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Abstract: Although stable isotopes of hydrogen and oxygen in surface waters (especially in river
waters) are useful tools to understand regional hydrological processes, relevant information at some
upper reaches of large rivers in western China is still limited. During 2016–2017, we focused on the
Liujiaxia Reservoir along the upper Yellow River, where we collected surface water samples at two
locations, above and below the dam (identified as “lake water” and “river water”). The results show
that the heavy isotopes in lake and river waters are enriched during the warm months, when the river
discharge is large, and depleted during the cold months. The slopes of the water line (δ2H versus
δ18O) for both the lake and river waters were lower than that of the global mean, due to evaporation.
The different d values of the lake and river water reflect the regional evaporation and water sources.
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1. Introduction

Stable isotopes of hydrogen and oxygen are important in understanding hydrological
processes [1–5]. Surface runoff is a vital component of the terrestrial water cycle, and the interactions
between surface water and other hydrological components (especially precipitation and groundwater)
can be investigated using stable isotopes of water [6–10]. For example, simultaneous in-situ monitoring
of the isotopic composition of surface water provides a basis to investigate the regional water
budget [11–14], water interaction [15–17], and paleoclimate reconstruction [18,19]. In most cases,
the stable isotope ratios of surface water reflect a seasonal variation, which is associated with
the isotope signature of water from which it is derived (e.g., stream water, precipitation, and
groundwater) and the climate [20–24]. According to the isotopic assessment of nationwide river
water in the United States (U.S.), heavy isotopes of river water are more depleted in southeastern
to northwestern (except for the East Coast of the U.S.) United States, due to evaporation and water
vapor sources [25]. Generally, water isotopes experience kinetic fractionation depending on the
climate conditions. Dansgaard [26] demonstrated that temperature and precipitation amount are
important meteorological factors controlling stable isotope composition in precipitation, which is
commonly known as temperature effect and precipitation effect, respectively. Light isotopes evaporate
preferentially to heavy isotopes, so heavy isotopes of evaporated (condensed) water are more depleted
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(enriched) than those of residual water. Hence, in some open water bodies (especially lakes), the heavy
isotopes were more enriched, relative to precipitation, due to strong evaporation [23,27,28].

The Yellow River (Huanghe River), the second longest river in China, originates from the
high-elevation Qinghai–Tibet Plateau and flows to the Bohai Sea in eastern China. The isotopic
signature of river water at many sites along the Yellow River has been analyzed and has provided
useful information to understand the regional water cycle [29–33]. According to these studies, in this
drainage basin, with different climate conditions and hydrological regimes, the isotope values of water
are spatially dependent [29]. The downstream reaches are greatly affected by the East Asia monsoon.
This may be reflected by the seasonal variations of stable isotope composition. Water in the middle
reaches is enriched in heavy isotopes due to evaporation and complex moisture sources at the monsoon
margin. The heavy isotope values of river water are lower in the upper reaches because the isotopes of
precipitation and surface water are more depleted in high elevation inland areas, although the arid
background may also affect the signature of isotopes [29]. Consequently, the isotopic composition of
river water can be applied to understand the climatic and hydrological conditions.

Among these studies [29–33], very few were conducted in the high-altitude upper reaches of
the Yellow River [33], especially at the eastern Tibetan Plateau and the western Loess Plateau, where
the climate is mostly arid and semi-arid, and surface water is for agriculture and domestic use [34].
The Liujiaxia Reservoir (Figure 1), a famous reservoir in western China, is located at the upper Yellow
River. The water level of the wide bay behind the dam (also called the Bingling Lake) is approximately
at 1700 m above sea level. The lake occupies an area of approximately 130 km2, with a capacity of
39 × 108 m3 [35]. The annual average air temperature in the Yongjing Meteorological Station (35◦58′ N,
103◦18′ E) from 1 January 2016 to 31 December 2017 was 10.1 ◦C, and the annual average precipitation
amount was 280.7 mm. This reservoir plays a very important role in irrigation and flood control across
the region and will serve as the main water source of the nearby Lanzhou city (the capital city of Gansu
Province) in future years. During 2016–2017, the monthly average storage capacity of the Bingling
Lake was 35.68 × 108 m3. However, the existing knowledge of the isotopic signature in surface water
around the dam is still limited, even though isotope techniques have been widely applied to detect the
hydrological process worldwide.
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During the period of 2016–2017, we established monitoring sites near the Liujiaxia Reservoir and
collected surface water samples at two sites, above and below the dam. The purpose of the present
study is to improve the knowledge of stable isotopes at the upper reaches of the Yellow River and to
investigate the isotope signature of surface water in this region. Moreover, the influence of the dam
on the isotopic signature in the surface water will be considered. The sampling network around the
Liujiaxia Reservoir could be useful to understand the hydrogen and oxygen isotopes in the regional
water cycle.

