validation). For total phosphorus, the best calibration and validation results were Re
= 30%, R2 = 0.78, and Ens = 0.79 (calibration) and Re = 37%, R2 = 0.75, and Ens = 0.72 (validation).
Generally, if the absolute value of Re is less than 15%, the absolute value of R2 is greater than 0.6,
and the absolute value of Ens is greater than 0.75, the simulation result is sufficiently accurate [28].
The standard for nutrient assessment is not as high. The absolute value of relative error should be
less than 40%, the absolute value of the Nash coefficient (Ens) should be greater than 0.5 [31], and the
standard for R2 is the same as that for runoff [32]. We can tell that the simulations for both nitrogen
and phosphorus are able to comply with the standard of accuracy, indicating that the modified model
is effective for further research in NPS simulation and analysis.Water 2019, 11, x FOR PEER REVIEW 10 of 21 
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3.2. Temporal and Spatial Distribution of NPS

3.2.1. Temporal Distribution

Based on the simulation, we summarized the annual runoff and pollutants discharge. The temporal
distribution of ammonia nitrogen (NH4-N), total nitrogen (TN), and total phosphorus (TP) in different
hydrological years is shown in Figure 5. From the figure, we can see that the pollution load from
April to September (rainy season) accounted for a large proportion within a year, with the highest
average in May and June. The contribution of NH4-N, TN, and TP load during the flood season to
the annual load is 81–87%, 82–90%, and 83–89%, with an average of 84%, 85%, and 86%, respectively.
The change between different hydrological years was obvious, especially the variation in NPS temporal
distribution over 12 months. For instance, the coefficient of variation in the high-flow year, 0.78–0.85
exactly, is lower than that in the low-flow year, 0.95–0.99 exactly. Correspondingly, the difference
between the maximum and minimum value in the low-flow year is the largest.
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The reason for this could be attributed to the relationship between precipitation and runoff,
which is illustrated in Figure 6. It can be seen from Figure 6 that the runoff distribution shows a
significant correlation with rainfall among the time series, and runoff also accumulates in months
with abundant rainfall; the correlation coefficient (R) of runoff and rainfall over the year is 0.87. Since
runoff generated from rainfall is a driver of NPS, the temporal distribution of NPS is affected by the
central precipitation time. The average annual rainfall in the watershed is mainly concentrated in
the period from April to September, accounting for about 80% of annual precipitation. Therefore, the
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temporal distribution of NPS also presents the same regularity. It approximately belongs to a normal
distribution, and accumulates from April to September. This temporal distribution property of NPS
is consistent with results from studies of similar watersheds [33], indicating the close relationship
between the temporal distribution of NPS and local precipitation.
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3.2.2. Spatial Distribution of NPS

The average annual load of NH4-N and TP in the sub-basins is shown in Figure 7. Apparently,
the area alongside the main stream has a high level of NPS load; for example, sub-basin Nos. 18,
20, and 31 have an average annual outflow load of around 160 tons of NH4-N and 250 tons of TP.
The northern part is at a medium level; the average annual outflow load is about 108 tons of NH4-N
and 165 tons of TP. The eastern area generates the least outflow load; for example, sub-basin Nos. 10
and 16 have an average annual load that is less than 30 tons of NH4-N and 50 tons of TP. To conclude,
the spatial distribution of NPS load is not evenly distributed, and mainly accumulates in the central
and southern areas alongside the main stream.

As for the reason, since the stream is almost the lowest in topography, it is the destination at which
surface runoff converges. Therefore, the NPS from upstream and remote sub-basins tends to converge
in sub-basins alongside the stream, which has relatively low-altitude terrain. This is why the total load
of NPS accumulates in the sub-basins alongside the main stream, especially in the southern area.

3.3. Analysis of the Generation Potential of NPS

The NPS load in sub-basin No. 31, for instance, does not generate itself, but accumulates from
upstream sub-basins. Here, the question arises as to where the CSAs are; that is, which sub-basins
generated a high level of NPS.

