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Abstract: A rainfall event, simplified by a rectangular pulse, is defined by three components: the 

rainfall duration, the total rainfall depth, and mean rainfall intensity. However, as the mean 

rainfall intensity can be calculated by the total rainfall depth divided by the rainfall duration, any 

two components can fully define the rainfall event (i.e., one component must be redundant). The 

frequency analysis of a rainfall event also considers just two components selected rather arbitrarily 

out of these three components. However, this study argues that the two components should be 

selected properly or the result of frequency analysis can be significantly biased. This study fully 

discusses this selection problem with the annual maximum rainfall events from Seoul, Korea. In 

fact, this issue is closely related with the multicollinearity in the multivariate regression analysis, 

which indicates that as interdependency among variables grows the variance of the regression 

coefficient also increases to result in the low quality of resulting estimate. The findings of this study 

are summarized as follows: (1) The results of frequency analysis are totally different according to 

the selected two variables out of three. (2) Among three results, the result considering the total 

rainfall depth and the mean rainfall intensity is found to be the most reasonable. (3) This result is 

fully supported by the multicollinearity issue among the correlated variables. The rainfall duration 

should be excluded in the frequency analysis of a rainfall event as its variance inflation factor is 

very high. 
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1. Introduction 

The bivariate frequency analysis (BFA) is used for the quantification of the probabilistic 

characteristic of two correlated variables. This analysis has been conducted in a wide range of study 

areas. De Haan and De Ronde [1] evaluated the risk of wave overtopping by conducting the BFA on 

the still water level and the wave height. Yue [2] assessed the applicability of the bivariate 

exponential distribution for two univariate data that follow the exponential distribution. Yue and 

Wang [3] compared the Gumbel mixed model and the Gumbel logistic model, which are used for the 

BFA. 

In terms of hydrology and water resources, the BFA has been conducted mostly for processes 

like the rainfall event, drought, and river discharge. In the case of the rainfall event, two variables 

among several characteristics, such as the mean rainfall intensity, rainfall duration, total rainfall 

depth, and maximum rainfall intensity, are selected to perform the analysis [4,5]. For the drought, 

two variables among the characteristics of the drought event, such as the average drought severity, 

drought duration, total drought severity, and maximum drought severity, are usually used for the 

analysis [6–8]. The analysis of the river discharge is also similar [9–11]. 
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Bivariate probability distribution functions (PDFs) have been generally used for the BFA. The 

bivariate exponential distribution, bivariate gamma distribution, and bivariate extremal distribution 

have been frequently used regarding hydrology and water resources [12–15]. The use of the 

bivariate probability distribution, such as bivariate exponential distribution [16] and bivariate 

gamma distribution [17], is only valid when two variables follow the same PDF. Unfortunately, this 

assumption is not valid in most cases of BFA. For example, the PDF for the mean rainfall intensity of 

a rainfall event is different from that for rainfall duration. The former is generally modeled by the 

log-normal distribution, but the exponential distribution is used for the latter [18]. In this case, the 

copula can be a sound option [19] and many examples where the copula is applied can also be found 

in hydrology and water resources [7,12,18,20]. De Michele et al. [12] analyzed the flood peak and 

flood volume data from Northern Italy using bivariate copulas to check adequacy of dam spillway. 

Zhang and Singh [18] derived bivariate distribution of rainfall variables using copula and tested the 

applicability on the data from the Amite river basin in Louisiana, United States. Mirabbasi et al. [7] 

applied bivariate copulas on drought duration and severity data from Iran and conducted drought 

frequency analysis. 

The objective of this study is to provide a guideline about the selection of two variables for the 

BFA of rainfall events. ‘Rainfall event’ is a basic unit for characterizing storm. In the case of 

‘independent rainfall event’ is defined as a rainfall event which is not correlated with any other 

rainfall events. It is possible to define interdependent rainfall event by separating rainfall events 

with correlation time, which means the minimum time required to make rainfall event independent. 

