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Abstract: Lake and its inflow rivers compose a highly linked river-lake system, within which sediment
and water are also closely connected. However, our understanding of this linked and interactive
system remains unclear. In this study, we examined bacterial communities in the sediments and
surface waters in Poyang Lake and its five tributaries. Bacterial communities were determined while
using high-throughput 16S rRNA gene sequencing. The results showed significant differences of
bacterial communities between sediments and surface waters, as well as between Poyang lake and its
tributaries, suggesting that the river-lake system of Poyang Lake provides diverse and distinct habitats
for bacterial communities, including lake water, lake sediment, river water, and river sediment.
These biomes harbor distinct bacterial assemblages. Sediments harbor more diverse bacterial taxa
than surface waters, but the bacterial communities in surface waters were more different across
this river-lake system than those in sediments. In this eutrophic river-lake ecosystem, nitrogen and
phosphorus were important drivers in sediment bacterial communities. Nitrogen, phosphorus, and
dissolved organic carbon, as well as their stoichiometric ratios affected bacterial communities in
surface waters. Moreover, network analysis revealed that the bacterial communities in surface waters
were more vulnerable to various disturbances than in sediments, due to lower alpha diversity, high
complexity of network, and a small number of key taxa (module hubs and connectors). Nutrient
variables had strong influences on individual operational taxonomic units (OTUs) in the network,
especially in bacterial network in surface waters. Different groups of taxa responded differently to
nutrients, with some modules being more susceptible to nutrient variations. This study increased our
current knowledge of linked river-lake ecosystems and provided valuable understanding for effective
management and protection of these ecosystems by revealing bacterial communities in sediments and
surface waters in Poyang Lake and its tributaries, as well as their responses to nutrients variation.
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1. Introduction

Microorganisms encompass tremendous diversity [1] and exhibit high compositional and
functional variability in freshwater environments [2]. Bacterial communities have a broad genetic
diversity in the water body in lake ecosystems [2,3]. As a distinct realm of lake ecosystems, sediments
also host a tremendous diversity of microorganisms, which play vital roles in maintaining the benthic
food web structure, as well as driving major biogeochemical cycles [4,5]. In aquatic ecosystems,
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biogeochemical interactions closely connected sediments and the overlying water body. For example,
materials are deposited from water columns to sediments, while decomposition in sediments release
dissolved substances into the water body [5]. The metabolic activity of the bacterial community in
sediments, such as nutrient store and release, methane production, and iron reduction, can drive the
biogeochemical cycles and influence water quality [6,7]. In addition, due to the different chemical and
physical environment between water and sediment habitats, the processes driving the variation of
bacterial communities are different in water and sediment environments [8].

Lakes and their inflow rivers are also distinct but highly linked habitats in watersheds, despite
the differences and connections between water column and sediments [9–12]. Lake and river systems
have a large contrast in physical and chemical properties [13], leading to different biogeochemical
paradigms and further driving the bacterial communities differently in these distinct ecosystems.
On the other hands, linkages among aquatic ecosystems are particularly extensive and they provide
opportunities in the exchange of materials [14,15]. Rivers receive nutrients and organic matters from
the catchment [16–18]. Consequently, lakes are intimately associated with catchment characteristics
through materials that are transported by their tributaries [19–22]. The linkages between lake and river
ecosystems have been of great research interests, but the relationships between lake and river bacterial
communities are not well understood.

Different habitats usually harbor different assemblages of microorganisms [23–25]. Previous
research has demonstrated that bacterial communities in lake sediment and the water column are
different [26–29] and they are controlled by a variety of factors, such as dispersal, energy and
nutrient availability, and anthropogenic influences [30,31]. In a linked stream-lake ecosystem, bacterial
communities in lake water and stream biofilm are taxonomically and functionally distinct [29]. However,
in a linked river-lake ecosystem, an integral understanding of the bacterial communities in sediments
and surface waters in both the lake and its inflow tributaries is still limited. Bacterial communities
would undergo changes to keep subsistence in the distinct physicochemical environments and, in
turn, could influence the environment of the linked river-lake ecosystem through the intimate linkages
between different habitats. Therefore, the study of bacterial community structures in surface waters
and sediments of lakes and its tributaries is crucial in providing insight into ecosystem structures and
processes, as well as community assembly rules of river-lake systems.