2. Data and Methods

Surface water samples were collected twice a month at a depth of 20 cm from the river downstream
the Liujiaxia dam (35◦57′ N, 103◦17′ E, 1646 m; hereafter referred to as river water), from January
2016 to August 2017, and the Bingling Lake (35◦53′ N, 103◦18′ E, 1731 m; hereafter termed to as
lake water), from January 2016 to March 2017. The climate parameters (including air temperature,
precipitation amount, wind speed, and relatively humidity) come from the National Meteorological
Information Center, China (NMIC). The storage of the Bingling Lake during 2016–2017, based on the
daily gauge-based records, was provided by the local water resources administration [36]. The water
samples were stored in 50-mL narrow-mouth HDPE bottles with an inner cap and waterproof tape.
All samples were analyzed by the Stable Isotope Laboratory, College of Geography and Environmental
Science, Northwest Normal University, Lanzhou, China, using a liquid water isotope analyzer (DLT-100,
Los Gatos Research, San Jose, CA, USA). Both the sample and isotopic standard were injected six times.
In order to eliminate any memory effect, we used the average value of the last four measurements as
the final result. The stable isotope ratio is expressed relatively to the Vienna Standard Mean Ocean
Water (V-SMOW):

δ =
(
Rsample/Rstandard − 1

)
× 1000%� (1)

where Rsample is the 18O/16O (or 2H/1H) ratio of the analyzed sample and Rstandard is the ratio of
the V-SMOW. The analytic precision was better than ±0.2%� for the δ18O and ±0.6%� for the δ2H,
respectively. This same protocol has also been applied in previous studies [4,37]. The characteristics of
the surface water isotopes are shown in Supplementary Table S1.

3. Results and Discussion

3.1. Stable Isotopes in Surface Water

The stable isotope ratios (δ18O and δ2H) in the lake and river waters are provided in Table 1 and
illustrated in Figure 2. The maximum and minimum values of δ18O in the lake water were −9.49%�

and −10.32%�, and those of δ2H were −66.69%� and −77.07%�, respectively. For the river water, the
δ18O value ranges from −9.35%� to −10.55%�, while the δ2H ranges between −65.72%� and −75.37%�.
The stable isotope composition of the lake and river waters exhibits a seasonal variability. In general,
the isotopes values of surface water are enriched during the warm months (defined in this study as the
period from April to October) and depleted during the cold months (from November to March). The
range of the isotope values of the river water is close to that of the lake water.

Table 1. Descriptive statistics of isotopes in the lake and river water from 2016 to 2017.

Sample δ Value Mean (%�) SD (%�) Max (%�) Min (%�) n Period

Lake water
δ18O −10.0 0.2 −9.49 −10.32

26 January 2016–April 2017
δ2H −73 3.0 −66.69 −77.07

River
water

δ18O −10.0 0.3 −9.35 −10.55
37 January 2016–August 2017

δ2H −71 3.0 −65.72 −75.37

SD: Standard deviation; n: Number of samples.
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and the global meteoric water line (GMWL: δ2H = 8 δ18O + 10 [39]). The same time series of the lake 
water and river water samples was selected for comparison (Figure 4). The lake water and river water 
samples are almost distributed on the right-hand lower side of the GMWL, and the slopes of the lake 
water line (7.42) and river water line (7.29) are much lower than that of the GMWL. Low slopes of 
lake and river water are commonly associated with low humidity and with evaporation due to non-
equilibrium evaporation [1,40]. In western China, where precipitation is limited, the strong 

Figure 2. Seasonal variations of δ2H and δ18O in (a) the lake water and (b) the river water from 2016
to 2017.

Figure 3 shows the seasonal variation of inflow, storage, outflow, and the corresponding
meteorological parameters. The flow of water reaches its maximum during the warm months,
which corresponds to the seasonality of precipitation and air temperature. The local precipitation
usually concentrates in summer, leading to an increase of water supply during the warm months.
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Figure 3. Seasonal variation of (a) inflow, (b) storage, (c) outflow, (d) air temperature, and
(e) precipitation amount from January 2016 to August 2017.

The linear regression between δ2H and δ18O in surface waters reflects, to some extent, the local
evaporation conditions [38]. The slope reflects the relationship between fractionation rates of 2H and
18O, and the intercept represents the degree of deviation of 2H from the equilibrium. Figure 4 shows the
correlation between the stable hydrogen and oxygen isotopes in the lake water, the river water, and the
global meteoric water line (GMWL: δ2H = 8 δ18O + 10 [39]). The same time series of the lake water and
river water samples was selected for comparison (Figure 4). The lake water and river water samples
are almost distributed on the right-hand lower side of the GMWL, and the slopes of the lake water
line (7.42) and river water line (7.29) are much lower than that of the GMWL. Low slopes of lake and
river water are commonly associated with low humidity and with evaporation due to non-equilibrium
evaporation [1,40]. In western China, where precipitation is limited, the strong evaporation may lead
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to an enrichment of heavy isotopes in surface water [41,42]. In addition, the water in the Bingling Lake
originates from higher elevations, where it is relatively cold, and the value of the slope of surface water
close to eight may also imply an altitude effect. However, some river water samples are distributed
on the left side of the GMWL, showing a weak evaporation, which may be associated with the flow
and water source. In addition, the river water is actually mixed with the Bingling Lake water and the
Taohe River water, which may affect the relationship of isotopes in the sampled water.
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3.2. Deuterium-Excess in Surface Water