3.3.1. NPS Generation with Topography

Here, we analyze the generation distribution of NPS. It is focused on a sub-basin’s own pollution
yield, and not the total outflow load that could be derived from other sub-basins. Researchers have
usually focused on land cover with the spatial distribution of NPS, and studied the impact of land use
change on NPS distribution [10–12]. Considering the gentle rolling/hilling topography and unchanged
land cover of the watershed in the study area, we focused on NPS generation with topography.
The main components of TN and TP generation under the topography conditions are depicted in
Figure 8.
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Figure 8. The spatial distribution of Total Nitrogen (TN) (a) and Total Phosphorus (TP) (b) generation.
The bars indicate the average yield of TN or TP per unit area. In the left panel, blue bars denote Organic
Nitrogen (ORGN), yellow denotes Ammonia Nitrogen (NH4), and rose red denotes NO3 in surface
runoff (NSURQ). In the right panel, green denotes Organic Phosphorus (ORGP), purple denotes Soluble
Phosphorus (SOLP), and red denotes Mineral Phosphorus (SEDP). Sub-basins are numbered in red
color with gray boundary lines.
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It can be seen that the spatial distribution of TN and TP generation shares some similarities.
For example, the topography value and NPS generation have a negative correlation. In other words,
the area where the terrain is low has a relatively high level of NPS yield. Another similarity is that,
among the main components of TN and TP, the organic component, ORGN (Organic Nitrogen) and
ORGP (Organic Phosphorus), is the dominant component. It is shown in Figure 8 that, regardless of
whether the total height of the bar is high or not, the organic component occupies most of the total
height: around 60–80%.

3.3.2. Accurate Positioning of NPS CSAs

In order to analyze the generation potential of NPS more thoroughly, the generation potential
(Φi) of the 31 sub-basins was calculated and is shown in Table 4. In the table, Φi > 1 indicates that the
generation potential of this sub-basin is higher than average; considering the multiple influences of
nitrogen and phosphorus, the value ofΦi > 2 in the “TN + TP” column means the same. We arranged the
31 sub-basins based on a descending contribution to NPS generation; high generators are highlighted
in gray.

Table 4. The value of the generation potential parameter Φi of all sub-basins for different pollutants.

