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Abstract: Three watersheds in Korea (Dochoncheon, Gongjicheon, Seolseongcheon) with different
land cover characteristics were selected for non-point source pollution monitoring. Event mean
concentration (EMC) was calculated, and runoff characteristics were compared through first-flushing
and statistical analyses. The mean of the water quality parameters was the highest in Seolseongcheon
during dry days among the three watersheds. EMCs of biochemical oxygen demand (BOD) and
total nitrogen (TN) were higher in Dochoncheon and Gongjicheon during rainy days, respectively.
The upper Seolseongchun watershed showed overall greater values of chemical oxygen demand
(COD), suspended solids (SS), total organic carbon (TOC), and total phosphorus (TP). First-flush
analyses indicated that SS had the strongest and TN had the weakest effects on the first flush. BOD was
the highest in Dochoncheon (urban watershed) and increased with increased number of antecedent
dry days. Rainfall intensity appeared to affect SS runoff strongly in Gongjicheon and Seolseongcheon.
COD showed strong correlation with SS and TOC in all watersheds, and organic matter (COD and
TOC) demonstrated high factor loads during dry and rainy days. Thus, organic matter–related factors
were classified as the major factors in pollutant loads. TP and TN were separately classified during
dry days in Gongjicheon and Seolseongcheon, whereas these were the secondary factors during
rainfall when the influence of non-point pollution was substantial. Cluster analyses showed that
the monitoring sites in Dochoncheon and Gongjicheon watersheds were closer than Seolseongcheon.
As a result of the comparison of non-point source pollution runoff in the three watersheds, it was
difficult to explain the non-point source pollution runoff by specific characteristics such as land cover.
For science-based management of non-point pollution, it is necessary to obtain additional survey
data considering the climatic, geographical and major industries.

Keywords: non-point source pollution; multivariate analysis; event mean concentration; first-flushing
effect
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1. Introduction

Water pollution sources can be classified into point and non-point sources [1]. The former is
relatively simple to manage, because pollutants are discharged at a specific point through a pipe or
watercourse. However, non-point source pollution from agriculture, urban and mountainous areas is
difficult to collect and manage data from the sources [2]. For this reason, point source pollution has
mainly been managed by sewage treatment plants and stricter emission standards, and thus point
pollutant loads have been steadily decreased in Korea. However, the contribution of non-point source
pollution has been continuously increased primarily due to the expansion of impervious areas resulting
from urbanization [3]. Thus, there have been a number of studies on the management of non-point
pollution sources because point source pollution management is insufficient for further improvement
in water quality.

According to Xiang et al. [4], many studies related to non-point source pollution have been
conducted, including research on pollution characteristics, modeling, and management. Other studies
have identified the causes of non-point source pollution, quantified non-point pollutant loads,
and established measures for reducing the pollutant loads [5–9]. However, non-point source pollution
is affected by various factors, and thus difficult to characterize common non-point source pollution
applicable to watersheds in particular [10]. The development of geographic information system and
remote sensing technologies has enabled such research using watershed models. Watershed models
including AGNPS, ANSWERS, CASC2D, DWSM, HSPF, KINEROS, MIKE SHE, PRMS, and SWAT [11],
have been extensively used to establish measures for quantifying, predicting, and reducing non-point
pollution sources. These models require extensive input data, including monitoring, weather and
terrain data. In addition, obtaining water quality monitoring data is crucial in modeling, because the
models require calibration and validation based on monitoring data to produce reliable results.

Since pollutants from non-point sources are mostly discharged during rainfall events, quantification
of such sources is labor- and cost-intensive [12]. The effects of non-point source pollution discharged
during rainfall on river and lake water quality has increased, as sewage treatment rate and economic
activities increase and land is more densely used [13]. Additionally, runoff flow rate varies greatly,
and the prediction of runoff flow is consequently difficult. Unit load from monitoring data of non-point
source pollution is important in order to apply quantitative data of non-point source pollution for
calculating Total Maximum Daily Loads (TMDLs) and water quality management in South Korea [14].
To develop reasonable management measures, it is necessary to study not only the spatiotemporal
distribution of non-point source pollution but also the quantitative and qualitative characteristics of
the pollutants.

Multivariate statistical techniques, such as cluster, factor, and discriminant analyses, enable us to
better understand complex data [15]. Multivariate analysis has been widely used because it assesses
temporal and spatial changes in water quality and identifies potential causes of water pollution and
watershed variability [16–18].