This correlation time is also referred to Inter-event Time Definition (IETD). 

In Korea, 10 hours is generally applied as the IETD [21,22]. However, this study considered 

various IETD based on frequency of independent rainfall event to determine reasonable IETD. As a 

result, the 12 hours of IETD was effective to separate independent rainfall event. This IETD was 

also considered in this study to separate the independent rainfall events. Before separating the 

rainfall event, a threshold value was applied to distinguish the rain/no rain condition. In this study, 

1 mm/hour was considered for this purpose. 

It is generally accepted that the structure of a rainfall event can be simplified with the 

rectangular pulse model [23–27]. In the rectangular pulse model, a rainfall event is quantified by 

three components; the rainfall duration, the total rainfall depth and mean rainfall intensity. Here, 

the mean rainfall intensity can be calculated by the total rainfall depth divided by the rainfall 

duration. Thus, any two components can fully define the rainfall event and one component must be 

redundant (Figure 1). 

 

  

(a) (b) 

Figure 1. Simplification of an observed rainfall event (a) by a rectangular pulse (b). 

However, a way to properly select the two components of a rainfall event has not been 

established yet and the way that the random selection of two variables may affect the results of the 



Water 2019, 11, 905 3 of 20 

 

BFA has not been confirmed. Therefore, many researchers had performed the BFA by selecting two 

variables through their subjective decision [13,20,28,29]. For example, Fu and Butler [20] selected the 

rainfall duration and the total rainfall depth of a rainfall event to perform the BFA. Jain et al. [29] 

selected the rainfall duration and the mean rainfall intensity for the same BFA. Park et al. [13] used 

the total rainfall depth and the mean rainfall intensity for the BFA. 

In fact, the authors assume that the selection issue of the two variables for the BFA is closely 

related with the multicollinearity issue in regression analysis. The dependency among predictors, 

which is generally called interdependency, deteriorates the quality of estimate result [30]. Thus, the 

two variables should be selected to minimize this problem. This manuscript is composed of a total of 

five sections including introduction and conclusions. Theoretical background of the 

multicollinearity problem and the BFA using copula is summarized in Section 2. As an application, 

the annual maximum rainfall events observed in Seoul, Korea are analyzed in Sections 3 and 4. 

Finally, the conclusions and discussion are given in Section 5. 

2. Theoretical Background 

2.1. Multicollinearity 

2.1.1. Multicollinearity Problem in Regression Analysis 

Regression analysis is conducted to find a relation between two or more variables, of which at 

least one is subject to random variation. For example, when a linear model is concerned between the 

predictors X and response Y, the least square method leads to the estimates 

1ˆ ( )T TX X X Y    (1) 

and the variance-covariance matrix of the estimates is given as follows [31] 

2 1ˆvar( ) ( )TX X     (2) 

Multicollinearity is assumed here as an interdependency condition in X. Multicollinearity can 

thus be defined as a lack of independence or a presence of interdependence. It is generally evaluated 

by the correlation matrix ( )TX X . As interdependence among predictors grows, the correlation 

matrix ( )TX X  approaches singularity and elements of the inverse matrix ( )TX X  become infinite. 

As an extreme case, when perfect linear dependence within a predictor set is secured, a perfect 

singularity on ( )TX X  is resulted and lead a completely indeterminate set of parameter estimates 
̂ . As elements of the inverse matrix ( )TX X  becomes infinite, variances of regression coefficients 

also become infinite and the variance can be allocated completely arbitrarily among predictors 

[32,33]. Similarly, the large variances on regression coefficients produced by interdependent 

variables can lead the low quality of resulting parameter estimates [33,34]. It becomes almost 

impossible to distinguish the independent contribution of a predictor to the variance of the response. 