Here, we studied and compared the bacterial communities in lake sediment (LS), river sediment
(RS), lake water (LW), and river water (RW) in the river-lake system of Poyang Lake. Bacterial samples
of surface waters and sediments from five major tributaries and Poyang Lake itself were collected in
this river-lake ecosystem. Bacterial communities were determined using the high-throughput 16S
rRNA gene sequencing. Our object is to reveal the different compositions and driving factors of
bacterial communities between Poyang Lake and its tributaries in the habitats of sediments and surface
waters of this river-lake system. We hypothesized that (1) in this river-lake system, lake sediment, river
sediment, lake water, and river water harbor different bacterial communities and (2) these bacterial
communities respond strongly, but differently to nutrients.

2. Materials and Methods

2.1. Study Area

Poyang Lake (PY) is located in the lower reach of Yangtze River in the northern part of Jiangxi
Province. It is the largest freshwater lake (during summer at high water level) in China and is one of
the two lakes (the other one is Dongting Lake in Hunan Province) that are directly connected to Yangtze
River (Figure 1). Poyang Lake has a surface area over 4000 km2 in the summer [32,33]. The average
depth is 8.4 m. There are five rivers, Xiushui (XS), Ganjiang (GJ), Fuhe (FH), Xinjiang (XJ), and Raohe
(RH) that feed Poyang Lake and one outlet that connects to Yangtze River (Figure 1). The annual runoff

of Poyang Lake is 152.5 billion m3, which accounts for 16.3% annual runoff of Yangtze River. Yangtze
River and the inflows of the five tributaries, forming the water-carrying and throughput hydrological
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characteristics highly restrict the water level of Poyang Lake [34,35]. The watershed area of Poyang
Lake is 162,200 km2, which accounts for 9% of the whole area of Yangtze River basin. Within the
watershed, the cultivated land area and forest coverage rate are 34.2% and 63.1% in 2012, respectively.
The flood season of Poyang Lake generally occurs at the end of March and last to October [32]. In the
summer, Poyang Lake usually takes in the flood from Yangtze River to reduce the flood risks of the
downstream area. Due to the variation of tributary inflows and the water exchange (out flow and
reverse flow) with the Yangtze River, the water level significantly fluctuates with alternating periods of
floods and droughts, resulting in large seasonal variation of water surface area [36,37].
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Figure 1. Study area and sample sites distribution. Samples (water and sediment) were collected from
Poyang Lake (10 sites) and its five major tributaries (24 sites), Xiushui River, Ganjiang River, Fuhe River,
Xinjiang River, and Raohe River. The map was created in ArcGIS 14.0 (http://desktop.arcgis.com/en/

arcmap/).

2.2. Field Sampling

We set up 10 sample sites in Poyang Lake and 24 sample sites in its tributaries (Figure 1). In each
sample site, both water (PY.W, FH.W, GJ.W, RH.W, XJ.W, XS.W) and sediment samples (PY.S, FH.S,
GJ.S, RH.S, XJ.S, XS.S) were collected for chemical and microbial analyses in early August 2017. The
water samples were collected at the depth of 0.5 m using a Van Dorn water sampler. 500 mL water
(three replicates for each site) was acid fixed in the field and then transported at 4 ◦C to the laboratory
for chemical analyses. Another 200 mL water was filtered onto a 0.2-µm polycarbonate membrane
filter (Whatman, Maidstone, UK) and then immediately frozen in liquid nitrogen in the field and stored
in −80 ◦C freezer in the laboratory until DNA extraction. The sediment samples were collected (at the
same site with water sample) using a Ponar Grab sampler. The top 5-cm sediment was collected and
homogenized. 45 mL sediment sample (three replicates for each site) was filled in a sterile centrifuge
tube and then immediately frozen in liquid nitrogen in the field and stored in −80 ◦C freezer in the
laboratory until DNA extraction. The remaining sediment was refrigerated for chemical analyses.

http://desktop.arcgis.com/en/arcmap/
http://desktop.arcgis.com/en/arcmap/
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2.3. Chemical Analyses

