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Abstract: The operation of a wastewater treatment plant (WWTP) is a typical complex control 
problem, with nonlinear dynamics and coupling effects among the variables, which renders the 
implementation of real-time optimal control an enormous challenge. In this study, a Q-learning 
algorithm with activated sludge model No. 2d-guided (ASM2d-guided) reward setting (an 
integrated ASM2d-QL algorithm) is proposed, and the widely applied anaerobic-anoxic-oxic (AAO) 
system is chosen as the research paradigm. The integrated ASM2d-QL algorithms equipped with a 
self-learning mechanism are derived for optimizing the control strategies (hydraulic retention time 
(HRT) and internal recycling ratio (IRR)) of the AAO system. To optimize the control strategies of 
the AAO system under varying influent loads, Q matrixes were built for both HRTs and IRR 
optimization through the pair of <max reward-action> based on the integrated ASM2d-QL 
algorithm. 8 days of actual influent qualities of a certain municipal AAO wastewater treatment plant 
in June were arbitrarily chosen as the influent concentrations for model verification. Good 
agreement between the values of the model simulations and experimental results indicated that this 
proposed integrated ASM2d-QL algorithm performed properly and successfully realized intelligent 
modeling and stable optimal control strategies under fluctuating influent loads during wastewater 
treatment. 

Keywords: machine learning; Q-learning algorithm; optimized control strategies; activated sludge 
model No. 2d (ASM2d), enhanced nutrients removal; integrated ASM-QL algorithm 

1. Introduction 

Wastewater treatment plants (WWTPs), recognized as the fundamental tools for municipal and 
industrial wastewater treatment, are the crucial urban infrastructures to improve the water 
environment [1]. However, today, the performance of the existing WWTPs worldwide is facing more 
and more severe challenges [2–4]. For instance, in China, the existing WWTPs are confronted with 
considerable non-standard wastewater discharge and serious abnormal operation issues [5]. By the 
end of 2013, 3508 WWTPs had been built in 31 provinces in China; however, almost 90% of them have 
inescapable problems with nutrient removal, and roughly ⁓50% of WWTPs could not meet the 
nitrogen discharge standard [6]. Since the quality of the discharged effluent is one of the most serious 
environmental problems today, the ever increasingly stringent standards and regulations for the 
operation of WWTPs have been imposed by authorities and legislation [7,8]. Therefore, the 
implementation of effluent standards requires refined and sophisticated control strategies able to 
deal with this nonlinear and multivariable system with complex dynamics [9,10]. 

The task of optimizing wastewater treatment process is highly challenging since the optimal 
operating conditions of the WWTP are difficult to be controlled due to its biological, physical, and 
chemical processes are complex, interrelated, and highly nonlinear [11]. Increasing attention to 
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modeling wastewater processes has led to the development of several mechanistic models capable of 
describing the complicated processes involved in WWTPs (e.g., activated sludge model (ASM) 
family, including ASM1, ASM2, ASM2d, and ASM3) [12–15]. However, these mechanistic models 
have complex structures, making them unsuitable for controlling purposes [16]. Moreover, the 
dynamical behavior of WWTPs is strongly influenced by many simultaneous objective variations, 
such as uncertain environmental conditions, strong interactions between the process variables 
involved, and wide variations in the flow rate and concentration of the composition of the influent of 
WWTPs [5,10,16]. These many variations increase the enormous challenges and difficulties of 
implementing the optimal operation control tasks in practical applications. 

The conventional control parameters optimization for the wastewater treatment process has 
traditionally relied on the common expert knowledge and previous experience, which require 
specific technical know-how and often involve laboratory and pilot trials [7]. However, these 
approaches resulted in reduced responsiveness in taking corrective action and a high possibility of 
missing major events negatively impacting water quality and process management [17]. 
Furthermore, although progress in the development of appropriate experimental instruments have 
contributed to a number of reliable online/real-time monitoring systems available for rapid detection 
and monitoring [18,19], the major issue in the automation of the control of WWTPs occurs when the 
control system does not respond as it should due to changes in influent load or flow [20]. Currently, 
this role of control or adjustment is mainly played by plant operators [20]. Nevertheless, even for 
expert engineers, determining the optimal operating strategy for WWTPs remains quite difficult and 
laborious given the complexity of the underlying biochemical phenomena, their interaction, and the 
large number of operating parameters to deal with [21]. In addition, the commonly used 
proportional-integral and proportional-integral-derivative controllers in the context of control in 
WWTPs cannot predict the problematic situations nor lead back the control process toward optimal 
conditions [20,22–24]. Therefore, given the strengthening of stringent discharge standards and highly 
dynamic influent loadings with variable concentration of pollutants, it is very challenging to design, 
and then effectively implement, real-time optimal control strategies for the existing wastewater 
treatment processes [7]. 

