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Abstract: Studying contemporary and subfossil Cladocera (Crustacea) communities, we explored the
effect of top-down stressors on the cladoceran communities; we are also interested in the coherence of
the contemporary and subfossil communities. The studied Cibakháza oxbow lake is in E Hungary, on
the left-floodplain of the River Tisza; it is a large, long, and shallow oxbow lake. Three areas of the
oxbow lake were distinguished based on the strength of top-down stress: protected area with low
top-down stress, biomanipulated area with high top-down stress, and recreational area with moderate
top-down stress. Altogether, we identified 28 taxa in the contemporary and subfossil communities in
the oxbow lake. We found that the species number of the contemporary Cladocera communities was
lower (protected area: 13; biomanipulated area: 9, and recreational area: 14) than in the subfossil
communities (protected area: 20; biomanipulated area: 16, and recreational area: 14). Among the
environmental variables, we observed differences between the protected and biomanipulated area,
while the recreational area showed a transition. Species number, abundances, and Simpson diversity
also showed the effect of the fish introduction. There were no differences in beta-diversity among the
contemporary and subfossil Cladocera community. The non-metric multidimensional scaling (NMDS)
ordination showed that the biomanipulated area in the case of the contemporary communities was
separated from the other areas, while in the case of the subfossil communities, there was no separation
according to top-down stress. Our results showed that the number of species of contemporary
Cladocera communities was lower in each area (3–10; 3–9; 5–9) compared to the subfossil communities
(6–17; 7–12; 8–12). However, the highest abundances were found in the biomanipulated area due to
the appearance of small-sized Cladocera species. Our findings suggest that the effect of a short-time
fish introduction is restorable when the oxbow lake has a protected part.

Keywords: zooplankton; diversity; biomanipulation; nature protection; anthropogenic impacts;
restoration
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1. Introduction

Over the whole world, many aquatic ecosystems have been affected by significant transformation.
Numerous studies highlight the disturbance of freshwater systems as the effect of natural and
anthropogenic pressure. Disturbance or human utilization of these ecosystems is a cause of general
anxiety due to their importance in providing ecosystem services [1]. Shallow lakes can be regarded
as biodiversity hotspots [2] in the context of the global prevalence of water insecurity [3]. In the last
decades, numerous research works have focused on zooplankton dynamics in freshwater and marine
ecosystems [4], emphasizing the importance of zooplankton species in the maintenance of food webs [5],
serving as a food source for different aquatic animals [6]. These oxbow lakes are endowed with many
ecosystem services and have a substantial impact on the ecology, biodiversity, and social-economy of
the surrounding localities, which makes them a priority for research and conservation [7,8]. These
environments are ecotones between lotic [9] and lentic [10] and have regular lateral water connectivity
to the main river. This connection to the river distinctively supports a high diversity of habitats for
both flora and fauna [11,12]. What is more, oxbow lakes create a multiplicity of habitats and feeding
grounds for various organisms such as birds, fishes, amphibians, macroinvertebrates, phytoplankton,
and zooplankton [13,14].

Cladocera is one of the most important component of microcrustacean zooplankton. Moreover,
they are sensitive indicators of environmental changes [15]. They usually indicate early signals of
ongoing changes because of their prompt response to environmental changes. These changes seem to
be intensified in small waterbodies such as ponds and oxbow lakes due to their small area and low
water volume. Hence, oxbow lakes are especially vulnerable to climate change and habitat degradation.

Cladocera play an essential role in freshwater systems since they are in a middle position in the
freshwater trophic structure. The Cladocera community structure is highly determined by the food web
structure and not greatly determined by hydrological factors [16] compared to other organism groups
such as macroinvertebrates [17] and fishes [18], especially in such peculiar ecosystems as oxbow lakes.