Total nitrogen (TN) was tested using ion chromatography (EPA 300.0, revision 2.1, 1993) with a prior
persulfate oxidation for the water samples [38]. Nitrate (NO3

−) was tested using ion chromatography
(EPA 300.0, revision 2.1, 1993). The indophenol colorimetric method analyzed Ammonium (NH4

+)
(EPA 350.1, revision 2.0, 1993). The ascorbic acid colorimetric method with a prior oxidation determined
total phosphorus (TP) (EPA 365.3, 1978). Ascorbate acid colorimetric determined the soluble reactive
phosphorus (RSP) (EPA 365.3, 1978). Dissolved organic carbon (DOC) was analyzed while using a
TOC Analyzer (TOC-VCPH, Columbia, MD, USA). Table S1 shows the nutrient concentrations and
stoichiometry ratios in river and lake water.

Sediment samples were completely dried in an oven under 60 ◦C for 3–5 days and homogenized
by grinding. The potassium dichromate oxidation spectrophotometric method (HJ615-2011) was used
to analyze the total organic carbon (OC). The modified Kjeldahl method determined TN (HJ717-2014).
TP was determined by alkali fusion-Mo-Sb Anti spectrophotometric method (HJ632-2011). NO3

− and
NH4

+ were determined using the UV spectrophotometry method with potassium chloride extraction
(HJ634-2012). The acid hydrolysis method determined organic nitrogen (ON) [39]. The SMT method
determined organic phosphorus (OP) [40]. Table S2 shows the nutrients contents and stoichiometry
ratios in river and lake sediment.

2.4. DNA Extraction, PCR, and Sequencing

DNA was extracted from the filter and sediment (0.5 g) samples while using the TIANGEN-DP336
soil DNA Kit (TIANGEN-Biotech, Beijing, China) following the manufacturer’s protocol. Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA) was used to quantify the extracted DNA samples.
The high variability regions V3 and V4 regions of 16S rRNA genes were amplified while using
the forward primer 347F 5′-CCTACGGRRBGCASCAGKVRVGAAT-3′ and the reverse primer 802R
5′-GGACTACNVGGGTWTCTAATCC-3′ (GENEWIZ, Inc., South Plainfield, NJ, USA). PCR was
performed in a model 2720 thermal cycler (ABI, USA) using the following program: 94 ◦C initial
denaturation for 3 min, 24 cycles of denaturation at 94 ◦C for 30 s, followed by annealing at 57 ◦C for
90 s and extension at 72 ◦C for 10 s, and the final extension at 72 ◦C for 10 min. Amplified DNA was
verified in 1.0 % agarose in 1X TAE buffer and purified using the Gel Extraction Kit (Qiagen, Hilden,
Germany). DNA libraries were validated (Agilent 2100 Bioanalyzer, Agilent Technologies, Palo Alto,
CA, USA) and then quantified (Qubit 2.0 Fluorometer, Invitrogen, Carlsbad, CA, USA). According to
manufacturer’s instructions, the DNA libraries were multiplexed and loaded on an Illumina MiSeq
instrument (Illumina, San Diego, CA, USA) for sequencing.

2.5. Data Analyses

Raw sequence data were processed using the software package QIIME (Quantitative Insights Into
Microbial Ecology) 1.9.1 [41]. The forward and reverse reads were merged and then assigned to samples
based on barcode. The joined sequences were truncated by cutting off the barcode and primer sequence
and they were quality filtered. Sequences that did not fulfill the following criteria were discarded:
sequence length < 200 bp, no ambiguous bases, and mean quality score ≥ 20. UCHIME (version 4.2)
algorithm [42] was used to compare the sequences with the RDP (Ribosomal Database Project) Gold
Database to detect chimeric sequences, which were removed. Subsequently, the effective sequences
were grouped into operational taxonomic units (OTUs) against the Greengenes 13.8 database [43]
at 97% sequence identity level. The alpha diversity indices were calculated using QIIME, including
observed OTUs, Shannon index, and Faith’s phylogenetic diversity. Raw sequence data were deposited
at the National Center for Biotechnology Information (PRJNA436872, SRP133903).