Artificial intelligence (AI) has been already applied to facilitate the control of WWTPs [25–30]. 
Currently, expert systems (ESs) may supervise the plant 24 h/day assisting the plant operators in their 
daily work. However, the knowledge of the ESs must be elicited previously from interviews to plant 
operators and/or extracted from data stored in databases [20]. Its main disadvantage is that the design 
and development of the ESs require to extract the knowledge on which these systems are based; 
however, this previously “extracted” expertise does not evolve once placed into the ESs. Today, with 
the cutting-edge technology of AI improving our daily life, traditional WWTPs arouse more 
intelligent and smarter operation and management [10,26,27]. Although these AI approaches still 
have a place in the control of WWTPs, we aim to develop autonomous systems that learn from the 
direct interaction with the WWTPs and that can operate taking into account changing environmental 
conditions [20]. 

In the context of smart and intelligent optimization control domain, Machine Learning (ML) is a 
powerful tool for assisting and supporting designers and operators in determining the optimal 
operating conditions for existing WWTPs and simultaneously predicting the optimal design and 
operation for future plants [21,28]. ML algorithms, such as adaptive neural fuzzy inference system 
(ANFIS), deep learning neural network (DLNN) [27], artificial neural networks (ANN) [29], and 
support vector regression (SVR) [30], are relatively new black box methods that can be employed in 
water and environmental domains (e.g., performance prediction, fault diagnosis, energy cost 
modelling, and monitoring) as well as in the assessment of the WWTP performance [10,31,32]. 
Despite of their popularity and ability to model complex relationships between variables [28,33], 
current learning techniques face issues like poor generalization for highly nonlinear systems, 
underutilized unlabeled data, inappropriate choice for prognostications due to random initialization 
and variation of the stopping criteria during the optimization of the model parameters, as well as 
inability to predict multiple outputs simultaneously, thus requiring high computational effort to 
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process large amount of data [25,34]. Moreover, there is no model until now that can exactly predict, 
feedback, and then provide real-time control strategies to the complex biological phenomena 
occurring in WWTPs: therefore, these computational solutions are not reliable, while their true 
potential of optimization is unknown [21]. 

Among the ML, the Q-learning (QL) is one of the reinforcement learning (RL) methods and a 
provably convergent direct optimal adaptive control algorithm [35]. Since offering the significant 
advantages of learning mechanisms that can ensure the inherent adaptability for a dynamic 
environment, QL can be used to find an optimal action-selection policy based on the historical and/or 
present state and action control [35–37], even for the completely uncertain or unknown dynamics 
[38]. Figuratively speaking, as a real human environment, the QL algorithm does not necessarily rely 
on a single agent to search the complete state-action space to obtain the optimal policy, but exchanges 
information, learning from the others [39]. Recently, the model-free QL algorithm has been applied 
in wastewater treatment fields [20,40]. However, black box modeling poses a limitation on 
mechanism cognition: it is still necessary to elucidate the cause-effect relationship for input and 
output values for process control [30]. Nevertheless, application of the RL algorithm may also be 
combined with the proposed mechanistic models to integrate a set of models to generate a new 
model, which could produce higher accuracy and more reliable estimates than individual models 
[10]. To the best of our knowledge, there are no studies in the literature on the integration of the QL 
algorithm with an ASM mechanistic model that determine the smart optimal operation and solves 
control issues in WWTPs. Thus, this study focused on the realization of the intelligent optimization 
of operation and control strategies through the QL algorithm with ASM2d-guided reward setting (an 
integrated ASM2d-QL algorithm) in the wastewater treatment field. 

The main objective of this study is to derive an ASM2d-guided reward function in the QL 
algorithm to realize decision-making strategies for the essential operating parameters in a WWTP. 
As one of the most widely used wastewater treatment systems due to the simultaneous biological 
nutrients removal (carbon, nitrogen, and phosphorus) without any chemicals [41,42], an 
anaerobic/anoxic/oxic (AAO) system was applied here as the research paradigm. To optimize the 
control strategies under varying influent loads, Q matrixes were built for the optimization of the 
hydraulic retention time (HRT) and internal recycling ratio (IRR) in the AAO system. The major 
contribution was to realize the intelligent optimization of control strategies under dynamic influent 
loads through an integrated ASM2d-QL algorithm. 