Generally, the stressor factors of aquatic ecosystems can be divided into biotic and abiotic ones.
Nutrient enrichment (eutrophication) in lakes increases the number of levels of trophic structures
and also increases the zooplankton biomass [19–21]. However, low structured food webs can be
found under the highest eutrophic conditions. In addition to nutrient supply, predators also effect
zooplankton. For instance, size-selective feeding of planktivorous fishes has a great impact on the
dynamics and structure of the zooplankton community in temperate lakes [22–24]. High pressure
from predation leads to decreases in zooplankton abundances [25]; small-sized species appear; and
the size of already existing individuals of the present community also declines [26,27]. Besides the
feeding type composition of the fish community, juveniles have a greater effect on the zooplankton
community, since all freshwater fish feed on zooplankton during the young of the year stage [27].
In extreme situations, the predation may cause the disappearance of the prey population [28]. In the
case of Cladocera, the contribution of small taxa (e.g., Bosmina longirostris) increases [29] due to the
top-down regulation of fish [30,31].

All in all, multiple environmental stressors influence the zooplankton community. Their effects
usually overlap, and very often, it is impossible to deduce which biocenotic changes were triggered by
a given a factor. To track the spatial distribution of Cladocera communities under a range of pressures
in small aquatic ecosystems, an oxbow lake in Hungary was studied. The Cibakháza oxbow lake is
on the left-bank floodplain of the River Tisza, in East Hungary. It is one of the largest oxbow lakes in
Hungary (~16.2 km long) and was created by the straightening of the meander.

We analyzed the contemporary and subfossil Cladocera communities and their abiotic
environmental parameters. In the present study, three main hypotheses were assumed:

(1) The separate analyses of the contemporary and subfossil Cladocera communities are not
representative enough to specify the whole of the Cladocera communities.
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(2) Due to intensive fish introduction, the structure and quantitative relationship of the Cladocera
community change in the biomanipulated area.

(3) Due to the accumulation capacity of sediment, we may find more species in the subfossil
community than in the contemporary community.

2. Materials and Methods

The studied oxbow lake is in East Hungary (Figure 1) on the left-bank floodplain of the River
Tisza (latitude N 46◦57′36.21”, longitude E 20◦11′16.23”). It has a surface area of 1.4 km2 (A = 1.4 km2)
with a maximum depth of 6.22 m (dmax = 622 cm) and an average depth of 2.65 m.
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Figure 1. Location of the studied oxbow lake with the markings of lakes, rivers, settlements, and the
border of Hungary.

The oxbow lake was divided into three separate areas to explore the effect of biomanipulation
(Figure S1). These areas are separated from each other by embankments, with small channels that
allow the water to flow through to each area. The protected area of the oxbow lake was created as a
nature conservation area for birds and mammals and in this study was treated as the reference area
for Cladocera communities. The biomanipulated area was adopted for angling with intensive fish
introduction. This area is separated by 5 × 5 cm plastic nets from the other two areas to prevent the
migration of fish. They are fixed by wire to the bottom. The recreational area is used for recreation
purposes, but there has been no fish introduction and/or other kinds of management to create a
transition area next to the protected and biomanipulated areas.

There was a fish introduction into the biomanipulated area in spring of 4000 kg of juvenile
carp; approximately 0.02 kg/individual and 10,000 juvenile pike. Most of the juvenile carp became
prey for Copepods [32] and for the pike [33], which were introduced into the biomanipulated
area at the same time. The remainder of the carp had size-selective feeding habits and mainly
fed on small rotifers [32]. Simultaneously, a small-sized species of common carp (Cyprinus carpio)
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(~0.1–0.12 kg/individual) was also introduced. However, they were eaten by larger predators within a
short period [34]. Based on this information and the feeding strategies of fish, the 2550 kg of common
carp (C. carpio) (1.5–2 kg/individual)—which were also introduced into the biomanipulated area at
the same time—probably put predation pressure on the Cladocera community [35] in this part of the
oxbow lake.

There were fifteen sampling sites; samples were collected during the summer period. Seven sites
were in the protected area. Five sampling points were chosen from the biomanipulated area and three
from the recreational areas. At each site, first the open water and submerged coverage were registered,
by our own observation. Next, the plankton samples were collected using a Schindler-Patalas plankton
trap [36] with a 35-µm mesh, to follow the contemporary Cladocera community. The basic variables
of the oxbow lake were also measured. For this purpose, an YSI EXO2 (Yellow Springs Instrument
Company, Yellow Springs, USA) (Xylem, 599502-01) multiparameter probe was used, and the following
parameters were determined: water temperature, dissolved oxygen concentration, conductivity, and
pH. The next steps included sediment and water sampling. Sediment samples were taken using a
gravity-corer (Jackson, USA) (WaterMark®, diameter of 0.06 m) [37]. The topmost 1 cm of soft sediment
was used for further investigation of subfossil Cladocera.