In this study, the event mean concentration (EMC) of non-point source pollution was calculated
based on multiple monitoring data of non-point source pollution at three watersheds with different
land cover characteristics. Based on the EMCs, the runoff characteristics of each of the three watersheds
were compared through the first-flushing effect and multivariate statistical analyses were applied to
establish water resource management plans.

2. Materials and Methods

2.1. Watershed Characteristics

Three watersheds in Korea with different land cover characteristics (Dochoncheon, Gongjicheon,
and Seolseongcheon) were selected to study the runoff characteristics of non-point source pollution
for different land cover type. A land cover map from the Ministry of Environment [19] was used,
and a 1:25,000 precision soil map [20] established by the National Institute of Agricultural Sciences was
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applied. Data from a 1:5000 digital map provided by the National Geographic Information Institute
was used to construct a digital elevation model using ArcGIS 9.2.

The Dochoncheon watershed comprises an urban river with an area of 2.0 km2, where runoff

water from forests in upstream watershed passes the downstream urban area through the river levee.
Three monitoring sites (DC_1 to DC_3) were selected considering river structure and land cover.
The average altitude and slope are 140.2 m and 33.9%, respectively. The soil in the watershed is
composed of 72.0% Songsan, including SNE2, in terms of the soil series classification of the Soil
Environmental Information System of the Rural Development Administration. The soil is sandy loam,
containing gravel and rocks, and has very good drainage and permeability. Thus, it is suitable for use
as forest land.

The Gongjicheon watershed with 45.1 km2 in area has a complex land cover structure that consists
of greater than 10% for the respective forest, agricultural, and used (urban) areas. The average altitude
is 215.3 m, with a slope of 25.6%. The soil consists of 36.4% Samgag, including SgE2, and 15.1%
Songsan, including SNE2. Songsan soil occurs upstream in the watershed, and Samgag is mainly
distributed midstream and downstream. Samgag soil comprises sandy loam with good drainage and
slightly higher permeability, making it appropriate for pine forest lands.

The Seolseongcheon watershed is an agricultural watershed with an area of 37.5 km2 of which
65.0% is agricultural areas. The average altitude is 95.8 m with a slope of 11.5%. The soil is
composed of 28.1% Samgag, including SgD2, 22.0% Yesan, including YaC2, 15.3% Sangju, including
SAB, and 10.3% Yecheon, including YeB. Samgag is distributed evenly throughout the watershed,
and Yecheon is concentrated downstream in the watershed. Yesan comprises loamy soil with good
drainage and moderately high permeability, and it is mainly used for cultivating crops such as apples.
Sangju comprises sandy loam with good drainage and moderately high permeability, and it is mainly
used for cultivating crops such as barley. Yecheon comprises loamy soil with poor drainage and
moderate permeability, and it is mainly used for rice cultivation.

Five monitoring sites in both Gongjicheon (GJ_1 to GJ_5) and Seolseongcheon (SS_1 to SS_5) were
selected considering the major tributaries and structures such as bridges. Monitoring sites and land
cover for each watershed are shown in Figure 1 and Table 1.

Table 1. Monitoring sites and land cover for each watershed.

Category Dochoncheon Gongjicheon Seolseongcheon

Monitoring Site DC_1 DC_2 DC_3 GJ_1 GJ_2 GJ_3 GJ_4 GJ_5 SS_1 SS_2 SS_3 SS_4 SS_5

Area (km2) 0.5 1.3 1.9 11.4 14.3 3.9 7.7 45.1 2.8 5.2 16.5 14.9 37.5

Land cover
(%)

Forest 91.6 67.0 63.5 66.0 56.4 48.1 40.6 51.4 36.6 34.4 21.3 24.7 21.3
Used area 2.4 14.3 16.8 2.7 8.6 6.8 11.6 12.3 4.2 4.4 7.4 7.8 7.2

Agricultural land 1.4 1.6 2.6 30.2 32.3 43.8 36.8 31.7 54.7 55.8 64.3 62.5 65.0
Grass 2.9 12.4 12.2 0.2 1.2 0.8 10.6 2.8 1.7 1.4 3.4 1.6 2.8
Barren 1.7 4.1 3.9 0.1 1.4 0.3 0.0 1.2 1.9 1.2 1.7 1.4 1.5
Water 0.0 1.0 1.0 0.8 0.0 0.2 0.5 0.6 0.9 2.9 1.7 2.3 2.2