2. Materials and Methods 

2.1. Experimental Setup and Operation 

Activated sludge, after one month cultivation, was inoculated into the tested continuous-flow 
AAO systems (Figure 1). Electric agitators were employed to generate a homogeneous distribution 
of the mixed liquid and sludge in the anaerobic and anoxic tanks. Air supply was dispersed at the 
bottom of the oxic tank by using a mass flow controller to ensure a well-distributed aerated condition. 
Dissolved oxygen (DO) value was monitored by a portable DO meter with a DO probe (Germany 
WTW Company ORP/Oxi 340i main engine, Germany). For HRTs and IRR optimization, the 
peristaltic pumps were controlled by the communication bus (RS-485) through the proposed 
integrated ASM2d-QL algorithm (Figure 1). The function of the secondary settling tank in AAO is 
assumed to be the ideal solid-liquid phase separation of treated water and the activated sludge based 
on International Association on Water Quality (IAWQ) activated sludge model. In the optimization 
process of AAO system, the secondary settling tank participated in the modeling development in the 
form of returned activated sludge. Thus, the components of returned activated sludge from the 
secondary settling tank, which mean the influent sludge components and the corresponding kinetic 
parameters in ASM2d (Table S1) participated in the development of control strategies of AAO system. 

For validating the proposed integrated ASM-QL algorithm, eight continuous-flow AAO systems 
were set up and numbered from #1 to #8 (Table 1). The concentrations of the influent synthetic 
wastewater applied in the eight AAO systems were the same as the arbitrarily chosen eight days of 
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a municipal WWTP in June. The characteristics of the influent qualities for the eight AAO systems 
are shown in Table 1. The corresponding control parameters are reported in Table 2. Each test was 
operated for 30 days at 20 ± 0.5 °C. During the operation period, measurements of chemical oxygen 
demand (COD), total phosphorus (TP), ammonia nitrogen (NH4+-N), and mixed liquor suspended 
solids (MLSS) were conducted in accordance with standard methods [43]. The acetate (in COD) was 
used as the carbon source. The COD, NH4+-N, TP, and MLSS were measured daily in triplicate (n = 3, 
mean ± error bar). 

 
Figure 1. The schematic flow diagram of the continuous-flow anaerobic/anoxic/oxic (AAO) systems 
for model validation. 

Table 1. The characteristics of the influent concentrations in the eight AAO systems. 

Systems COD (mg/L) NH4+-N (mg/L) TP (mg/L) 
#1 264.54 13.12 2.38 
#2 244.62 22.78 1.82 
#3 288.84 18.12 3.21 
#4 300.39 25.15 2.14 
#5 326.26 24.34 3.96 
#6 335.80 22.78 2.09 
#7 345.35 14.03 1.06 
#8 385.26 22.45 2.66 

Table 2. Operational parameters and control strategies of the HRTs optimization for #1, #2…, #8 AAO 
systems. 

Parameters #1 #2 #3 #4 #5 #6 #7 #8 
Effective volume of 
anaerobic tank (L) 

2.50 1.25 3.75 2.50 5.00 2.50 1.25 3.75 

Effective volume of 
anoxic tank (L) 

5.00 8.75 5.00 8.75 6.25 7.50 5.00 6.25 

Effective volume of oxic 
tank (L) 

6.25 5.00 7.50 8.75 8.75 7.50 8.75 8.75 

DO in anaerobic tank 
(mg/L) 

– – – – – – – – 

DO in anoxic tank (mg/L) – – – – – – – – 
DO in oxic tank (mg/L) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
HRT in anaerobic tank 

(h) 
1.0 0.5 1.5 1.0 2.0 1.0 0.5 1.5 

HRT in anoxic tank (h) 2.0 3.5 2.0 3.5 2.5 3.0 2.0 2.5 
HRT in oxic tank (h) 2.5 2.0 3.0 3.5 3.5 3.0 3.5 3.5 
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HRT in settling tank (h) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
Influent flow (L/h) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

IRR (%) 260 310 240 320 290 280 230 250 
Sludge return rate (%) 0–100 0–100 0–100 0–100 0–100 0–100 0–100 0–100 

MLSS in the main reactor 
(mg/L) 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

3500 ± 
500 

2.2. Q-Learning Algorithm 

Q-learning, proposed by Watkins [44,45], is a representative data-based adaptive dynamic 
programming algorithm. In the QL algorithm, the Q function depends on both system state and 
control, and updates policy through continuous observation of rewards of all state-action pairs [37]. 
The value of an action at any state can be defined using a Q-value, which is the sum of the immediate 
reward after executing action “a” at state “s” and the discounted reward from subsequent actions 
according to the best strategy. The Q function is the learned action-value and is defined as the 
maximum expected, discounted, cumulative reward the decision maker can achieve by following the 
selected policy [46]. The expression of the Q-value algorithm is shown in Equation (1): 𝑄(𝑠௧, 𝑎௧) ← (1 − 𝛼)𝑄(𝑠௧, 𝑎௧) + 𝛼[𝑟௧ାଵ + 𝛾 max௔೟శభ 𝑄(𝑠௧ାଵ, 𝑎௧ାଵ)] (1) 