In the process of analyzing several variables, the multicollinearity is also an important factor 

that distorts the result. Highly correlated variables are the main cause of the multicollinearity 

problem. It is known that the effect of the multicollinearity distortion increases with the increasing of 

the degree of correlation [32,35–37]. If highly correlated variables are included in the multilinear 

regression equation, the predicted result can be distorted due to the multicollinearity problem of 

these variables. This problem is generally evaluated through a quantification of the variance 

inflation from a variable [38–40]. The variance inflation factor is defined as a measure to quantify the 

level of the multicollinearity in a multiple regression analysis. The variance inflation factor can be 

calculated as follows: 

2

1

1
i

i

VIF
R




  (3) 
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where 
iR  is the coefficient of determination that indicates how much the variable can be explained 

by other variables. Commonly, a variable with a variance factor that is higher than four will cause a 

multicollinearity problem [41–43]. 

2.1.2. Possible Multicollinearity Issue in Frequency Analysis 

Frequency analysis is a statistical method used to predict how often certain values of a variable 

phenomenon occurs. In hydrology, it is a tool for determining design rainfalls and/or design 

discharges, which are used as input for designing hydraulic structures. It is also possible to 

determine the return period of a flood event by analyzing the rainfall or discharge time series data. 

The connection between the multicollinearity and the frequency analysis can be found in the 

so-called rainfall intensity formula. In fact, the rainfall intensity formula is derived for estimating the 

rainfall intensity under the given return period and rainfall duration. The general form of the rainfall 

intensity formula is as follows [44]: 

log
n

a b T
I

D c





 (4) 

where I is the rainfall intensity (mm/hour), D is the rainfall duration (hour), T is the return period 

(year), and a, b, c and n are the parameters representing the climate of the study area. 

The relation between the return period and rainfall intensity can easily be found in the rainfall 

intensity formula. First, this equation is solved for T as follows: 

log ( )nb T I D c a     (5) 

or 

logT I     (6) 

where   and   are constants. Above equation says that log(T) can be expressed by a linear 

function of I in case that the rainfall duration D is fixed. 

It is also possible to derive a similar equation for the total rainfall depth R I D  . That is, 

1 1log ( ) ( )n n nb T I D c a I DD c a R D c I a               (7) 

Under the condition that the rainfall intensity I and rainfall duration D are given, the following 

linear relation can be derived: 

logT R     (8) 

However, this linear relation assumption is somewhat excessive as the total rainfall depth R is 

generally proportional to the rainfall duration D. Log(T) may increase rather exponentially as R 

increases. The relation between the log(T) and D is also similar with that of log(T) and R. As can be 

found in Equation (4), their relation is not linear. 

However, at this moment, the authors assume that their relations are all linear. The authors also 

realize that this linear assumption is somewhat immoderate or excessive, but we believe this 

linearization assumption can be used effectively for explaining the possible existence of 

multicollinearity issue in the multivariate frequency analysis of rainfall events. By adding all these 

possible relations, the authors assumed that log(T) is expressed as a multiple linear function of I, D 

and R. 

1 2 3logT I D R            (9) 

It is thus obvious that the possible interdependence among three predictors can cause a 

significant multicollinearity problem even in the frequency analysis. That is, the multicollinearity 

can cause the same problem as in the regression analysis and hinder the effective estimation of 

design rainfall or the return period of a given rainfall event based on frequency analysis. 

2.2. Copula 
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In this study, bivariate frequency analysis was conducted by applying copula. Sklar [19] 

introduced the copula as a tool to derive joint probability distribution (PDF) from several marginal 

PDFs. Any kind of joint PDF can be derived by applying copula on various marginal PDFs. More 

information about copula is summarized in [45–47]. 

This study considered Clayton copula [48], Frank copula [49], Gumbel-Hougaard copula [50], 

and Gaussian copula [51] for the analysis. Among these copula, Clayton, Frank and 

Gumbel-Hougaard are classified as Archimedean copula family and Gaussian is in the class of 

elliptical copula family. These copulas are known for easy application and have many references in 

hydrology area [7,12,18,20]. Only one parameter, which is referred as  , is required to derive the 

joint PDF of copula considered in this study. 