SUB No. AREA km2 ORGN NH4 NSURQ TN ORGP SOLP SEDP TP TN + TP

4 0.333 4.298 2.010 1.646 3.321 4.219 0.231 4.027 3.706 7.028
5 0.405 4.227 0.756 1.618 3.235 4.150 0.227 4.002 3.654 6.890
9 6.598 4.103 2.053 1.429 3.169 4.027 0.265 3.791 3.532 6.700
11 0.586 3.902 1.933 1.533 3.016 3.829 0.410 3.990 3.459 6.475
2 140.010 3.041 2.150 1.814 2.519 3.097 1.454 3.572 3.004 5.523
6 22.206 3.013 2.067 1.696 2.476 2.960 0.713 2.790 2.658 5.134
23 13.611 2.634 2.408 1.243 2.178 2.584 0.498 2.658 2.353 4.532
22 11.359 2.330 2.503 0.869 1.863 2.295 0.181 2.184 2.022 3.885
7 31.789 2.017 0.767 1.297 1.716 1.990 0.957 1.772 1.821 3.537
3 37.105 1.946 0.039 1.247 1.630 1.919 0.833 1.746 1.754 3.384
13 56.975 1.622 0.467 1.128 1.422 1.596 0.812 1.476 1.478 2.900
28 6.957 1.705 2.529 0.486 1.340 1.695 0.098 1.450 1.454 2.794
10 41.917 1.451 0.157 0.956 1.267 1.427 0.689 1.553 1.366 2.633
24 36.875 1.365 3.213 0.868 1.370 1.340 0.588 1.377 1.259 2.629
18 64.044 1.339 2.642 0.977 1.281 1.315 0.715 1.370 1.256 2.537
14 36.256 1.299 2.460 1.182 1.274 1.278 0.912 1.209 1.220 2.494
1 105.800 1.132 1.770 1.196 1.124 1.190 1.576 1.409 1.282 2.406
19 45.810 1.150 0.092 0.881 1.079 1.130 0.713 1.118 1.078 2.157
20 12.944 0.990 2.789 0.512 0.919 0.984 0.346 0.832 0.876 1.795
8 204.890 0.712 0.297 1.166 0.802 0.707 1.314 0.564 0.748 1.551
12 56.125 0.689 0.534 1.030 0.778 0.683 1.087 0.545 0.701 1.479
27 37.361 0.559 0.046 1.005 0.711 0.591 1.183 0.568 0.656 1.367
31 73.509 0.634 2.555 0.668 0.711 0.629 0.750 0.576 0.632 1.344
17 38.651 0.418 0.196 0.721 0.537 0.414 0.853 0.326 0.447 0.984
29 158.660 0.329 0.958 0.888 0.543 0.327 1.092 0.292 0.410 0.953
21 144.490 0.366 0.386 0.682 0.502 0.362 0.844 0.303 0.406 0.908
30 94.306 0.319 0.521 0.726 0.493 0.316 0.898 0.276 0.377 0.870
26 84.099 0.284 0.128 0.723 0.462 0.280 0.879 0.244 0.343 0.806
16 96.152 0.161 0.343 0.614 0.381 0.159 0.803 0.148 0.233 0.614
25 45.592 0.139 0.225 0.681 0.366 0.138 0.892 0.134 0.226 0.592
15 1.134 0.063 2.430 0.382 0.362 0.062 0.521 0.054 0.114 0.477

Table 4 shows that the sub-basins with a high level of generation potential are Nos. 2–7, 9, 11, 22,
and 23, for which the value of Φi is over 3.0, which means that the NPS generation potential is over
1.5 times the average level. To answer the question of where the CSAs are, a large proportion is from
the northeast sub-basins with lower terrain that is mainly used for agricultural applications, accounting
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for 53% of the total NPS generation of the watershed. The value ofΦ31 in the “TN + TP” column is less
than 2.0; therefore, the generation potential at sub-basin No. 31 is less than the average level.

Additionally, we classified the sub-basins into three ranks (relatively low, medium, relatively
high) based on Φi, the generation potential of “TN + TP”. In the first rank, Φi is less than 1.6.
This rank generates little pollution; examples are sub-basin Nos. 15, 17, and 26. The terrain is relatively
high, and the land cover is mainly thick evergreen forest. Although precipitation is relatively high,
the densely distributed vegetation alleviates pollution loss by rainfall. In the second rank,Φi is between
1.6 and 3.0. This rank generates a medium level of NPS; examples are sub-basin Nos. 18, 19, and 20.
The terrain is relatively low. The land cover contains forest, grassland, and small amount of agriculture.
There is a medium amount of precipitation. In the third rank,Φi is greater than 3.0. This rank generates
a relatively high level of pollution; examples are sub-basin Nos. 2, 6, and 9. The terrain is low and the
precipitation is relatively high. The land cover is mainly farmland and residential. Without densely
distributed forest, the last rank generates a large amount of NPS pollution by human activities and
rainfall scouring. This is consistent with the results of studies on the impact of land cover change on
NPS pollution [12] that show that an increase in farmland or residential areas and a reduction in green
vegetation would increase the NPS pollution to a large extent [10–14]. These are the CSAs that demand
special attention. The generation potential of “TN + TP” and land cover is depicted in Figure 9.
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3.3.3. The Main NPS Pollutants in Sub-Basins