where 𝑄(𝑠௧, 𝑎௧) represents the cumulative quality or the action reward when taken the action “a” as 
the first action from the state “s”. 𝑠௧ is the state of the reaction tank at time t, while 𝑎௧ is the action 
executed by reaction tank at time t. After the executed action 𝑎௧ , 𝑠௧ାଵ  and 𝑟௧ାଵ  represent the 
resulting state and the received reward in the next step. α is the learning rate, whereas 𝛾 is the 
discount rate. 𝑄(𝑠௧ାଵ, 𝑎௧ାଵ) is nominated as the value for the next state that has a higher chance of 
being correct. At each time t, s the reaction tank is in a state of st, takes an action at, and observes the 
reward 𝑟௧ାଵ . Afterwards, it moves to the next state 𝑠௧ାଵ . When 𝑠௧ାଵ  is terminal, 𝑄(𝑠௧ାଵ, 𝑎௧ାଵ) is 
defined as 0. The discount concept essentially measures the present value of the sum of the rewards 
earned in the future over an infinite time, where 𝛾 is used to discount the maximum Q-value in the 
next state. 𝑄(𝑠, 𝑎) is exactly the quantity that is maximized in Equation (1) in order to choose the optimal 
action a in state s. The QL algorithm begins with some initial values of 𝑄(𝑠, 𝑎) and chooses an initial 
state 𝑠଴; then, it observes the current state, selects an action, and updates 𝑄(𝑠, 𝑎) recursively using 
the actual received reward [39]. The optimal policy for each single state s can be achieved by the 
algorithm, as shown in Equation (2): 𝜋∗(𝑠) = arg max௔ 𝑄(𝑠, 𝑎) (2) 

where 𝜋∗ denotes an optimal policy. The QL algorithm and theory are described by Mitchell [47]. 

3. Development with an ASM2d-QL Algorithm for AAO System 

3.1. ASM2d-QL Algorithm Architecture 

For the AAO system, the concentrations of influent and effluent from each reaction tank are set 
as two concentration vectors: the influent concentration vector and the effluent concentration vector, 
respectively. As shown in Equation (3), the concentration vector is regarded as the state in the 
ASM2d-QL algorithm 

s = (x1, x2, …, xm) (3) 

s represents the state in QL algorithm, xj (j ∈  {1, m}) represents the concentration of the jth 
components in ASM2d (Table S2), and m represents the number of all the components that are 
involved in the reaction during wastewater treatment process in AAO. 

Due to the characteristics of the wastewater treatment processes associated with the successive 
and coupled reaction units in the AAO system, the effluent concentration vector of the former 
reaction tank corresponds to the influent concentration vector of the subsequently connected reaction 
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tank. Thus, there are 4 states can be set in the AAO system: 𝑠଴ is the influent concentration vector of 
the anaerobic tank; 𝑠ଵ  is the influent concentration vector of the anoxic tank (or the effluent 
concentration vector of the anaerobic tank); 𝑠ଶ, is the influent concentration vector of the oxic tank 
(or the effluent concentration vector of the anoxic tank); 𝑠ଷ is the effluent concentration vector of the 
oxic tank. For the operation of an AAO system, different control strategies cause different effluent 
concentrations results. As a direct consequence, in the QL algorithm, different control strategies lead 
to different transition states, which are represented as stn, t ∈ {0, 3}, and four state sets defined as St 
∈ {st1, stn(t)}. The subscript t of 𝑠௧ represents the time point corresponds to the influent from the 
current tank (or the time point corresponds to the effluent from former tank). Therefore, the 
optimization of the control strategy for the AAO system becomes the state transfer based on the Q 
matrix. 

Figure 2 reports an example of the Q matrix and the corresponding simplified mapping function 
of AAO system. In Figure 2, each row in the Q matrix is a start state, while each column indicates a 
transition state. The color of the palette represents the reward under one control strategy, thus 
different colors correspond to different rewards, which are also distinct control strategies for AAO 
system. As can be observed in Figure 2, one start state can transfer to many transition states under 
different control strategies; thus, the Q matrix (or the simplified mapping function) of AAO system 
is established to choose a strategy to realize the control optimization. Hence, the critical issue is to 
calculate the transition rewards and then to obtain the pair of <reward-action> (the action in AAO 
represents the control strategy: HRT and IRR), suggesting that the overall optimization of the control 
strategy can be realized by following the transition states according to the maximum transition 
reward (max reward, 𝑠௧௠௔௫) in the corresponding state sets (St). 