Parameter   for copula can be estimated by calculating Kendall’s  . Kendall’s   is the 

statistic indicating the rank correlation between two target variables. The equation to calculate 

Kendall’s   can be expressed as Equation (10). 

2

' n n

n

I J
Kendall s

C



  (10) 

In Equation (10), a total number of target data is n. If two target data are defined as ( ,  )i iX Y  

and ( ,  )j jX Y , 
nI  is the number of cases that ( )( ) 0i j i jX X Y Y    and 

nJ  is the number of cases 

that ( )( ) 0i j i jX X Y Y   . 
2nC  is the 2-combination from a given set n. 

Each copula has different relationship between Kendall’s   and parameter  . For Clayton 

copula, the relationship Kendall’s   and parameter   is rather simply defined as 
2








. 

Gumbel-Hougaard copula also has simple relationship as 
1

1


  . In the case of Gaussian copula, 

the relationship is derived as 
2

arcsin 


 . The relationship for Frank copula is far complicated. It is 

defined as follows: 

14 ( )
1 4

D 


 
    (11) 

where 1( )D   can be calculated by 
0 1t

t
dt

e



 . 

There is a valid range of parameter   for each copula and only the parameter   in the valid 

range can be applied for the analysis. The parameter   for the Clayton copula must be defined in 

[0,  ) . The valid range for the Gumbel-Hougaard copula is [1,  ) . In the case of Gaussian copula, 

the parameter   is valid within [ 1,  1] . Frank copula can be applied with any parameter   except 

for the zero. 

Equations (12–15) are the joint PDFs of the copula considered in this study. Respectively, 

Equations (12–15) are for Clayton, Frank, Gumbel-Hougaard and Gaussian. Here, 
1  and 

2  are 

the cumulative probabilities of the bivariate data. These values can be calculated using the marginal 

PDF. In the case of 1 , it is the inverse function of the standard normal distribution. 

1/

1 2 1 2( ,  ) ( 1)ClaytonC u u u u         (12) 

1 2
1 2

1 (exp( ) 1)(exp( ) 1)
( ,  ) ln[1 ]

exp( ) 1
Frank

u u
C u u

 

 

   
  

 
  (13) 

1/

1 2 1 2( ,  ) exp( (( ln( )) ( ln( ))  ) )Gumbel HouhaardC u u u u  

        (14) 

1 1
1 2

2 2
( ) ( )

1 2 22- -

1 2
( ,  ) exp( )

2(1 )2 1

u u

Gaussian

s w sw
C u u dsdw



 

  

 

 
 


    (15) 

Among four copulas, this study selected an optimal one for the analysis. Since there are three 

pairs of bivariate data, three optimal copulas had to be determined. This study estimated the 

Akaike information criterion (AIC) to select best copula for analysis. Theoretically, the AIC may not 
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be applied to test a goodness-of-fit of model, however, this statistic can be used to determine the 

optimal model among many other admissible models available [18]. 

Generally, the maximized likelihood statistic is required to calculate the AIC. Alternatively, the 

mean square error (MSE) between the cumulative probability from copula and that from empirical 

equation can be used to estimate the AIC [52,53]. This study calculated the MSE to estimate the AIC 

of each copula. For empirical cumulative probability, the Gringorten plotting position formula [54] 

was used. Then, the MSE can be calculated by the mean of sum of squared error. Finally, the AIC 

can be estimated using the following Equation (16). 

log( ) 2( )AIC n MSE PAR   (16) 

In Equation (16), n is the number of data, and PAR is the number of fitted parameter. The AIC 

calculated by Equation (16) is the penalty statistic. That is, the model with lower AIC can be 

considered as better model for given data. Therefore, this study determined the optimal copula by 

selecting the copula with the lowest AIC. 