Average altitude (m) 209.5 149.7 140.2 332.3 235.9 130.9 154.4 215.3 130.9 108.3 102.9 95.8 95.8
Average slope (%) 50.1 36.1 33.9 34.2 30.9 17.9 21.4 25.6 24.3 16.7 12.3 11.9 11.5

There is no livestock farm and point source pollution in the Dochoncheon watershed, and
the population density is 8496 people/km2, which is 48 times greater than that in Seolseongcheon
(177 people/km2). There are 454 and 974 cattle in the Gongjicheon and Seolseongcheon, respectively,
and three and five point source pollution discharging pollutants at 15 and 33 m3/day, respectively.
At sites GJ_5 and SS_5, where the respective watersheds end, the water cover rate was 0.2% or less,
showing a low effect on the total water quality.
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2.2. Multivariate Statistical Analysis

To analyze the data, multivariate analyses including correlation, principal component, and cluster
analyses were performed using statistical processing with the R program.

Correlation analyses numerically represent the linear relationship between variables, and Pearson’s
correlation coefficient (r) was used, with a value of −1 ≤ r < 0 indicating a negative correlation, and a
value of 0 ≤ r < 1 indicating a positive correlation. In addition, the closer the r-value is to 0, the weaker
the correlation is, and the closer it is to 1, the stronger the correlation is [21].

Cluster analysis classifies high similarity groups by measuring the similarity of each object;
it identifies the similarity of objects belonging to the same cluster and the differences between objects
belonging to different clusters [22]. In this study, clusters were obtained using hierarchical cluster
analysis. The distance between the clusters was calculated by the Euclidean squared distance method,
which squares and sums the differences of all variables. Ward’s method [23], which minimizes
the increment of the error sum of squares at each combination step, was applied as a cluster
combination method.

Factor analysis identifies a virtual variable called a factor, which can explain the covariance
between observable quantitative variables. The variables are grouped together, and new variables
that can represent each group are subsequently identified. Thus, factor analysis is used to identify the
characteristics of the groups and reduce the dimensions. Principal component analysis, which is the
method of estimation for factor analysis, was used to apply the principal components of the covariance
matrix as factors. The Varimax rotation method, involving orthogonal rotation, was used as the method
of rotating the factor axis [24].

2.3. Monitoring Method

Monitoring of non-point source pollution was carried out according to the Rainfall Runoff

Survey Method [25]. For non-point source pollution monitoring, six characteristics (biological oxygen
demand, BOD5; chemical oxygen demand, CODMN; total organic carbon, TOC; suspended solids,
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SS; total nitrogen, TN; and total phosphorus, TP) were monitored during rainy and dry days in
Dochoncheon during 2014–2017, in Gongjicheon during 2015–2017, and in Seolseongcheon during
2016–2017. These characteristics were monitored 18–26 times during dry days and 5–14 times during
rainy days at each site. Table 2 shows the surveys done during the monitoring period. The runoff of
Dochoncheon ranged from 0.0001 m2/s to 0.029 m2/s and Gongjicheon and Seolseongcheon was up to
1.086 m2/s during dry days (Figure 2). The runoff during rainy days is shown in Figure 3.

Table 2. Number of surveys during dry and rainy days at each site.

Dry Days Rainy Days

Number Rainfall
(mm)

Event
Number

Rainfall
Intensity
(mm/h)

Runoff (m3)
Runoff

Ratio (%)

Dochoncheon
(3 sites) 19–20

0–10 1–4

0.8–9.7 8.2–58,122.3 0.1–45.2
10–30 4–6
30–50 3–4
50< 0–1

Total 36

Gongjicheon
(5 sites) 25–26

0–10 1–2

1.1–6.5 1534.9–457,550.0 0.9–63.9
10–30 2–4
30–50 1–2
50< 1–3

Total 42

Seolseongcheon
(5 sites) 18–19

0–10 2–4

0.5–6.0 705.1–856,206.1 2.3–68.6
10–30 1–3
30–50 0–1
50< 1–2

Total 38
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Figure 2. The runoff at each monitoring site during dry days over the monitoring period.
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Figure 3. The runoff at each monitoring site during rainy days over the monitoring period.