Before optimizing the control strategies through the integrated ASM2d-QL algorithm, the 
continuous concentration data are discretized. Based on the varying concentrations of the influent 
and the reaction processes in the eight AAO systems, the upper limits of COD (x3), NHସା‒ N (x4) and POସଷି‒ P  (x5) concentrations in this study were set as 500, 50, and 50 mg/L, respectively. The 
concentrations division intervals of COD, NHସା‒ N and POସଷି‒ P were, respectively, 50, 5, and 0.5 
based on the First A level of National Discharge Standard (effluent COD ⩽ 50 mg/L, effluent NHସା‒ N ⩽ 5 mg/L, and effluent POସଷି‒ P ⩽ 0.5 mg/L). According to the Q matrix in Figure 2, the minimum 
concentration corresponds to state 𝑠௧ଵ , while for any other concentration, there is only one 
corresponding state 𝑠௧௣ , p ∈ {1, 𝑛(𝑡)}. The division of the component concentrations is conducted 
based on the discretization formula, as shown in Equation (4): 

        
= × ×                   

3 4 5

-1 1000+ -1 100+
50 5 0.5

x x x
p  (4) 

where 
50 501000
5 0.5

   = ×      
, and 

50100=
0.5
 
  

. The operator “⌈   ⌉” represents the rounding up. 
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Figure 2. An example of the Q matrix and the corresponding simplified mapping function of the AAO 
system. 

In this study, the self-learning of the proposed algorithm is mainly embodied in two aspects. 
Firstly, owing to the concentration of the component is a continuous parameter and its effluent 
concentration from each tank varies with different control strategies, the Q matrix composed of 
<state-value> will automatically update from a sparse matrix to a dense matrix as the number of the 
simulations increases. The increases in simulation times are achieved by the algorithm itself, and then 
realize the iteration update of the Q matrix. On the other hand, because of the division of the 
component concentrations based on the discretization formula (Equation (4)), each state has more 
corresponding concentrations, while the calculation of the corresponding Q-value is based on the 
specific concentration. Consequently, there will be multiple values for the same state s. Equipped 
with the characteristics of self-learning, the proposed algorithm will update the values according to 
the increases in the number of the simulation times with the maximum reward. When a fluctuating 
influent load is obtained, the corresponding state of the effluent quality of each tank can be found by 
searching the maximum reward according to the Q matrix, and then the final overall optimized 
control strategy can be obtained. 

3.2. HRT Optimization Based on ASM2d-Guided Reward 

3.2.1. QL Modeling for HRT Optimization 

For the AAO system in this study, the concentrations from the three reaction tanks are set as 
→

1
kx , 

→
2
kx , and 

→
3
kx  at a certain time k; ( )mkkk

i
k xxxx ⋅⋅⋅=

→
21 ,  in which i = 1, 2, and 3 denote the three 

reaction tanks (anaerobic tank, anoxic tank, and oxic tank, respectively) for the AAO system. At time 
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k, the control functions for the three reaction tanks are 1
kU , 2

kU , and 3
kU . Under the same control 

mode, the corresponding concentrations of 
→

+
1

1kx , 
→

+
2

1kx , and 
→

+
3

1kx  from the three reaction tanks are 

obtained at time k + 1. Thus, the control functions of 1
1+kU , 2

1+kU , and 3
1+kU  at time k + 1 are obtained 

according to Action Network. The evaluation function and the Q function for each reaction tank are 
generated via the QL algorithm. The critic network is further acquired. The logical relationship 
diagram of the HRT optimal control for the AAO system is depicted in Figure 3. Based on the above 
analyses, three Q1, Q2, and Q3 functions for each reaction tank, as well as the Q function for the overall 
AAO system, which are the key to realize the optimal control of the HRTs of the AAO system, could 
be obtained. This proposed integrated ASM2d-QL algorithm equipped with a self-learning 
mechanism was gradually formed based on the results of the learning process through a QL 
algorithm based on the ASM2d model. In the following model development section, the HRTs in 
anaerobic, anoxic, and oxic tanks of the AAO system with a QL algorithm based on ASM2d were 
developed and optimized. 

 
Figure 3. The logical relationship diagram of the HRTs optimal control for the AAO system. 

3.2.2. ASM2d-Guided Reward Setting in QL Algorithm 

For the operation of an AAO system, the optimal control strategy is obtained to reduce all 
concentration components to the lowest values. Hence, in this case, the Euclidean distance formula, 
which is widely selected for multi-objective optimization [47], is applied to calculate the evaluation 
function of the overall descent rate between the descent rate of each component and the minimum 
descent rate (0%). The evaluation function ( )sV π  can be calculated with Equation (5): 

( )π

=

 −
 =
 
 

 0

2

0 13

1 0 1

j j
m

k

j
j

x x
V s

x
 (5) 

j
k i

x  represents the instantaneous concentration of the jth component in the ith reaction tank at 

each time k. 
0

j
k

i
x  and 0

j

i
x  represent the effluent and influent concentrations, respectively. The 

HRT is the reaction time from 0 to k0. 𝜋 represents the mapping of the control strategy under the 
corresponding Q-value, and 𝜋∗  denotes the optimal control strategy based on Equation (2). 
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According to Equation (5), the larger the overall descent rate is (the closer it is to 100%), the better the 
control strategy can be obtained. 