Compared with the load per hectare, which is applied widely in NPS studies [4–6], the introduction
of the NPS generation potential parameter Φi has several advantages. For a certain NPS pollutant or a
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combination of several pollutants, the generation potential parameter Φi can tell us which are the high
generators (CSAs) and the severity of their pollution. As for load per hectare, for instance, researchers
have set 5 kg/ha TN as the standard of NPS CSAs when studying the head stream watershed of the
Yellow River in China [34]. However, this standard could not be applied to other watersheds or other
pollutants under different pollution conditions. Nevertheless, the introduction of the dimensionless
parameter Φi can help us to make progress. The value of Φi > 3 in “TN + TP” or Φi > 1.5 in other
pollutants designates the high NPS generators or CSAs, regardless of the background or condition of
the watershed. Moreover, for a certain district, the comparison ofΦi of different pollutants can provide
information on the main local pollutants. For instance, in Table 4, for sub-basin No. 18,ΦORGN = 1.339,
ΦNH4 = 2.642, and ΦNSURQ = 0.977, which means that the organic nitrogen and NO3 in the surface
runoff are average, while the ammonia nitrogen is over 2 times the average level. Thus, in sub-basin
No. 18, the main pollutant is ammonia nitrogen, which demands that focus be placed on relevant
control measures. In summary, the sub-basins for which the main pollutant is ammonia nitrogen are
Nos. 1, 13, 14, 18, 20, 22–24, 28, and 31, which are located in the central and southern districts alongside
the main stream, and account for 26.67% of the whole watershed. The sub-basins for which the main
pollutants are sediment and organic nitrogen are Nos. 2–7, 9, and 10, which are mainly located in the
northern districts for farming or agricultural usage, and account for 16.43% of the total area of the
watershed. The sub-basins for which the main pollutant is biological oxygen demand (BOD) are Nos.
12, 13, 16, 17, 19, 21, and 25–27, which are mainly located in low-NPS-generation areas with natural
vegetation, and account for 35.47% of the total area of the Binjiang watershed.

3.3.4. Temporal Distribution of NPS CSAs

We also analyzed the generation potential of a combination of TN and TP in each sub-basin during
a 12-month period, as depicted in Figure 10. As for high generators, the temporal distribution of NPS
tends to accumulate from April to July, accounting for 69% of the annual yield, which will assist the
temporal NPS control in certain areas.

Water 2019, 11, x FOR PEER REVIEW 16 of 21 

 

is biological oxygen demand (BOD) are Nos. 12, 13, 16, 17, 19, 21, and 25–27, which are mainly located 
in low-NPS-generation areas with natural vegetation, and account for 35.47% of the total area of the 
Binjiang watershed. 

3.3.4. Temporal Distribution of NPS CSAs 

We also analyzed the generation potential of a combination of TN and TP in each sub-basin 
during a 12-month period, as depicted in Figure 10. As for high generators, the temporal distribution 
of NPS tends to accumulate from April to July, accounting for 69% of the annual yield, which will 
assist the temporal NPS control in certain areas. 

 

Figure 10. The generation potential of “TN + TP” in the sub-basins during a 12-month period. 

As shown in the figure, the x-axis represents the 31 sub-basins, the y-axis represents the 12 
months in a year, and the z-axis represents the generation potential of NPS. It can be seen that the 
distribution of NPS generation potential in the study area is not balanced, whether on the time scale 
or the spatial scale. Firstly, the x-axis of the geographical space is from right to left. It can be seen that 
the upstream area (sub-basin Nos. 1–11) has a relatively high potential for NPS generation, followed 
by the middle districts (sub-basin Nos. 22 and 23). As for the central margin and southern part of the 
watershed, only sub-basin No. 28 has a slightly higher NPS generation potential; the overall NPS 
generation potential throughout the 12-month period is relatively low. Moreover, from January to 
December, it can be seen that the highest NPS generation occurs in May and June, and is concentrated 
mainly from April to July. In addition, for some CSAs (sub-basin Nos. 2–6 and 9), the NPS generation 
potential in February and March is also relatively high. Researchers studying the NPS in farmland in 
southern China obtained similar results, except for the rainy season. February and March also have 
high NPS load [33], which could be attributed to the tillage and fertilization of farmland in this period. 
Therefore, during this time, we should focus on these particular areas, especially those used for 
farming. 