The laboratory measurements of water samples included chlorophyll-a content, suspended solids,
PO4, and dissolved inorganic nitrogen analysis. The chlorophyll-a was analyzed based on the EPA
Method 445.0: in vitro determination of chlorophyll-a and pheophytin a in marine and freshwater
algae by fluorescence. The PO4 was analyzed based on the EPA Method 365.3: phosphorous, all
forms (colorimetric, ascorbic acid, two reagent). Suspended solids were analyzed based on the EPA
Method 160.2 (gravimetric dried at 103–105 ◦C). Dissolved inorganic nitrogen was analyzed based on
the EPA Method 1687 (total Kjeldahl nitrogen in water and biosolids by automated colorimetry with
preliminary distillation/digestion).

The laboratory measurements of sediment samples included CaCO3 and loss of ignition analysis.
The first step was the oven drying of the sediment (1 g). The second step included the heating of the
samples in a muffle furnace at 550 ◦C, then calculated as the loss of ignition (heating time was four
hours, heat retention time four hours). The third step included the re-heating of the samples in the
furnace at 950 ◦C, then calculating the CaCO3 (heating time was four hours, heat retention time two
hours) [38].

2.1. Processing of Cladocera Samples

The first samples were filtered using a 35-µm sieve during the preparation of planktonic samples
for the analysis of the contemporary Cladocera community, and then, samples were treated with 96%
Patosolv alcohol (mixture of ethyl-alcohol and isopropanol) to better preserve individual specimens.
A few drops of safranin-glycerin (adding a few drops of safranin dye to a small amount of glycerin)
were added to simplify identification.

Sediment samples for subfossil Cladocera analysis were prepared according to the standard
methodology of Korhola and Raution [39]. One cubic centimeter of sediment was treated with 100 mL
of 10% KOH solution (10 g of KOH pellets dissolved in 100 mL of deionized water) in a plastic beaker
(150 mL) heated for 30 min at 70 ◦C in a Stuart SWB6D laboratory water bath. Then, the samples
were sieved using a 35-µm sieve. The prepared samples were also preserved with 96% Patosolv
alcohol, and a safranin-glycerin solution was also used. Identification of the species was conducted
using an Olympus BX53 microscope with an Olympus DP26 fidelity digital camera. In the case of
the contemporary and subfossil Cladocera communities, 100 µL of sample/slide were used, and at
least 200 individuals were counted. The contemporary and subfossil Cladocera communities were
identified based on the classification schemes of Frey [40] and Szeroczyńska and Sarmaja-Korjonen [41]
and based on Gulyás and Forró [42], respectively.
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2.2. Data Analysis

We partitioned the diversity of the oxbow lake for both contemporary and subfossil Cladocera
communities using “adespatial” packages [43]. In the analysis, we used the so-called SDR-simplex
analysis [44]. This technique was developed to partition gamma diversity into further components.
This method evaluates species replacement (RepL), richness differences (RichDiff), and similarity
(Sørensen similarity). Species replacement plus richness differences represented the beta-diversity;
richness differences plus similarity reflected nestedness; and similarity plus species replacement
reflected species richness agreement. To visualize the result, a simplex plot was drawn using R
language [45]. PAST (PAleontological STatistics) software [46] was used to evaluate the Simpson
diversity for both contemporary and subfossil Cladocera communities.

Non-metric multidimensional scaling (NMDS) was used to display the similarity of Cladocera
communities. The Rogers–Tanimoto index was used to measure the similarity of the species composition,
and the Bray–Curtis index was used to measure the dissimilarity of the abundance distribution of
communities [47]. NMDS represents the pairwise dissimilarity between objects in a low-dimensional
space (usually two-dimensional) preserving the ranks of pair-wise similarities and/or dissimilarities.