LMER test (R package lmerTest 3.1) [44] was used to determine the differences of the alpha
diversity and relative abundances of dominant phyla (relative abundance > 1%) between the bacterial
communities in different habitats. To test the statistical significance of the differences between
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bacterial communities in LS, RS, LW, and RW, analysis of variance using distance matrices (ADONIS,
‘adonis’ function), analysis of similarity (ANOSIM, ‘anosim’ function), and multi-response permutation
procedure analysis (MRPP, ‘mrpp’ function) were conducted while using R package vegan 2.5-3 [45].
Redundancy analysis (RDA) was used to examine the relationships between bacterial communities and
nutrient factors, and the significance of environmental factors was tested using permutation test using
R package vegan 2.5-3 [45]. Network analyses were conducted to reveal the co-occurrence patterns of
the bacterial communities in sediments and surface waters. OTUs with an average relative abundance
> 0.01% and presented in more than half samples were used. The pairwise correlations between OTUs
were calculated using the Spearman correlation. The p-values were adjusted by FDR correction. Only
strong and significant correlations (Spearman’s r > 0.8 or r < −0.8, p < 0.05) were considered. Network
visualization, topological parameters, and modular analysis were made with the R package igraph
1.2.4 [46]. The topological roles (module hubs and connectors) of each of the OTUs were determined
according to the within-module connectivity (Zi = 2.5) and the among-module connectivity (Pi = 0.62).
Meanwhile, 999 random networks (with the same number of nodes and edges as the real networks)
were generated in the igraph package according to the Erdos-Renyi model. Comparisons between
two real networks were conducted using the t-test and the Z-test was used to conduct comparisons
between real networks and their corresponding random networks [47,48]. All of the statistical analyses
were carried out in R 3.4.1 [49].

3. Results

3.1. Alpha Diversity

In this study, we generated 9,952,230 raw sequences for 68 libraries. A total of 2,900,931 reads
were retained after quality filtering and 7410 OTUs were detected at a 97% nucleotide sequence
identity threshold. In general, LS and RS had a significantly higher alpha diversity than LW and RW
(Figure 2), which suggests that, in both Poyang Lake and its tributaries, sediments harbor more diverse
microorganisms than the surface waters (LS vs. LW, RS vs. RW). However, the alpha diversity of
sediment bacterial communities was not significantly different between rivers and the lake (LS vs. RS),
except for higher observed OTUs and phylogenetic diversity in RH than in FH (Figure 2). Moreover,
bacterial alpha diversity in surface waters have shown some differences across the river-lake system.
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Figure 2. Alpha diversity indexes (observed operational taxonomic units (OTUs), Shannon index, and
phylogenetic diversity) of bacterial communities in lake sediment (LS), river sediment (RS), lake water
(LW), and river water (RW) in the river-lake system of Poyang Lake. Different letters indicate significant
differences at p < 0.05 level.
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3.2. Community Structure

Proteobacteria were the dominant bacterial phyla (relative abundance > 1%) in LS and RS,
followed by Acidobacteria, Bacteroidetes, Nitrospirae, Chloroflexi, Chlorobi, Gemmatimonadetes,
WS3, Cyanobacteria, Actinobacteria, and Verrucomicrobia (Figure 3). However, Proteobacteria,
Cyanobacteria, Bacteroidetes, Actinobacteria, and Thermi were the dominant bacterial phyla (relative
abundance > 1%) in LW and RW (Figure 3). The most abundant family in LS and RS was
Thermodesulfovibrionaceae (Figure S1). The most abundant family in LW and RW were Moraxellaceae
(Figure S1). Non-parametric statistical tests further demonstrated the dissimilarities between sediments
and surface waters and between Poyang lake and its tributaries (ADONIS, ANOSIM, and MRPP)
(Figure 4). When comparing sediments to surface waters, bacterial communities in LS and RS were
significantly different to LW and RW (LS vs. LW, RS vs. RW), respectively (Figure 4a), suggesting
that sediments and surface waters are different habitats that harbor distinct bacterial communities.
Moreover, when comparing Poyang Lake to its tributaries, the bacterial communities were also
significantly different between LS and RS (LS vs. RS, Figure 4b), as well as between LW and RW
(LW vs. RW, Figure 4c), which suggests that Poyang Lake and its tributaries had different bacterial
communities no matter in sediment or in water. However, in comparing different tributaries, bacterial
communities in water exhibited higher dissimilarities with each other (Figure 4c) than that of bacterial
communities in sediments (Figure 4d), suggesting that bacterial communities in the surface waters
were more different among tributaries.
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Figure 3. Relative abundance of microorganisms at phylum level in lake sediment (LS), river sediment
(RS), lake water (LW), and river water (RW) in the river-lake system of Poyang Lake. Only the phyla
that had a relative abundance > 1% in either habitat are shown. “Others” represent the phyla with a
relative abundance < 1% as well as the unsigned OTUs.
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3.3. Drivers of Bacterial Community Variation