3.4. NPS Control Management 

Figure 10. The generation potential of “TN + TP” in the sub-basins during a 12-month period.



Water 2019, 11, 993 16 of 21

As shown in the figure, the x-axis represents the 31 sub-basins, the y-axis represents the 12 months
in a year, and the z-axis represents the generation potential of NPS. It can be seen that the distribution
of NPS generation potential in the study area is not balanced, whether on the time scale or the spatial
scale. Firstly, the x-axis of the geographical space is from right to left. It can be seen that the upstream
area (sub-basin Nos. 1–11) has a relatively high potential for NPS generation, followed by the middle
districts (sub-basin Nos. 22 and 23). As for the central margin and southern part of the watershed,
only sub-basin No. 28 has a slightly higher NPS generation potential; the overall NPS generation
potential throughout the 12-month period is relatively low. Moreover, from January to December, it can
be seen that the highest NPS generation occurs in May and June, and is concentrated mainly from
April to July. In addition, for some CSAs (sub-basin Nos. 2–6 and 9), the NPS generation potential in
February and March is also relatively high. Researchers studying the NPS in farmland in southern
China obtained similar results, except for the rainy season. February and March also have high NPS
load [33], which could be attributed to the tillage and fertilization of farmland in this period. Therefore,
during this time, we should focus on these particular areas, especially those used for farming.

3.4. NPS Control Management

3.4.1. Scenario

In this study, a riparian filter strip was set for the hydrological response unit around the main
stream and tributary of the Binjiang river, mainly in the NPS CSAs (sub-basin Nos. 1–11). The river
bank’s average slope ratio is 1:8. The vegetation is shrub herb in natural grassland. The filter strip’s
width was designed to be 3–30 m. The riparian buffer strips were added to the management module of
SWAT, and their reduction effects on different NPS pollutants were simulated.

3.4.2. Simulation and Best Selection

Based on the above scenario, the improved SWAT model was used to simulate the generation of
NPS pollutants with different filter strips. The evaluated pollutants were SED (sediment or suspended
particulate), BOD (biochemical oxygen demand), NH4 (ammonia nitrogen), TN (total nitrogen), and TP
(total phosphorus). With the original condition as a blank scenario, we simulated the reduction effects
of the riparian filter strips on various pollutants with different structural designs, depicted in Figure 11.
The NPS generation and reduction rate are listed in Table 5.
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Table 5. The NPS outflow load and reduction in different filter strip scenarios.

Width of Filter
Strip (m)