To compare the monitoring results during rainy days, EMC was applied [26]:

EMC =

∑N
n=1(Qn × ∆tn ×Cn)∑N

n=1(Qn × ∆tn)
(1)

EMC is the flow-weighted mean concentration (mg/L) per rainfall runoff event (x) and calculated as
the ratio of total pollutant mass and total runoff flow. Q is the runoff flow (m3/s), C is the concentration
of a specific pollutant (mg/L), ∆tn is the measurement time interval, and N is the total number
of measurements.

3. Results

3.1. Rainfall Analysis

The rainfall in Dochoncheon, Gongjicheon, and Seolseongcheon was analyzed using rainfall data
from Seongnam automatic weather station (AWS), Chuncheon weather station and Janghowon AWS,
respectively. To identify the characteristics of rainfall during the monitoring period, the data from
Chuncheon weather station from 1987 and the two other AWS from 1997 to 2017 were analyzed and
compared to that from the monitoring period (Table 3). The average amount of rainfall in Gongjicheon
was the highest among all the watersheds (1432.1 mm), and that in Seolseongcheon was the lowest
(1217.7 mm). Fifty to seventy percent of the total amount of rainfall was measured in summer. In all
three watersheds, the average amount of rainfall during the monitoring period was lower than the
past average.

Table 3. Rainfall for each watershed during the study period.

Watershed Weather Station
Past Monitoring

Period Average
Rainfall (mm) Period Average

Rainfall (mm)

Dochoncheon Seongnam AWS 1997–2013 1350.5 2014–2017 880.5
Gongjicheon Chuncheon KMA 1987–2014 1432.1 2015–2017 1102.6

Seolseongcheon Janghowon AWS 1997–2015 1217.7 2016–2017 810.5
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3.2. Water Quality and First Flush Analysis

3.2.1. Water Quality

Figures 4 and 5 show the variations in water quality concentration during dry days and EMC
during rainy days for the monitoring sites. The mean of water quality parameters during dry days was
the highest in Seolseongcheon. The mean BOD concentrations did not exceed 2.0 mg/L in Dochoncheon
and Gongjicheon, but all sites in Seolseongcheon except for site SS_5 showed a mean BOD concentration
greater than 2.0 mg/L. In particular, the mean BOD, COD, SS, and TOC concentrations were high at
site SS_4, where sites SS_2 and SS_3 met and flowed into the main stream. The TN and TP (nutrient)
concentrations were 4.215 and 0.320 mg/L, respectively, at site SS_2, located in the middle of the
watershed. The water quality concentration of Seolseongcheon tended to increase significantly during
the rice planting period from May to June, which may have resulted from increased fertilizer usage.
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Figure 4. Boxplot of water quality concentration at each monitoring site during dry days over the
monitoring period (red dot: average).
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The EMC during rainy days showed that the mean BOD concentration was 4.74–5.67 mg/L in
Dochoncheon, the urban river, which was higher than the other watersheds. These results were
consistent with those of Mallin et al. [27]. The mean TN concentration was generally high in Gongjicheon,
with a value of 6.873 mg/L at site GJ_3. COD, SS, TOC, and TP concentrations were high at site SS_1,
in the upper region of Seolseongcheon.

3.2.2. First Flush

In general, pollutants show high concentrations at the start of rainfall due to the first-flush
effect [28]. It is difficult to apply existing first flush formulae to other watersheds since the first flush is
complex and varies widely depending on the characteristics of the watershed [29,30]. The cumulative
pollutant load ratio of the monitoring data was used to identify the first flush characteristics of each
water quality index. If the ratio of the cumulative pollutant loads to cumulative runoff flow is placed
above the slope of the 1:1 line, there is a first flush effect [31–36]. The results of the first flush analyses
of the three watersheds are shown in Figure 6, and the ratios of the loads relative to 30% of the runoff

flow for each monitoring site are shown in Table 4.
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Figure 6. First flush effect during rainfall at three watersheds (red: Dochoncheon, black: Gongjicheon,
blue: Seolseongcheon).

Table 4. Average cumulative load (%) relative to 30% of cumulative runoff flow at each site.