Redundancy analyses (RDA) evaluated the influences of environment nutrients on the bacterial
communities in sediments (Figure 5a) and surface waters (Figure 5b). The results indicated that
TN, NO3

−, NH4
+, and TP showed close relationships with the variation of bacterial communities in

sediments (permutation test, p < 0.05, Figure 5a). The first two axes explained 43.56% of the taxonomic
variances. The significant nutrient factors were TN, NO3

−, TP, DOC, TN:TP, DOC:DIN (dissolved
inorganic nitrogen), and DIN:SRP (permutation test, p < 0.05, Figure 5b) for the variation of bacterial
communities in water. The first two axes explained 62.82% of the taxonomic variances. Nitrogen
and phosphorus were important drivers in sediment bacterial communities. However, bacterial
communities in surface waters were affected by nitrogen, phosphorus, and dissolved organic carbon,
as well as their stoichiometric ratios, implying the influences of nutrient availability and resources
quality on bacterial communities in surface waters.
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Figure 5. Biplot of multivariate redundancy analyses (RDA) showing the relationship between
community composition and environment nutrients and nutrient ratios in (a) sediments and (b) surface
waters. The red arrows denote the significant variables (permutation test, p < 0.05), including total
nitrogen (TN), nitrate (NO3

−), total phosphorus (TP), ammonium (NH4
+) for sediment bacterial

communities, and TN, NO3
−, TP, dissolved organic carbon (DOC), TN:TP, DOC:DIN (dissolved

inorganic nitrogen), and DIN:SRP (soluble reactive phosphorus) for bacterial communities in
surface waters.

3.4. Co-Occurrence Network

Co-occurrence networks of bacteria in sediments and surface waters were built based on correlation
relationships (Figure 6). Overall, 1129 nodes and 3993 edges composed the network of sediment
bacteria, while 1043 nodes and 17,470 edges composed the network of water bacteria (Table 1).
Topological parameters of the networks were calculated to describe the complex interrelationships
between OTUs (Table 1). The distribution of node degree was well-fitted (p < 0.001) by the power law
for both networks (Figure S2), indicating that the networks were scale-free and non-random. Network
comparison that is based on average degree, average path length, and clustering coefficient showed that
the bacterial network was more connected and complex in water than in sediments (Table 1). Moreover,
both bacterial networks had “small world” properties and significant modular structures (Figure 6
and Table 1), because the modularity, network centralization, clustering coefficient, and average path
length of the real networks were greater than those of their random networks. The bacterial networks
in the sediments and surface waters were clearly parsed into seven and five major modules (with
more than 50 nodes), respectively (Figure 6b and Figure S3). These modules had different taxonomic
composition (Figure S3). Most of the modules had significantly higher niche width than the overall
communities (Figure S4). According to the within-module connectivity (Zi) and between the module
connectivity (Pi), there were 27 and five module hubs and two and three module connectors in the
co-occurrence networks in sediments and surface waters, respectively (Figure S5 and Table S3).