Based on the ASM2d model, Equation (6) can be obtained as follows: 

( )ρ ν
=

= ⋅
1

j
W

k i
l l

l

d x

dk
 (6) 

where 𝜈௟ is the stoichiometric coefficients of the ASM2d, 𝜌௟ is the process kinetic rate expression 
for the component 𝑙, whereas 𝜌௟ · 𝜈௟ is composed of 𝑥ଵ, 𝑥ଶ, …, 𝑥௠. W is the corresponding reaction 
processes in ASM2d. 

Through integration, Equation (6) can be transformed into Equation (7): 

( )
ρ ν

=

⋅ = ⋅ ⋅ 
0 0

0 0
1

j
Wk kk i

l l
l

d x
dk dt

dk
 (7) 

Thus, for each reaction tank i, Equation (8) can be obtained as follows: 

( )
0 0

j j
k jii

x x F− = ⋅  (8) 

where function Fj (·) is the integration of partial differential function for j component in ASM2d, in 
which the interval of upper and lower bounds of integrals is the HRT. 

Based on Equation (5) and Equation (8), the ASM2d-guided reward in QL algorithm can be 
obtained, as shown in Equation (9): 

( )
1

0

m
j

i j
j

i

F
r

x=

⋅
=   (9) 

As HRT becomes the parameter in Equation (9), the reward and HRT can be described as a pair 
of <reward-HRT>, which indicates that one reward corresponds to one HRT. 

The above integrated ASM2d-QL algorithm is described in the pseudo-code of the QL algorithm 
for the HRTs in the AAO system in Table 3. The details formula derivation processes are summarized 
in the supplementary material (see Supplementary Material Section). 

Table 3. Pseudo-code of the QL algorithm for the HRTs in the AAO system. 

For each s, t initialize the table entry 𝑄෠(𝑠, 𝑡) to zero. 

Observe the current state s 

While |𝑉గ(𝑠)| > 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐵 

For circulation equals 3 to simulate the whole AAO treatment, do the following: 

 Select an action a and execute it 

 Receive immediate reward r 

 Observe the new state s’ 

 Update the table entry for 𝑄෠(𝑠, 𝑡) as follows: 

( ) ( )ˆ ˆ, max ,
t

Q s t r Q s t
′

′ ′= +  

 s ← s' 
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3.3. IRR Optimization Based on ASM2d-Guided Reward 

IRR optimization is conducted to further obtain the overall optimal control of the whole AAO 
system. The logical relationship of the control strategy for the IRR optimization is similar to those of 
the HRTs (Figure 4). 

In combination of the above expression and the HRTs optimization process, in one reaction cycle 
in AAO, the parameter IRR influences the HRTs in anoxic and oxic tanks, whereas the parameter IRR 
further influences the influent concentrations (

0

j

i
x , i = 2, 3) of the anoxic and oxic tanks. Thus, by 

combining the pseudo-code of the HRT, the maximum value of the Q function (the optimal control 
strategy of IRR) can be achieved only through two-time regression. 

Hence, based on the above analysis, the integration formula for IRR optimization is shown as 
Equation (10): 

( )
ρ ν

=

⋅ = ⋅ ⋅ 
0

0

0 0
1

j
k Wk k i q

l l
l

d x
dk dt

dk
 (10) 

where q represents the IRR of the AAO system. 
Finally, the expression of the ASM2d-guided reward in QL algorithm for IRR optimization based 

on Equation (10) is obtained, as shown in Equation (11): 

( )
1

0

m
j

i j
j

i

G
r

x=

⋅
=   (11) 

where function Gj (·) is the integration of partial differential function in ASM2d for the jth component. 
Following the same approach used in the HRT optimization in Equation (9), IRR becomes the 
parameter in Equation (11): thus, the reward and IRR can be described as a pair of <reward-IRR>. 