In this study, the optimal copula determined by the lowest AIC was additionally tested with 

the Kolmogorov-Smirnov (K-S) statistic. The K-S statistic is equal to the maximum absolute 

difference between the cumulative probability from copula and that from empirical equation [55]. If 

the calculated K-S statistic is lower than the critical value of the K-S test, the goodness-of-fit of the 

copula is guaranteed. For the critical value of the K-S test, the significance level of 5% was 

considered. 

Exceedance probability of bivariate data can be calculated with the determined optimal copula. 

Finally, the return period of bivariate data can then be estimated using the calculated exceedance 

probability. This study considered three types of return period [12,56]. The type of return period is 

defined based on the method used to calculate the exceedance probability. First, Equation (17) 

shows the return period of an OR case. An OR case return period is calculated with the probability 

that either one or two variables exceed the threshold. 

1

1 ( ( ),  ( ))
or

X i Y i

T
C F x F y




 (17) 

where ( ( ),  ( ))X i Y iC F x F y  is the joint cumulative probability calculated by the copula. Next, an AND 

case of return period is defined as Equation (18). In this case, the exceedance probability is 

calculated with the probability that both two variables exceed the threshold. 

1

1 ( ) ( ) ( ( ),  ( ))
and

X i Y i X i Y i

T
F x F y C F x F y


  

  (18) 

In Equation (18), ( )X iF x and ( )Y iF y  are the cumulative probabilities calculated by their 

marginal probability distributions. Finally, Equation (19) is for the COND case of the return period. 

This return period is based on the event of X x  given Y y . 

1

1 ( ( ),  ( ))
X Y

X i Y i

T

C F x F y
y







 
(19) 

In this study, the bivariate frequency analysis was conducted to calculate an AND case return 

period. In addition, the return period for OR and COND cases were considered to validate the 

results of the bivariate frequency analysis. 

3. Annual Maximum Rainfall Events in Seoul, Korea 

In this study, the annual maximum rainfall events of Seoul from 1961 to 2010 were secured for 

bivariate frequency analysis [57]. Freund’s bivariate exponential mixture distribution was applied to 

select the annual maximum rainfall events. In this case, the total rainfall depth and mean rainfall 

intensity were used for frequency analysis. The parameters of Freund’s bivariate exponential 
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distribution were estimated annually. It is generally known that the annually estimated parameters 

are better to consider the different rainfall characteristics of wet and dry years [58]. Since the number 

of independent rainfall events is more than 30 every year, there was no serious problem in 

estimating the parameters annually. Based on frequency analysis result, annual maximum rainfall 

event with the highest return period for each year was determined. 

The basic statistics of the rainfall duration, total rainfall depth, and mean rainfall intensity of the 

rainfall events are summarized in Table 1. The mean of the rainfall duration was 21.7 hour and that 

of the total rainfall depth was 172.1 mm. For the mean rainfall intensity, the mean was calculated to 

be 12.3 mm/hour. In the case of the standard deviations, they were calculated to be 19.0 hour, 102.9 

mm, 7.7 mm/hour for the rainfall duration, total rainfall depth, and mean rainfall intensity, 

respectively. The ranges of the rainfall duration, total rainfall depth, and mean rainfall intensity 

were 2 to 94 hour, 39.4 mm to 446.0 mm and 2.9 mm/hour to 32.5 mm/hour, respectively. 

Table 1. The means, standard deviations, and ranges of three components of the annual maximum 

rainfall events observed in Seoul, Korea. 

 Mean Standard deviation Range 

Rainfall duration  

(hour) 
21.7 19.0 2.0–94.0 

Total rainfall depth 

(mm) 
172.1 102.9 39.4–446.0 

Mean rainfall 

intensity  

(mm/hour) 

12.3 7.7 2.9–32.5 

 

Before conducting statistical analysis including frequency analysis, it is essential to check the 

homogeneity and stationarity of the data. In this study, the Bartlett’s test has been conducted to 

investigate the homogeneity of the components of independent rainfall events. Further, the authors 

found that the null hypothesis of homogeneity was rejected with p-value less than 0.001. For this 

reason, t-test in this study was conducted under unequal variances. Moreover, the Box-Pierce and 

Ljung-Box test were applied to examine the null hypothesis of independence among rainfall events. 