Watershed Site BOD COD SS TOC TN TP

Dochoncheon
DC_1 39.3 36.0 48.0 32.0 31.7 40.5
DC_2 38.9 34.9 41.0 28.6 31.8 39.9
DC_3 36.7 34.9 35.0 31.8 31.1 34.4

Gongjicheon

GJ_1 35.5 37.1 44.9 33.3 33.2 38.1
GJ_2 33.0 35.3 42.0 31.8 32.4 36.0
GJ_3 36.5 31.4 37.9 33.6 32.4 32.0
GJ_4 34.3 32.1 42.6 30.6 30.2 34.3
GJ_5 36.3 41.5 45.1 37.3 33.8 41.6

Seolseongcheon

SS_1 30.4 29.7 29.1 29.0 26.3 28.0
SS_2 33.8 29.0 30.1 28.4 29.3 29.4
SS_3 31.4 27.8 30.9 30.2 29.3 29.0
SS_4 31.2 25.5 24.0 30.0 26.6 28.9
SS_5 28.6 29.5 29.9 28.4 29.6 29.9

As shown in Figure 5, the SS loads for most of the monitoring sites are located above the 1:1
line, but the TN loads are concentrated around the 1:1 line. Thus, the effect of the first flush was low,
which is consistent with the results of previous studies [37,38]. However, as shown in Table 4, the water
quality characteristics at the first flush, such as SS and COD, exhibited low values in the lower stream
of Seolseongcheon and some other sites; it was therefore difficult to generalize the trend, as there were
differences depending on the characteristics of the watersheds [39].

The highest BOD load appeared in Dochoncheon, and the SS load was highest on average in
Gongjicheon. The remaining water quality characteristics were the highest in Gongjicheon and the
lowest in Seolseongcheon. The loading resulting from the first flush were the lowest in Seolseongcheon.
The SS load was high at most monitoring sites. However, at DC_3 (lower stream of Dochoncheon)
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and all Seolseongcheon sites except for SS_5 (lower stream of Seolseongcheon), the first flush of BOD
was high.

3.3. Multivariate Statistical Analyses

3.3.1. Correlation Analysis

To evaluate the correlation between the monitoring data during rainy and dry days, correlation
analyses were performed on the four hydrological and six water quality characteristics. The correlation
coefficient between the characteristics in the three watersheds was 0.5 or more, and the significance
level was 0.01 or less, implying a high correlation. The results are displayed in Figure 7.
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The rainfall amount, rainfall intensity, and runoff flow were highly correlated with each other
in all watersheds during rainy days, and the rainfall intensity was highly correlated with SS in
Gongjicheon and Seolseongcheon. Antecedent dry days (ADD) showed a correlation of 0.55 with
the BOD of Dochoncheon. The greater the number of ADD was, the greater the BOD concentration
was. The correlation between COD, SS, and TOC was strong in all three watersheds. BOD and TP
also showed a strong correlation in Dochoncheon and Seolseongcheon. SS was strongly correlated
with organic matter in Seolseongcheon and TP in Dochoncheon and Gongjicheon. TOC showed a
correlation of 0.5 or higher with five water quality characteristics in Seolseongcheon. TOC showed
a correlation of 0.68 with BOD in Dochoncheon and a correlation of 0.53 with SS in Gongjicheon.
TN showed correlations with COD and TOC in Seolseongcheon, and TP was correlated with four water
quality characteristics except for SS; some showed correlations between organic matter during dry
days, but there was generally no strong correlation.

COD, SS, and TOC commonly showed a strong correlation of 0.67–0.98 at a significance level
(p < 0.05) at sites DC_1, GJ_1, and SS_1, which are in the upper stream of the watersheds, during rainy
days, but a correlation according to land cover was not shown. Correlation between these three water
quality characteristics was low, with a value of 0.45 or less at site DC_3, which is in the lower stream.
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COD and TOC showed a correlation of 0.95 at site GJ_5, and COD and SS were strongly correlated
(r = 0.94) at site SS_5, whereas other characteristics showed a weak correlation.

3.3.2. Factor Analysis

To understand the water quality characteristics of the non-point source pollution at the monitoring
sites, the data were classified into water quality characteristic concentration during dry days and EMC
during rainy days. The data were subsequently normalized, and factor analyses were carried out.
Principal component analysis was used as the method of estimation. To determine the number of
factors, eigenvalues of 1.0 and those using parallel analysis not exceeding the original eigenvalues
(PA eigenvalues) [40] were investigated [41]. The numbers ranged from 1 to 3 for each watershed,
and three factors were analyzed to compare the watersheds. In all three watersheds, the variance rate
was over 70% for Factors 1–3 (described below). Table 5 shows the eigenvalues and proportion of
variance explained and cumulative variance explained by principal component analysis.