3. Results

3.1. Environmental Variables

The water depth of the oxbow lake surveyed ranged between 0.36 and 6.22 m, the shallower part
located mainly in the protected area (Table 1). There were no considerable spatial variabilities in pH and
water transparency. In general, oxbow lakes are characterized by weakly alkaline water with a slight
fluctuation in pH (7.6–8.9), while the water transparency was rather low with a maximum of 0.77 m.
High variations in conductivity, chlorophyll-a, and loss of ignition (LOI) were recorded. Conductivity
ranged from 398 µS cm−1—measured in the protected area (median 424 µS cm−1)—to 1215 µS cm−1 in
the recreational area (median 1180 µS cm−1). The highest concentrations of the living algal biomass
(chlorophyll-a) were determined in the protected area, although the highest average was noted in the
recreational area. LOI followed the same trend (Table 1). The value of ortho-phosphate in the protected
area reached 0.06 mg L−1 (maximum value). This part of the oxbow lake was characterized by the
highest submerged coverage.

Table 1. The physical and chemical variables measured in the studied oxbow lake. Abbreviations:
DIN * = dissolved inorganic nitrogen, SS ** = suspended solids, LOI *** = loss of ignition.

Protected Area Biomanipulated Area Recreational Area

Min. Max. Med. Min. Max. Med. Min. Max. Med.

Conductivity (µS cm−1) 398 788 424 709 1018 829 1142 1215 1180
Depth (m) 0.49 4.74 0.77 0.76 3.62 1.15 0.36 6.22 1.76
DIN* (mg L−1) 0.76 3.27 1.91 0.63 1.55 1.27 0.67 1.43 0.93
Dissolved oxygen (mg L−1) 1.27 9.84 4.36 7.1 10.7 8.09 3.62 9.25 6.84
Open water surface (%) 0 100 60 15 100 100 5 100 50
Ortho-phosphate (mg L−1) 0 0.60 0.05 0 0 0 0 0.29 0.01
pH 7.6 8.6 7.9 8.3 8.7 8.5 7.8 8.9 8.7
SS** (mg L−1) 0.6 9.6 1.8 1.8 2.9 2.3 1.8 3.1 2.7
Transparency (m) 0.39 0.77 0.59 0.46 0.64 0.54 0.36 0.73 0.73
CaCO3 (%) 1.67 10.51 7.07 2.15 16.12 6.25 2.36 6.87 5.79
LOI*** (%) 7.99 78.28 9.90 1.03 25.81 15.06 2.59 30.80 15.10
Chlorophyll-a (mg m−3) 2.17 22.18 7.07 7.98 11.09 7.07 5.65 13.65 13.44
Submerged coverage (%) 0 91 0 0 5 0 0 5 0
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3.2. Contemporary vs. Subfossil Cladocera Communities

A total of 28 species was found, belonging to four families (Figure S2): Bosminidae, Chydoridae,
Daphniidae, Moinidae. The contemporary community was represented by 17 species, while 23 species
were identified within subfossil Cladocera communities.

There were 13 species occurring both in the water column and in sediment. Four species
were found only in the contemporary community: Moina micrura, Bosmina longispina, Camptocercus
rectirostris, and Daphnia longispina, while up to 10 species were noted only in the subfossil community:
Pseudochydorus globosus, Pleuroxus uncinatus, Pleuroxus trigonellus, Disparalona rostrata, Alona affinis,
Alona costata, Alona rustica, Leydigia leydigi, Paralona pigra, and Unapertura latens. The dominant species
in the contemporary samples were Eubosmina coregoni, B. longirostris, and Chydorus sphaericus, while
the majority of subfossil remains belonged to the Chydoridae family and were mainly represented by
Alona intermedia and C. sphaericus.

The Simpson diversity index was used to demonstrate the relationship between the contemporary
and the subfossil community and the differences between each study site. The results are juxtaposed
with the number of species (no dimension (ND)) and abundances (ind. L−1/ind. cm−3) of both
communities in Figure 2. Differences in diversity, species richness, and heterogeneity for contemporary,
and subfossil communities were observed. The differences were also observed between the three parts
of the oxbow lake.
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Figure 2. Number of species (ND), abundances (individual L−1/individual cm−3), and Simpson
diversity (ND) of contemporary and subfossil Cladocera communities (ND: no dimension).