4. Results 

4.1. Model Description 

To optimize the control strategies of AAO system under varying influent loads based on the 
proposed ASM2d-QL algorithm, three Q matrixes of the respective anaerobic, anoxic, and oxic tanks 
have been built for the optimization of HRTs and one Q matrix (one IRR) of the anoxic and oxic 
reaction tanks has been created for the IRR optimization. Figure 4 depicts the simplified mapping 
functions for HRTs optimization by the integrated ASM2d-QL algorithm. Because data streams of 
the influent and effluent concentrations are continuous and that the reward is guided by ASM2d, 
three simplified mapping functions for respective anaerobic, aerobic, and oxic tanks, instead of the Q 
matrixes, have been established to choose the optimized control strategies (HRTs) in AAO. In Figure 
2, the optimized control strategies of the three HRTs can be calculated through the transition rewards; 
then, the optimized HRT can be obtained through the pair of <max reward-action>, where action 
indicates HRT and IRR. By taking the HRT optimization in the anaerobic tank as an example (Figure 
4), the influent concentration is 𝑠଴௔: thus, thanks to the ASM2d-guided reward, the max reward for 
anaerobic reaction tank can be calculated, while the corresponding HRT can be determined with the 
pair of <max reward-action>; as a consequence, the effluent concentration will be known as 𝑠ଵ௠௔௫, 
which is also known as the influent concentration for anoxic reaction tank. Similarly to the HRT 
optimization of anaerobic tank, the optimized HRTs of anoxic and oxic tanks can be calculated with 
their own max reward and <max reward-action> pair. By following the transition state transfers from 
the start state 𝑠଴௔ to 𝑠௧௠௔௫ in the state set St, the overall HRT optimization is the combination of the 
HRTs in each reaction tank. 

Similarly, one simplified mapping function can be built to optimize the IRR from start state to 
transition state for the anoxic and oxic tanks in AAO (Figure 5). Based on the reward calculated by 
Equation (11), the optimization controlling of IRR can be realized by following the transition state 
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transfers from the start state 𝑠଴௔ under the control strategy optimized with 𝑠ଵ௠௔௫ in the state set S1 
(Figure 5). Therefore, through the proposed integrated ASM-QL algorithm, the real-time modeling 
and stable optimal control strategies under fluctuating influent loads (e.g., variations in COD, 
phosphorus, and nitrogen concentrations) can be obtained by applying the established simplified 
mapping functions for HRTs and IRR optimization in the AAO system (Figures 4 and 5). 

 
Figure 4. Simplified mapping functions for HRTs optimization in AAO system by an integrated ASM-
QL algorithm. 

 
Figure 5. Simplified mapping function for IRR optimization in AAO system by an integrated ASM-
QL algorithm. 

4.2. Model Validation 

Experiments and simulation analyses based on eight continuous-flow AAO systems operated 
under different influent loads (Table 1) were conducted to validate the proposed integrated ASM-QL 
algorithm. By conducting the iterated and updated optimization of the HRTs through the ASM-QL 
algorithm, the step length of the control parameters of the HRTs under different reaction tanks in 
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AAO system was set at 0.5 h; the control parameter of the IRR was set as the fixed value of 200% in 
validation experiments. According to the model developed in Section 3.1, different defined 
evaluation functions 𝑉గ(𝑠) correspond to different optimal policies. Herein, we set the evaluation 

function as ( ) ( )π

=

−
= 

5

3

j j

influent effluent

total j
j influent

x x
V s

x
 representing the overall maximal removal 

efficiencies to evaluate the effluent qualities (Equation (4)), where j = 3, 4, and 5 represent SA, SNH4, 
and SPO4 (Table S2). Then, we utilized the ASM2d-QL algorithms to iterate and update the control 
parameters of the HRT for all the eight tested systems. 

We take here the #1 AAO system as an example to explain how the Q-learning algorithm works 
with the AAO system optimization under ASM2d-guided reward. Based on the analysis above, we 
can obtain the pair of <reward-action> for each reaction tank for HRT optimization, which is 
displayed in Figure 6, with the step of HRT being 0.5 h. The optimized HRT for the AAO system is 
the combination of the HRT for each reaction tank under its max reward. Therefore, for the #1 influent 
concentration (Table 1), the combination of HRT is 1 h:2 h:2.5 h (Figure 6), which means that, under 
that HRT combination, the overall removal efficiency is maximum. The explanation of IRR 
optimization is similar to the HRT optimization with the step of IRR being 10% times of influent flow 
rate. From Figure 7 we can observe that the optimized IRR is 260% with the maximum reward. 

 

 

 
Figure 6. The pair of <reward-action> for HRTs optimization for (a) anaerobic tank, (b) anoxic tank, 
and (c) oxic tank. 
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Figure 7. The pair of <reward-action> for IRR optimization. 

Table 4 shows the obtained optimal action-selection policies based on HRTs optimization for the 
8 AAO systems. According to the comparison results in Figure 8a1–c1, the model simulations and 
experiment results exhibit similar change tendencies and better fitting degrees. The IRR optimization 
of the AAO system was further conducted on account of the optimal control strategies of the HRT 
obtained. Based on Equation (9) and Figure 4, the HRTs for the eight AAO systems were regarded as 
the fixed values, while the control strategies of the IRR for the eight AAO systems were optimized 
(Table 4). The model simulations and experimental results for the IRR optimization of the 8 group 
experiments were finally compared (Figure 8a2–c2). As shown in Figure 8a2–c2, there is a good 
agreement between the values of the proposed ASM2d-QL model simulations and the experimental 
results. To further confirm the goodness-of-fit of the simulation and experiment results after further 
IRR optimization, we can observe in Figure 8a2–c2 that the proposed ASM2d-QL model performed 
properly and the derived Q functions based on ASM2d successfully realize real-time modeling and 
stable optimal control strategies under fluctuating influent loads during wastewater treatment. 