Load/Reduction SED NH4 BOD TN TP

Original Load (kg/ha) 65.882 2.318 25.741 69.330 6.653

3
load (kg/ha) 51.663 2.016 24.069 65.819 5.344

Reduction (%) 21.58% 13.00% 6.50% 5.06% 19.67%

4
load (kg/ha) 48.417 1.943 23.662 65.022 5.046

Reduction (%) 26.51% 16.16% 8.08% 6.21% 24.15%

5
load (kg/ha) 46.185 1.891 23.371 64.167 4.840

Reduction (%) 29.90% 18.42% 9.21% 7.45% 27.24%

6
load (kg/ha) 44.482 1.851 23.150 63.269 4.710

Reduction (%) 32.48% 20.13% 10.07% 8.74% 29.21%

8
load (kg/ha) 43.007 1.814 22.944 62.417 4.572

Reduction (%) 34.72% 21.73% 10.87% 9.97% 31.27%

9
load (kg/ha) 41.729 1.781 22.760 61.615 4.453

Reduction (%) 36.66% 23.16% 11.58% 11.13% 33.07%

10
load (kg/ha) 38.629 1.699 22.304 59.391 4.163

Reduction (%) 41.37% 26.71% 13.35% 14.34% 37.42%

12
load (kg/ha) 36.193 1.628 21.911 57.333 3.936

Reduction (%) 45.06% 29.76% 14.88% 17.30% 40.84%

15
load (kg/ha) 34.181 1.565 21.563 54.744 3.815

Reduction (%) 48.12% 32.47% 16.23% 19.04% 42.66%

18
load (kg/ha) 33.659 1.559 21.526 54.416 3.742

Reduction (%) 48.91% 32.75% 16.37% 21.51% 43.75%

21
load (kg/ha) 33.007 1.551 21.481 54.001 3.710

Reduction (%) 49.90% 33.10% 16.55% 22.11% 44.24%

24
load (kg/ha) 32.704 1.543 21.438 53.595 3.679

Reduction (%) 50.36% 33.43% 16.72% 22.70% 44.69%

27
load (kg/ha) 32.415 1.535 21.397 53.197 3.651

Reduction (%) 50.80% 33.75% 16.88% 23.27% 45.13%

30
load (kg/ha) 32.138 1.528 21.358 52.808 3.623

Reduction (%) 51.22% 34.06% 17.03% 23.83% 45.54%

As shown above, from the perspective of pollutants, the filter strip has the best control effect on
SED; the average annual reduction rate reaches 41–50%. The reduction rate of the average annual
output of TP reaches 37–45%. Researchers have studied the effectiveness of grass strips on water
quality, and the results showed that the effects of grass strips on the removal of sediments and nutrients
were significant: over 20% in sediments and TP [35,36]. However, the reduction effect on ammonia
nitrogen and TN is relatively low. The average annual reduction rate of TN, for instance, is only 10–22%.
Similarly, the implementation of a 25% grass strip in Central Indiana, United States, led to a reduction
in nitrogen and BOD loads between 2.41% and 5.75% [37]. The reason for this is that inorganic nitrogen
migrates with surface runoff in a dissolved state. Organic and mineral phosphorus migrate and adhere
to sediment in surface runoff. According to the literature, more than 70% of phosphorus and about
20% of nitrogen (mainly organic nitrogen) accumulate in this way in catchment area [38]. Since filter
strips have a better sedimentation effect on SED, the TP adsorbed to particulate matter is also removed.
Ammonia nitrogen, nitrate nitrogen, and BOD are mainly removed by absorption of plant roots and the
degradation of microorganisms. Because of the slope of the river bank, the hydraulic retention time of
pollution flowing through a riparian filter strip is insufficient for absorption and degradation; therefore,
the reduction effect of TN and BOD is lower. Similarly, Stagge [39] demonstrated the performance of
grass swales with experimental methods to measure pollutant concentrations in inflow and outflow,
and found that grass swales reduced sediment and TP by 40–85% and 20–45%, respectively, while the
reduction in TN and BOD was less than 15%.

From the perspective of structure design, there is a certain nonlinear relationship between the
design scenarios and the efficiency of the reduction in the pollutants. As shown in the figure, when the
width of the buffer strip is less than 15 meters, the reduction effect of NPS pollutants gradually increases;
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that is, there is a significant positive correlation. When the width of the filter strip is greater than 15
meters, the control effect on NPS pollutants tends towards stability. Taking NH4 and TP as examples,
the relationship between average reduction rate (y) and riparian buffer strip width (x) is similar to
a logarithmic equation. Based on the data from Table 5, SPSS software was used to solve the fitting
regression equation y = a·ln(x) + b. The solved nonlinear fitting regression equation is as follows:

yNH4 = 0.0694ln(x) + 0.1157 (8)

yTP = 0.0827ln(x) + 0.1876. (9)