Table 5. Eigenvalues and proportion of variance explained by principal component analysis.

Watershed
Dry Days Rainy Days

Factors 1 2 3 1 2 3

Dochoncheon

Eigenvalue 2.394 1.517 1.054 3.082 1.322 1.029
PA eigenvalue 1.322 1.169 1.035 1.445 1.198 1.042

% Variance 32.7 22.1 16.2 32.4 28.4 16.8
% Cumulative 32.7 54.8 70.9 32.4 60.8 77.6

Gongjicheon

Eigenvalue 2.681 1.269 1.195 3.126 1.323 1.013
PA eigenvalue 1.235 1.113 1.023 1.414 1.192 1.049

% Variance 34.0 20.5 19.0 37.1 24.1 16.8
% Cumulative 34.0 54.5 73.5 37.1 61.2 78.0

Seolseongcheon

Eigenvalue 3.599 1.129 0.785 4.149 1.295 0.641
PA eigenvalue 1.268 1.162 1.036 1.476 1.213 1.033

% Variance 45.3 17.2 16.2 39.1 25.6 22.2
% Cumulative 45.3 62. 5 78.8 39.1 64.7 86.9

As shown in Table 6 and Figures 8–10, in all three watersheds, organic matter including COD and
TOC showed high factor loadings for Factor 1 during dry and rainy days. Thus, pollution load factors
were classified as the organic matter–related factors. Factor 2 was a nutritional factor including TN
and TP in Dochoncheon during dry days. During rainy days, SS and TP showed high positive factor
loadings, which confirmed the runoff characteristics from impervious areas such as roads [42]. TP was
included in Factor 2, and TN was observed in Factor 3 in Gongjicheon and Seolseongcheon during
dry days. SS in Gongjicheon and runoff flow in Seolseongcheon were included in Factor 2 with TP.
It seemed that the water quality in Seolseongcheon watershed was affected by TP due to irrigation
for rice field vegetation. On rainy days, TN and TP in Gongjicheon and Seolseongcheon, resulting
from the inflow of livestock manure and fertilizer into the water systems, were classified as Factor 2.
It was difficult to exactly identify the origin of non-point source pollution for the six monitored water
quality characteristics. Nonetheless, the differences between the three watersheds in terms of these
characteristics were determined.
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Table 6. Loadings of experimental variables (7) on principal components for three watersheds.

Watershed
Classification Dry Days Rainy Days

Characteristic Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Dochoncheon

Flow −0.100 −0.050 0.896 −0.090 0.134 0.850
BOD 0.765 0.238 −0.050 0.880 0.243 −0.010
COD 0.803 −0.186 −0.157 0.774 0.491 −0.060

SS 0.811 0.228 0.169 0.184 0.924 −0.090
TOC 0.623 −0.199 −0.287 0.888 0.020 0.050
TN 0.010 0.875 0.197 −0.110 0.293 −0.663
TP 0.050 0.772 −0.388 0.226 0.855 −0.030

Gongjicheon

Flow 0.090 −0.090 −0.877 −0.010 −0.040 0.939
BOD 0.799 0.147 0.010 0.430 0.785 0.194
COD 0.798 0.189 0.163 0.869 0.122 −0.030

SS 0.187 0.830 −0.157 0.749 0.196 0.299
TOC 0.917 0.020 0.000 0.896 0.040 −0.118
TN 0.464 −0.030 0.663 −0.140 0.818 −0.333
TP 0.060 0.825 0.268 0.527 0.585 0.207

Seolseongcheon

Flow 0.090 0.908 0.070 0.010 −0.040 0.965
BOD 0.929 −0.138 0.113 0.840 0.131 0.132
COD 0.873 −0.145 0.221 0.734 0.438 0.383

SS 0.834 0.050 0.090 0.591 0.273 0.673
TOC 0.783 −0.010 0.250 0.879 0.366 −0.020
TN 0.222 −0.020 0.954 0.199 0.936 0.040
TP 0.428 −0.580 0.299 0.576 0.707 0.050
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Figure 8. Biplot of principle components for water quality characteristics in Dochoncheon.
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Figure 10. Biplot of principle components for water quality characteristics in Seolseongcheon.