To further investigate the influences of environmental variables on bacterial communities in
sediments and surface waters, the correlations between environmental variables and individual OTUs
were conducted (Figure S6). In the network of sediment bacteria, the environmental variables had 520
significant correlations (450 positive and 70 negative) that were associated with 418 OTUs (Figure S6).
NO3

− had the highest number of correlations (257), most of which were positive, followed by TP,
NH4

+, OC:OP, TN, and others (Table S4). Module-A had the highest number of correlations, followed
by -C, -E, -B, -D, -F, and -G. In the network of water bacteria, the environmental variables had 2212
significant correlations (1053 positive and 1159 negative), with 926 OTUs (Figure S6). TP had the
highest number of correlations, followed by TN:TP, NO3

−, DOC:DIN, DIN:SRP, and others (Table S5).
TP had more negative correlations, whereas the N:P ratios (TN:TP and DIN:SRP) had more positive
correlations. Module-A had the highest number of correlations, followed by -C, -E, -B, and -D. The
results were consistent with RDA.
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Table 1. Topological parameters of the real co-occurrence networks and their associated random
networks (permutation = 999, values shown mean ± SD). Comparisons between two real networks were
conducted using t-test. Comparisons between real network and its corresponding random network
were conducted using Z-test.

Topological Parameters Sediment Surface Water

Real Random Real Random

Number of Nodes 1129 1129 1043 1043
Number of Edges 3993 3993 17,470 17,470
Negative Edges 20 (0.5%) 20 (0.5%) 109 (0.6%) 109 (0.6%)
Average Degree 7.073 7.073 33.499 33.499

Average Path Length 6.439 a 3.810 ± 0.005 * 4.997 b 2.298 ± 0.001 *
Diameter 21 a 7.010 ± 0.175 * 15 b 3.000 ± 0.000 *

Clustering Coefficient 0.372 a 0.006 ± 0.001 * 0.747 b 0.032 ± 0.000 *
Centralization Degree 0.052 a 0.009 ± 0.001 * 0.112 b 0.019 ± 0.002 *

Centralization Betweenness 0.073 a 0.010 ± 0.002 * 0.104 b 0.002 ± 0.000 *
Modularity 0.696 a 0.347 ± 0.003 * 0.727 b 0.140 ± 0.002 *

Note: * indicates the significant differences between the random network and the real network at the significant level
p < 0.05 (Z-test). Different superscript letters (a and b) indicate significant differences between two real networks at
the significant level p < 0.05 (t-test).

4. Discussion

In this study, bacterial communities in sediments had higher species richness and diversity than
in water, as is consistent with global patterns of microbial diversity [4,50] (Figure 2). Much research
has shown that ecosystems with more species are more efficient in removing nutrients from the
environment than those ecosystems with fewer species [51–53], because more species can make the
utmost of the niche opportunities, allowing for a greater proportion of bioavailable nutrients to be
captured in metabolisms [52]. High bacterial diversity in sediments suggests sediments as the hotspot
in nutrient metabolism and removal in the river-lake systems of Poyang Lake. However, because
some species are functionally redundant in a community [51,54,55], it remains unclear how species
richness and diversity influence nutrient cycling [52,56]. Thus, it is helpful to explore the functions
of these bacterial communities in future studies in order to understand the mechanisms of nutrient
biogeochemical cycling in Poyang Lake and its tributary rivers. For example, taxonomic composition
and environmental variables determine the profiles of functional genes, resulting in variations of
elemental cycling in estuaries and lake sediments [57,58]. Moreover, many factors have been known
to cause heterogeneity in bacterial diversity in aquatic ecosystems, indicating the dynamic nature of
the environment [59]. In our study, the alpha diversity in sediments was not significantly different
between rivers and the lake, while, in the surface waters of rivers and the lake, the alpha diversity had
some differences. The results suggested that bacterial communities in surface waters in the river-lake
system of Poyang Lake are more dynamic than in the sediments.

In addition, our results showed that the bacterial communities were distinct between sediments
and surface water, as well as between Poyang lake and its tributaries. The results suggested that the
river-lake system of Poyang Lake provides a diverse and distinct habitat for bacterial communities,
including lake water, lake sediment, river water, and river sediment. It is unequivocal that water and
sediment are distinct habitat and harbor distinct bacterial communities. Moreover, lakes and rivers
are typically subjected to different environmental conditions, such as flow velocity, water residence
time, organic matter quantity and quality, and nutrients content, which can affect the compositions
and functions of the microbial community [12,15,29,60]. In our previous study, we demonstrated that
bacterial communities in stream biofilms were distinct from downstream lake water in both taxonomic
and functional composition [29]. However, when comparing different tributaries, this study revealed
that bacterial communities in surface waters were more different among tributaries.