The number of contemporary Cladocera communities ranged between three and 10 in the protected
area, while subfossil communities ranged from 6–17. In the biomanipulated area, the number of species
ranged from 3–9 and from 7–12 in the contemporary and subfossil communities, respectively. Similar
patterns were recorded in the recreational area where contemporary communities were made up of
5–9 species, while the species number in the subfossil community ranged between 8 and 12 (Figure 2).

Significant differences were also noticeable in abundances in the contemporary Cladocera
community between the different utilization forms (protected area: ranging between 30 and 166 ind.
L−1; biomanipulated area: ranging between 426 and 1209 ind. L−1; recreational area: ranging between
79 and 247 ind. L−1). Dissimilarities were also observed in the frequency of subfossil Cladocera along
a stress gradient (protected area: ranging between 27 and 580 ind. cm−3; biomanipulated area: ranging
between 25 and 665 ind. cm−3; recreational area: ranging between 17 and 220 ind. cm−3). Some
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similarities between contemporary and subfossil communities along the different utilization forms
were noticed. For instance, the highest Cladocera abundance was noted in the biomanipulated area.
However, the lowest numbers of individuals of contemporary and subfossil Cladocera were observed
in the protected area and the recreational area, respectively (Figure 2).

The Simpson diversity indicated that the recreational area (ranging between 0.5329 and 0.8545) was
a transition between the protected area (ranging between 0.5111 and 0.8198) and the biomanipulated
area (ranging between 0.4973 and 0.6150) in the case of contemporary communities. What is more,
according to this index, the values of the subfossil community were higher (protected area: ranging
between 0.5438 and 0.8926; biomanipulated area: ranging between 0.6100 and 0.8413; recreational area:
ranging between 0.7821 and 0.8677) compared to the contemporary community (Figure 2).

Beta diversity was mostly driven by similarity in both Cladocera communities. Richness differences
and replacement were very low in the contemporary and subfossil communities. Beta diversity (sum
of richness differences and replacement; contemporary community: 37.2%) was lower than nestedness
(sum of richness differences and similarity; contemporary community: 89.6%). This pattern was nearly
the same in the case of the subfossil Cladocera communities, since its beta diversity (33.5%) was lower
than its nestedness (81.5%) (Figure 3).
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Figure 3. Simplex plots based on similarity, richness differences, and species replacement for all the
pairwise comparisons of the Cladocera communities of the 15 sampling sites of the Cibakháza oxbow
lake. Notations: •, contemporary Cladocera communities; •, subfossil Cladocera communities.

The results of the NMDS based on the Rogers–Tanimoto similarity (Figure 4A) showed that the
species composition of contemporary Cladocera communities overlapped among the three areas. The
protected area, the biomanipulated area, and the recreational area were separated from each other
based on species abundances of the contemporary community (Figure 4B). The species abundances
of the protected area were separated from the biomanipulated area along the first axis, while the
recreational area showed similarity to the protected area (NMDS; Bray–Curtis dissimilarity). The
NMDS, based on Rogers–Tanimoto similarity, also showed an overlap among the areas in the case of
the species composition of subfossil communities. Nonetheless, the protected area and the recreational
area displayed high similarity. These areas were separated from the biomanipulated area along the first
axis (Figure 4C). The second axis separated the protected area from the recreational area (Figure 4D),
while the biomanipulated area overlapped with the protected area.
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Figure 4. Non-metric multidimensional scaling (NMDS) of the Cladocera communities based on the
Rogers–Tanimoto index (binary) and Bray–Curtis index (abundance) of the Cladocera communities.
Numbers/symbols represent the samples. 1–7: protected area, 8–12: biomanipulated area, 13–15:
recreational area. (A) Contemporary Cladocera communities, Bray–Curtis dissimilarity (stress = 0.3813);
(B) contemporary Cladocera communities, Rogers–Tanimoto similarity (stress = 0.2568); (C) subfossil
Cladocera communities, Rogers–Tanimoto similarity (stress = 0.2732); (D) subfossil Cladocera
communities, Bray–Curtis dissimilarity (stress = 0.1439).