The fitting degree of this equation is fairly high. The relative error (Re) of NH4 is only 6.81%,
and the determination coefficient (R2) of NH4 is 0.9804. The relative error (Re) of TP is only 4.16%,
and the R2 of TP is as high as 0.9882. For areas with similar natural conditions (a subtropical monsoon
climate, clay-loam soil, and non-urban areas), the fitting equation can be used to estimate the NPS
reduction effect of riparian filter strips in the absence of numerical data for simulation. Researchers
have studied the width of a filter strip and its pollution reduction effect in large flat watersheds.
The results showned that the 15 m filter strip is slightly better than the 10 m filter strip, which is
apparently better than the 5 m filter strip. In general, a filter strip that is 10–15 m in width can intercept
3–45% of TN, and 30–80% of TP [36–40]. Similarly, considering the reduction effect and cost, a 15 m
filter strip alongside the main stream is suggested, as it can produce a reduction effect on sediment
(SED), total nitrogen (TN), and total phosphorus (TP) of up to 48.12%, 19.04%, and 42.33%, respectively.

4. Conclusions

Because of the limitations to the surface runoff module in SWAT, in order to avoid deviation
in simulations caused by a single initial abstraction value, this paper adopted the method of a
segmentation value of initial abstraction to improve the model, named SWAT-m. By data collection,
we established databases for topography, soil, land use, and weather. Then, we performed runoff and
NPS pollutant simulations. The results enabled us to draw the following conclusions:

Through the comparison of runoff simulations using SWAT and SWAT-m, we obtained that
the modified model has better simulation accuracy. In particular, during the validation period,
the evaluation indicators are: Ens = 0.72, R2 = 0.75, and Re = 27% (SWAT); Ens = 0.89, R2 = 0.91,
and Re = 14% (SWAT-m). The modified model improves the simulation accuracy by 23.61% (Ens) and
21.33% (R2), indicating its better adaptability to simulate extensive watershed pollution under various
natural conditions.

As for NPS pollutants, simulation by SWAT-m also complies with the standard for accuracy. Thus,
it was applied in further research. For a watershed in a subtropical monsoon climate, the temporal
distribution of NPS approximately belongs to a normal distribution, and accumulates from April to
September. The contribution of TN and TP in the rainy season to the annual load is 82–90% and 83–89%,
with an average of 85% and 86%, respectively. Additionally, the average annual NPS load is not evenly
distributed, and mainly accumulates in the central and southern areas alongside the main stream.

As for the spatial distribution of NPS, the topography value and NPS generation have a negative
correlation. Through the generation potential parameter Φi, we obtained the descending order of all
sub-basins in terms of their contribution to total NPS generation. The CSAs were found to be mostly
northeast sub-basins with lower terrain that is used mainly for agricultural applications, accounting for
about 53% of the total generation. The temporal distribution of high NPS generators accumulated from
April to July, reaching 69% of the annual load. Also, through a comparison of Φi between pollutants,
we found that the main pollutants of CSAs are organic nitrogen (ORGN), ammonia nitrogen (NH4),
and particulate matter (SED); the main pollutant for the central and southern areas alongside the main
stream is ammonia nitrogen.

By simulating the impact of a riparian filter strip on NPS pollution in CSAs, it was shown that
filter strips efficiently reduce particulate matter (SED) and total phosphorus (TP) by up to 48.12%
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and 42.33%, respectively. The reduction effect on pollutants and the designed width of the filter strip
indicated an approximate logarithmic relationship, which could be applied to similar watersheds
without numerical data for simulation. When the buffer width reaches 15 meters, the reduction rate
tends towards stability; thus, the recommended design is a 15-m wide filter strip, with a slope ratio of
1:8, that is covered with local natural herbaceous vegetation alongside the river.

Because of limitations in time, researchers, and measured data, we only validated two kinds of
pollutants (ammonia nitrogen and total phosphorus). Further research may simulate the other main
components of NPS, such as BOD (biochemical oxygen demand).

As a result of the research in this study, we can accurately position the high generators of NPS
pollution and its accumulation time. Further research could focus on control measures other than filter
strips to decrease NPS. The results of this study are of practical significance to the management of NPS
pollution in watersheds under similar conditions.
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