Table 4. Control strategies of the IRR optimization for #1, #2…, #8 AAO systems. 

Parameters #1 #2 #3 #4 #5 #6 #7 #8 
HRT in anaerobic tank (h) 1.0 0.5 1.5 1.0 2.0 1.0 0.5 1.5 

HRT in anoxic tank (h) 2.0 3.5 2.0 3.5 2.5 3.0 2.0 2.5 
HRT in oxic tank (h) 2.5 2.0 3.0 3.5 3.5 3.0 3.5 3.5 

q (%) 260 310 240 320 290 280 230 250 
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Figure 8. Model simulations and experimental results for eight AAO systems: (a1,a2) COD effluent 
concentrations; (b1,b2) NH4-N effluent concentrations; and (c1,c2) TP effluent concentrations of the 
HRTs optimization and the IRR optimization. 

5. Discussion 

5.1. Advantages of the Integrated ASM2d-QL Algorithm 

The integrated ASM2d-QL algorithm offers significant advantage of learning mechanisms that 
can ensure the inherent adaptability for a dynamic environment. In other words, a QL algorithm 
integrated with mechanistic models can learn from the direct interaction with characteristics of the 
WWTPs and thus operate considering the practical operation and changeable conditions. Notice that 
we invest only once in the existing or newly-built WWTPs. Afterwards, the operation of the system 
with the QL algorithm will adapt to each plant by itself [20]. In this paper, a QL algorithm with 
ASM2d-guided reward setting is proposed to optimize the control strategies of AAO system under 
varying influent loads. The verification tests on model performance guarantee the goodness-of-fit of 
the model and the results (Figure 8). This integrated algorithm provides proper and successful 
intelligent modeling and stable optimal control strategies under fluctuating influent loads. 

5.2. Limitations of the Integrated ASM2d-QL Algorithm 

The optimization process of the derived QL algorithm in this study is conducted based on the 
ASM2d model. However, some restrictive conditions of the ASM2d models, e.g., 20 °C operating 
temperature, render it not suitable for practical application and changeable conditions. Moreover, 
other actual influencing factors that affect the selection and operation of WWTPs, such as different 
influent components, distinct technic characteristics, natural conditions, social situations, even the 
orientations of process designers, must be taken into account. Therefore, for practical application, 
whatever it is the lab-, pilot-, or full-scale WWTPs, the data from the ASM2d model by applying this 
Q function in this study can be replaced with the practically measured values: thus, the actual 
influencing factors could be taken into consideration. Nowadays, data availability is not the limiting 
factor for the use of this algorithm due to the development of those real-time data monitoring 
approaches [17–19,25,29]. Through this iterative approach, the Q function based on the practically 
measured values can be obtained leading to the real-time and precise parameters control. 

5.3. Future Developments 

This proposed algorithm seems even worthier when we focus on the energy consumption and 
costs in operation process of the WWTPs. In terms of previous studies [4,31], the optimization of the 
control process can significantly improve the energy efficiency with very low investments and short 
payback times. Therefore, a more detailed study on the effect of energy costs is recommended to 
support decision-makers in future studies. Moreover, more crucial control strategies should be 
established in this ASM-QL algorithm based on practical applications and specific requirements. In 
case of environmental changes, a “smart” QL-WWTP can intelligently provide the real-time 
intelligent decision-making strategies, dynamic optimization control, stable and fast security 
analysis, and self-healing/self-correction responses without human intervention. It can be envisioned 
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that the QL-WWTPs will become an “ambient intelligence” in all aspects during wastewater 
treatment. 

6. Conclusions 

In this study, an integrated ASM2d-QL algorithm was proposed to realize the optimal control 
strategies of HRTs and IRR in AAO system. To optimize the control strategies under varying influent 
loads, the simplified mapping functions for HRTs and IRR optimization of AAO system were built 
based on the proposed ASM2d-QL algorithm. The expressions of the ASM2d-guided reward in QL 
algorithms for HRTs and IRR optimization were derived. Based on the integrated ASM2d-QL 
algorithm, the optimized HRTs and IRR were calculated with their own max reward and <max 
reward-action> pair, respectively. Good agreement between values of the proposed ASM2d-QL 
model simulations and the experimental results of the eight validation experiments had been proved. 
This study successfully realizes the intelligent optimization of control strategies under dynamic 
influent loads through an integrated ASM2d-QL algorithm during wastewater treatment. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/11/5/927, Table S1. 
Kinetic parameters and values in ASM2d model; Table S2. Influent components of the AAO system in the ASM2d 
simulation. 
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