4. Discussion

There is an increasing need to resolve the relationship between contemporary and subfossil
Cladocera communities and to provide a reliable picture of whether the subfossil community is truly
representative of the contemporary community [48–50]. Most of the published subfossil studies on
Cladocera communities are specifically limited to examining deep and cold water bodies [51–53]. In
contrast, we studied both contemporary and subfossil Cladocera communities in a shallow, temperate
water body.

The present research confirmed the earlier findings that the contemporary Cladocera community
almost always underestimated the species pool of the waterbody. Estimation of the planktonic and
littoral community was regarded as satisfactory, while the number and abundances of the benthic
community were underestimated. On the other hand, the study of subfossil communities seems
to complement this picture and to provide representative data on benthic taxa and also on the
accumulation of planktonic and littoral species. This was confirmed by our finding of 17 species in the
contemporary community and 23 species in the subfossil Cladocera communities, which constituted
more than 80% of the total species richness (28 species). The good accumulation ability of the sediment
was also supported by the fact that mud-living Leydigia leydigi, which lives in association with the
bottom, was only recorded from the subfossil community. What is more, concentrating only on the
protected area of the oxbow lake could lead to misleading conclusions. For instance, in the protected
area, there were 13 species in the contemporary community, while the subfossil community was
composed of 20 species. The biomanipulated area was characterized by the presence of nine and 16
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taxa in the contemporary and subfossil Cladocera communities, respectively; while in the recreational
area, the contemporary and subfossil community both consisted of 14 species.

Our findings suggest that the decreasing number of species of contemporary cladoceran
communities is due to fish predation. It is likely that small-sized juvenile fish can swim through the
5 × 5 cm diameter net and can spread into all three areas; thus, they put similar predation pressure
on the zooplankton everywhere. However, their survival rate is very low, and the main prey of
juvenile fishes is rotifers [32]. The biomanipulated area was influenced by the large common carp
stock, whose migration was limited to this area. This increased predation pressure can be detected in
the biomanipulated area and was manifested in the decrease of the species number of cladocerans and
the prevailing contribution of small-sized Cladocera species (Bosmina, Moina) (Figure S2). Large-sized,
easily-visible Cladocera species, especially daphnids, are more vulnerable to fish predators [54], while
macroinvertebrates prefer small-sized cladocerans (e.g., bosminids, small daphnids). Fish have a great
influence on the size distribution of Cladocera species [55]. A decreasing biomass of fish can increase
the zooplankton biomass [22,56,57].

The predation effect on benthic cladocerans has not been explored yet. Only a few studies have
dealt with the effect of fish on subfossil cladocerans’ remains [58–61]. Jeppesen et al. [58] found
significant differences in abundance and crustacean remains in arctic lakes with and without fish and
also found the effects of invertebrate predators on benthic cladocerans. Amsinck et al. [59] found that
brown trout were a less important factor in shaping the cladoceran communities in Faroese lakes due
to their less efficient zoo-planktivory. In spite of scarce results, we can assume that fish predation
pressure on benthic species is less important than on planktonic species. In this shallow oxbow lake,
we could not demonstrate a significant effect of fish on the subfossil Cladocera community since
similarities among cladoceran communities were high in the different areas. Based on our results,
this means that contemporary Cladocera only provide information about species richness and their
abundances at sampling time, while a subfossil community includes Cladocera communities from a
whole year. The results correspond well with those of recent studies [62,63]. They all show that the
use of sedimentary cladoceran remains provides a more complete assessment of species richness and
community structure than does conventional point-sampling in the pelagic zone. This is because the
sedimentary samples include benthic communities and integrate spatial and seasonal heterogeneity
and year-to-year variations.