Deuterium excess (d, defined as d = δ2H – 8 δ18O) values of water can be used to identify vapor
source regions and below-cloud evaporation [23,27,41,43–46]. The d value is the intercept value of
δ2H while maintaining a slope equal to eight. D-excess is usually associated with climate parameters
such as air temperature, wind speed, and relative humidity in the water vapor source area [25,45–49].
The d value in precipitation is usually high in western China (d = 8 – 12) and low in eastern China
(d = 4 – 12) [47]. In the study area, the actual evaporation is high, which corresponds to a high
temperature and low precipitation amount [50]. Consequently, the d value in the surface water is
influenced by the local climate condition. Figure 5 shows that d value weakly correlates with δ18O in
the river water (r = −0.28), indicating that the high δ18O usually corresponds to a low d value.
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During the study period, d values of the lake water varied from 4.15%� to 11.25%� and from 3.89%�

to 13.39%� for the river water (Figure 6). The d values of the lake water were lower from March to
August (except for June) in 2016 and were higher from September 2016 to March 2017. The d values of
the river water were lower from April to September (except for August) in 2016 and were higher from
October 2016 to February 2017. Generally, the warm months, with high solar radiation, air temperature
and flow, correspond to relatively strong surface evaporation. However, contrary to 2016, the d values
of river water were higher from May to August in 2017. This indicates that the evaporation condition
is not the only factor influencing D-excess, and other factors such as river recharge sources and river
inputs may also play an important role [51]. Moreover, it looks like the lake water d values may have
a long-term positive linear trend that may need to be removed before the values can be compared
between the river and lake water. According to the detrended plot (Figure S1 in the Supplementary
Material), the low values of d in spring and summer can be more easily seen.
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The mean d value in the lake water (7.08%�) was found to be lower than that of the river water
(9.19%�). If the lake and river water have the exactly same water source, this difference in isotope
signature is usually considered to reflect the evaporation of lake water being higher than that of the
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river water. Because of the interception of the dam, the lake water in this study may be mixed in a
relatively long residence time. However, another river stream, the Taohe River, contributes to the lake
above the dam and does influence this hydrological process. The river water sampled was collected
below the dam, which was mixed with the lake water in the study, as well as the Taohe River water.
In this study, the surface water of the Taohe River was not directly collected, which may impact the
explanations of the relationship of the stable isotope signature in the sampled river and lake waters.
Although the proportional contribution of the Taohe River to the stream of the Yellow River is not very
large [35], these integrated effects make the stable isotope signature of the river water more complex.

The regression equations between d value and air temperature are d = −0.08 T + 7.53 (r = −0.37)
for the lake water and d = −0.002 T + 9.31 (r = −0.01) for the river water, respectively (Figure 7a,d).
There is no correlation between d and temperature in the river water. The mixture process, considering
the Taohe River, may weaken the temperature effect of surface water. There are negative correlations
between d value and wind speed, and the regression lines were d = −2.43 M + 9.71 (r = −0.26) for
lake water and d = −1.86 M+ 11.54 (r = −0.20) for river water, respectively (Figure 7b,e). In addition,
the correlation between d value and relative humidity is very weak. The regression equations are
d = 0.03 φ + 5.23 (r = 0.12) for the lake water and d = 0.02 φ + 8.32 (r = 0.08) for the river water,
respectively (Figure 7c,f). The above-mentioned correlation coefficients for the lake water were
generally larger than those for the river water. Further conclusions require an improved sampling
network, including more sites along this river, at least at the Taohe River mouth.
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during the warm months. The slopes of the lake water and river water lines are lower than that of the 
GMWL due to evaporation. Low d values correspond to positive δ18O values in the lake and river 
waters. Moreover, the d values of the lake water are higher than those of the river water. The river 
water samples were collected at the lower part of the dam, where the lake water and Taohe River 
water is mixed. Thus, the isotopic signature of the collected river water is a result of the integrated 
effects. 
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Figure 7. Correlation between meteorological parameters (surface air temperature, wind speed, and
relative humidity) and D-excess in the lake (a, b and c) and the river water (d, e and f).

4. Conclusion

In this work, we provide recent measurements of the stable isotope composition of lake water and
river water at the upper reaches of the Yellow River. The isotopic values of the lake and river waters
exhibit a seasonal variation. The heavy isotopes of surface water were more enriched during the warm
months and depleted during the cold months. Moreover, a high precipitation amount would increase
the water supply, resulting in an increase in river flow along the flow pathways during the warm
months. The slopes of the lake water and river water lines are lower than that of the GMWL due to
evaporation. Low d values correspond to positive δ18O values in the lake and river waters. Moreover,
the d values of the lake water are higher than those of the river water. The river water samples were
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collected at the lower part of the dam, where the lake water and Taohe River water is mixed. Thus, the
isotopic signature of the collected river water is a result of the integrated effects.
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