As a eutrophic lake, it is important to know the interactions between nutrient dynamics and
bacterial community variations in surface waters and sediments in the river-lake system of Poyang
Lake. The results showed that nitrogen and phosphorus were important drivers for sediment bacterial
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communities. However, nutrients and nutrient ratios affected the bacterial communities in surface
waters. The results suggest that nutrient availabilities are important divers for bacterial communities in
surface waters and sediments. Resource qualities are also important in shaping bacterial communities
in surface waters. The availabilities and stoichiometric ratios of key chemical elements, such as C, N,
and P, have been demonstrated to be essential in understanding bacterial diversity and community
structure [2,61–64]. Microorganisms responded differently to nutrient concentrations and ratios, rooted
in the ecological strategies and metabolic features of the responsive taxa [65]. As a result of excess
fertilizer application [66] and sewage and septic inputs [67,68], agriculture and urbanization increase
the nutrient concentrations and ratios of aquatic ecosystems, leading to reduced water quality [69] and
altered aquatic communities [70,71]. In the Poyang Lake watershed, agriculture activities, urbanization,
and industrialization enhance nutrient inputs that can be delivered by water and deposited in sediments,
which strongly change the microbial communities across this river-lake system and lead to harmful
algal blooms [72–74]. Most of the tributaries had higher nitrogen concentrations (Table S1) than the
eutrophication threshold (TN = 0.65 mg/L) [75], and all of the tributaries had even higher phosphorus
concentrations (Table S1) than the eutrophication threshold (TP = 0.03 mg/L) [75]. Thus, both the N
and P inputs must be controlled to mitigate eutrophication in Poyang Lake.

Network analysis can provide profound and unique insights into highly complex microbial
communities in this river-lake system, such as community assembly rules, potential taxon interactions,
and shared physiologies [76]. The results showed that the bacterial networks in sediments and
surface waters had non-random, scale-free, and “small world” properties, which are the structural
characteristics of many microbial ecological networks [77,78]. The topological properties of the
networks can offer more information of the network structure. For example, the average degree
explains a complex pairwise connection, the average path length describes node distribution, the
clustering coefficient describes the degree of nodes tend to cluster together, and the modularity index
of the positive network indicates modular structures with a value larger than 0.4 [79]. The network of
bacteria in water was more complex than the network of sediment bacteria. In general, communities
with a lower diversity and high complexity of co-occurrence had lower stability [80,81]. Moreover,
in respect of modularity, taxa played different roles in the co-occurrence network. For example,
module hubs are highly linked nodes within a certain module, while connectors are linking nodes
between different modules. In our study, a network of sediment bacteria had more module hubs
and connectors than that of bacteria in surface waters. These module hubs and connectors (Table S3)
play very important roles in maintaining network structures and community stability [82], and their
disappearance leads to a breaking of modules and networks [83]. Thus, the bacterial communities in
the surface waters were more vulnerable to various disturbances than in sediments due to lower alpha
diversity, high complexity of network, and a small number of key taxa (module hubs and connectors).

In addition, a module is a group of highly interconnected nodes in a network with less linkages
with nodes belonging to other modules [79,84]. Modularity reflects synergistic and competitive
interactions, as well as niche differentiation and it is a characteristic of many complex systems [84,85].
Taxa can be grouped into modules due to functional complementarity, and the division of communities
into modules provides insights into the responses of different groups of taxa in the communities [83].
Module-A, -C, and -E in the sediment bacterial network and Module-A, -C, -E, and -B in the water
bacterial network were more strongly associated with some nutrient variables, while other modules had
very few correlations with nutrients (Figure S6). Moreover, nutrients had more strong correlations with
OTUs in network of bacterial communities in water. The results suggest that environment nutrients
had stronger influences on bacterial communities in surface waters than in sediments, but were
influenced differently on different groups of taxa in both water and sediment bacterial communities.
Some of the modules are more susceptible to nutrient variations, contributing to the responses of the
whole communities.