Both contemporary and subfossil datasets had a high overall similarity (63% and 67%), i.e., the
cladoceran fauna of different sites had a remarkable amount in common, so that beta diversities of
contemporary and subfossil cladocerans were low, whereas nestedness was high (89.6% and 81.5%,
respectively). The result of the SDR-simplex analysis on the contemporary and subfossil Cladocera
communities of the oxbow lake showed that there were no significant differences in the patterns of the
Cladocera communities. For both communities, the replacement of species between sites was low, and
the richness differences in sampling sites were also low. Vad et al. [64] found that the beta-diversity
of northern Hungarian ponds was driven by species replacement. Tóth et al. [65] confirmed the
importance of species replacement in the partitioning of the beta-diversity of soda pans in Hungary.
One possible explanation for our results is the distinct dispersion capabilities of cladoceran species. The
different dispersion capabilities of cladoceran species would lead to high species replacement. On a
larger geographical scale, cladocerans can substitute each other in ecosystem functioning. In our study,
distances between sampling sites were small; therefore, cladoceran heterogeneity can be responsible
for the level of the nestedness element of the biodiversity of the oxbow lake. Sites 1, 4, 5, 6, 7, and
15 made the largest contribution to the diversity of the oxbow lake, while B. longirostris, B. coregoni,
A. intermedia, C. sphaericus, P. laevis, and C. rectirostris abundances varied the most among sites.

These results correspond to our expectations, but if diversity values are broken down to the three
areas, we get a different picture of Cladocera diversity. Considering the Simpson diversity of the
contemporary Cladocera communities, it can be stated that the values of the biomanipulated area were
lower than those of the protected area. This result can demonstrate the impact of introducing fish
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into this part of the oxbow lake. Brucet et al. [66] examined the effects of various abiotic and biotic
factors on zooplankton communities, and they also concluded that predation has the greatest impact
on the zooplankton communities. This was also reinforced by the fact that fewer species made up
the contemporary Cladocera communities in the biomanipulated area than in the protected area. In
contrast, the average species abundance was higher in the biomanipulated area compared to the others.
This can be explained by the fact that small-sized species that did not fall prey to predation were able
to colonize this area efficiently. With a competitive advantage, they could colonize the area at a higher
density, and with their smaller-sized bodies, they could have a higher number of individuals in the
pelagic region. Reissing et al. [67] found that in the case of fish introduction, the relative density of
small zooplankton species is increased. Based on our results, we can conclude that the recreational
area constitutes a transition between the protected and the biomanipulated areas.

The changes in the subfossil Cladocera communities did not display the same pattern as in the
contemporary community. The effect of predation on the subfossil Cladocera communities was only
slightly detectable, which led us to conclude that such an impact (the introduction of fish) did not cause
much transformation in the community in the short term, nor did it cause the kind of transformation
that could not be restored after the biomanipulation was discontinued.

This study proved that subfossil Cladocera communities in a shallow Hungarian oxbow lake are
characterized by higher diversity, species density, and heterogeneity than the contemporary Cladocera
communities. This fact has been proven by several previous studies [52,68]. García-Giron et al. [69]
deduced that the subfossil Cladocera community reflects the contemporary community. This finding
was also true in the studied oxbow lake, but only for the protected and recreational area. In the
biomanipulated area, due to the high predation pressure, the species stock of the sediment did not reflect
the contemporary Cladocera community, while it might reflect the pre-biomanipulated conditions.

5. Conclusions

The sediment represented the Cladocera community with a larger number of species compared to
the contemporary communities in all three utilization forms (protected area, biomanipulated area, and
recreational area). Therefore, in order to get a representative picture of the entire Cladocera community
of a shallow standing water body (oxbow lake), it is considered necessary to involve both contemporary
and subfossil Cladocera communities in the research. Simultaneous implementation and use of both
sampling methods (filtering of water and sediment sampling) and simultaneous evaluation of the
results provided a more complex picture of the Cladocera community.

In summary, our results suggest that the protected area of an oxbow lake can ensure the
recolonization of species and the maintenance of diversity. In the short term, the fish introduction
does not cause any irreversible change in the Cladocera community. The original structure of the
community would quickly recolonize from the protected area.

These findings suggest that it is necessary to take care of the utilization of a water body during an
ecological qualification. The involvement of zooplankton species in the ecological quality assessment of
the European Water Framework Directive (EU WFD) has already been promoted by Jeppesen et al. [70].
Our research pointed out that Cladocera communities are especially useful to characterize the state of
a standing water body.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/5/929/
s1: Figure S1: Detailed map of sampling points of Cibakháza oxbow lake with the markings of the three
differently-utilized areas, Figure S2: Table of the individual density ratios of the contemporary and subfossil
Cladocera communities in the examined areas (green: contemporary community; blue: subfossil community).
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