3.3.3. Cluster Analysis

EMC data were constructed to group non-point source pollution of the monitoring sites according
to rainfall events and water quality characteristics by considering rainfall amount, rainfall intensity,
and number of ADD. Cluster analyses of the monitoring sites during rainy days were carried out.
Figure 11 shows the analysis results in terms of the similarity of water quality characteristics. Based on
the Sneath index [43], monitoring sites were divided into four groups. Sites DC_2 and DC_3 were
classified as the same group and site DC_1 in the upper stream was classified into the same group as the
five monitoring sites in Gongjicheon. Sites DC_1, GJ_1 and GJ_2 which contains relatively large forest
areas with high altitude and slope were categorized into the same group. Sites SS_1, SS_2, and SS_3-5
in the upper stream were classified into the same group, since the distance between water quality
characteristics was close. The distance between the Seolseongcheon sites was greater than that between
the sites of other watersheds. In the lower stream of Seolseongcheon, mainly loamy soil occurs, and
the altitude and slope were lower than that in the upper stream. Thus, the similarity was lower than



Water 2019, 11, 966 14 of 17

that in other watersheds. The groups were classified according to the complex characteristics of the
watersheds rather than the specific land cover ratio, such as forest, urban and agriculture. Sites DC_2
and GJ_5, which are similar in urban cover ratio, were farther than site DC_1. Sites GJ_3 and SS_1
showed similar land cover ratios, but the distance was farther than the Dochoncheon site. As a result
of the cluster analysis, site DC_2, which is in the midstream of the river, and site SS_1, which is located
upstream of site SS_2, could be deleted. In Gongjicheon, which was monitored at both sides of the
river, sites GJ_1 and GJ_2 were combined into one site. Sites GJ_3 and GJ_4 corresponded to each side
of the river, but it was difficult to combine the sites due to their location within the watershed.
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4. Conclusions

In this study, non-point source pollution in three watersheds with different land cover
characteristics was monitored, and EMC of non-point source pollution was calculated based on
the monitoring data. The runoff characteristics of each watershed were analyzed through first flushing
effect and statistical analyses.

1. The mean of water quality characteristics during dry days was the highest in Seolseongcheon.
EMC during rainy days showed that BOD concentration was 4.74–5.67 mg/L on the mean in
Dochoncheon, which was higher than that in the other watersheds. The TN concentration was
high in Gongjicheon, and COD, SS, TOC, and TP concentrations were high in the upper stream of
Seolseongcheon. Thus, it is necessary to manage BOD in the urban watershed and other water
quality characteristics in complex and agricultural watersheds.

2. The first flush analysis revealed that SS had the strongest effect among the water quality factors
in most monitoring sites, and TN had a low effect on the first flush. BOD showed the strongest
effect on the first flush in Dochoncheon (urban watershed), and most of the factors, except for
BOD, generally exhibited a strong effect on the first flush in Gongjicheon. The first flush effect
was low in Seolseongcheon.

3. Analyses of the correlation between floodgate and water quality factors showed that the rainfall
intensity during rainy days was strongly correlated with SS in Gongjicheon and Seolseongcheon.
In Dochoncheon, the higher the number of ADD was, the higher the BOD concentration was.
COD, SS, and TOC were strongly correlated in all three watersheds. There was some correlation
between organic matters during dry days, but it was generally weak.

4. Organic matter including COD and TOC showed a high factor loading in Factor 1 in all
three watersheds during dry and rainy days. These were consequently classified as organic
matter–related factors. Nutrients including TN and TP were the second factor in Dochoncheon
during dry days, but the second factor was SS and TP during rainy days. TP and TN were
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separately classified in Gongjicheon and Seolseongcheon during dry days but were the second
factor during dry days. Thus, we confirmed the differences between watersheds in terms of the
non-point pollution source.

5. The cluster analysis results for grouping non-point source pollution monitoring sites and site
specificity showed that the monitoring sites in Dochoncheon and Gongjicheon were similar.
Furthermore, sites DC_1 and DC_2, SS_1 and SS_2 and GJ_1 and GJ_2 could be respectively
combined to one site.

As a result of the comparison of non-point source pollution runoff in the three watersheds,
a specific watershed factor alone such as land cover is insufficient to explain the differences in non-point
source pollution runoff. For science-based management of non-point source pollution, it is necessary
to obtain additional survey data that consider the climatic and, geographical factors, and the influence
of major industries on water quality.
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