Our study examined the bacterial diversities and community structures, as well as the influence
of nutrient factors on bacterial communities in different habitats of a river-lake system (Poyang
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Lake). Many studies have demonstrated that more other environmental factors have the potential to
influence bacterial communities in aquatic ecosystems, such as pH, salinity, temperature, hydrology,
geomorphology, and land cover, etc. These environmental variables should be considered in future
study. Moreover, other pollutions should also be concerned, such as heavy metals and polycyclic
aromatic hydrocarbons, which can also affect bacterial communities in aquatic environments. In
addition, Poyang Lake has a profound water level fluctuation around the year. In this study, we only
undertook this intensive investigation in August, which can represent the status of Poyang Lake at high
water level. Thus, more intensive intra-annual sampling and more environmental variables would be
useful in establishing a comprehensive understanding of bacterial communities in Poyang Lake.

5. Conclusions

Investigating bacterial communities that live in surface waters and sediments of the river-lake
system of Poyang Lake is pivotal in understanding the structures and the diversity of this freshwater
ecosystem. This study highlights that the river-lake system of Poyang Lake provides diverse habitats,
including river sediment, river water, lake sediment, and lake water, which harbor distinct bacterial
assemblages. Nutrients were closely associated to bacterial community variations in sediments, while
nutrients and nutrient ratios were closely associated to the bacterial community variations in surface
waters. Moreover, bacterial communities in the surface waters had lower alpha diversities but a complex
co-occurrence network than in sediments, and are thus more vulnerable to environmental disturbances.
This study suggests that both nutrient availability and resources quality are important factors that drive
bacterial communities in this highly linked river-lake system, especially in surface waters. Further
research is required to know the potential influences of nutrient variations on biogeochemical processes
in this system by identifying bacterial community functions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/5/930/s1,
Figure S1: Relative abundance of microorganisms at family level in lake sediment (LS), river sediment (RS), lake
water (LW), and river water (RW) in the river-lake system of Poyang Lake. Only the families that had a relative
abundance > 1% in either habitat are shown, Figure S2: The node degree distributions of real co-occurrence
network (colored) and random networks (grey) of bacterial communities in sediments and surface waters, Figure
S3: Composition of modules in (a) sediments and (b) surface waters. Pie charts showing the proportion of nodes
number in taxonomic groups, Figure S4: Niche width value of bacteria in (a) sediments and surface waters, as
well as different modules in the co-occurrence network of (b) bacterial communities in sediments and (c) bacterial
communities in surface waters. The top, middle, and bottom lines of the box indicate the 75th quartile, median,
and 25th quartile, respectively. The whiskers above and below the box indicate the minimum and maximum. The
black dots indicate outliers. Different letters above each box indicate significant differences (ANOVA, p < 0.05),
Figure S5: Zi-Pi plot indicates the topological roles of OTUs in the network. Each dot represents an OTU colored
by taxonomic groups. The topological roles were determined according to their connectivity, within-module
connectivity (Zi = 2.5) and among-module connectivity (Pi = 0.62). The detail of the module hubs and the
connectors are shown in Table S3, Figure S6: Connectedness between nutrient variables and operational taxonomic
units (OTUs) in the co-occurrence network of bacterial communities in sediments and surface waters. The nodes
were colored according to (a) phyla (with relative abundance > 1%) and (b) major modules according to Figure
6. Black nodes represent nutrient variables. Other colored nodes represent OTUs. Edges represent Spearman’s
correlation relationships (Spearman’s p < 0.05). Positive and negative correlations are shown in grey and red
lines, respectively, Table S1: Nutrients contents (mg/g) and stoichiometric ratios (molar ratio) of lake water and
river water in the river-lake system of Poyang Lake. The values represent Mean ± SD (standard deviation), Table
S2: Nutrients contents (mg/g) and stoichiometric ratios (molar ratio) of lake sediment and river sediment in the
river-lake system of Poyang Lake. The values represent Mean ± SD (standard deviation), Table S3: List of module
hubs and connectors in co-occurrence networks according to the connectivity of each node, Table S4: Number
of significant correlations (Spearman’s p < 0.05) between environmental variables and OTUs in the network
of bacteria in sediments. ‘Pos’ represents positive correlation. ‘Neg’ represents negative correlation, Table S5:
Number of significant correlations (Spearman’s p < 0.05) between environmental variables and OTUs in the
network of bacteria in surface waters. ‘Pos’ represents positive correlation. ‘Neg’ represents negative correlation.
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