The p-values for both Box-Pierce and Ljung-Box test were all estimated to be higher than 0.05 at lags 

up to 10. Based on this result, the authors could assume the independence of the rainfall events 

considered in this study. Finally, in the case of stationarity, the Augmented Dickey-Fuller test was 

applied on each component of the independent rainfall events. As a result, all of three components 

were figured out to be stationary with the p-value less than 0.05. The bivariate frequency analysis in 

this study could thus be proceeded under assumption of stationarity. 

The return period of each annual maximum rainfall event was calculated using the rainfall 

intensity formula (RIF) suggested by Bernard [59]. 

x

b

KT
I

D
   (20) 

where I is the rainfall intensity (mm/hour), D is the rainfall duration (hour), T is the return period 

(year), and K, x and b are the parameters representing the climate of the study area. The parameters 

K, x and b were determined as 8.0, 0.5 and 0.5, respectively, to agree with the statistical 

characteristics of the observed annual maximum rainfall events observed in Seoul, Korea [57]. With 

these parameters, the return period T for each annual maximum rainfall event could be calculated by 

solving Equation (20). 

Figure 2 shows the basic components of annual maximum rainfall events and the calculated 

return periods. The longest return period was calculated to be 129.7 years for the rainfall event 

observed in 1972, whose duration was 24.0 hours and total rainfall depth 446.0 mm (i.e., mean 

rainfall intensity 18.6 mm/hour). Among 50 annual maximum rainfall events considered in this 
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study, 4 events were found to have return periods less than 10 years (i.e., T < 10), 30 events less than 

30 years (i.e., 10 < T < 30), 8 events less than 50 years (i.e., 30 < T < 50), and the remaining 8 events 

longer than 50 years (i.e., T > 50). 

 

 

Figure 2. Variation of the basic components of the annual rainfall events observed in Seoul Korea and 

their return periods. 

4. Evaluation of Multicollinearity Problem with Observed Data 

4.1. Results of Bivariate Frequency Analysis 

First, the Kendall’s   was calculated to estimate the parameter of the copula. The Kendall’s   

for the total rainfall depth and rainfall duration was 0.57 and that for the mean rainfall intensity and 

the rainfall duration was −0.61. In the case of the total rainfall depth and the mean rainfall intensity, 

Kendall’s   was −0.18. As expected, a positive correlation was estimated between the total rainfall 

depth and the rainfall duration and a negative correlation was estimated between the mean rainfall 

intensity and the rainfall duration. These three Kendall’s   in this study were also found to be 

statistically significant based on the p-value of the t-test. The p-value for total rainfall depth and 

rainfall duration was estimated to be lower than 0.001. It was 0.0020 for the mean rainfall intensity 
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and the rainfall duration, and it was also lower than 0.001 for the total rainfall depth and the mean 

rainfall intensity. 

Table 2 shows the parameter   estimated using the relationship between the parameter   

and the Kendall’s  . In this table, NA represents the invalid estimate of the parameter   because it 

is beyond the valid range. Especially, the valid range of the parameter   for the Clayton and 

Gumbel-Hougaard models is 1  . 

Table 2. The parameter   estimated for each data pair with different copulas. 

Copula model 
Total rainfall depth 

and rainfall duration 

Mean rainfall 

intensity and rainfall 

duration 

Total rainfall depth 

and mean rainfall 

intensity 

Clayton 2.65 NA NA 

Frank 7.17 −1.19 −1.02 

Gumbel-Hougaard 2.32 NA NA 

Gaussian 0.78 −0.82 −0.28 

This study determined the PDF for each variable of the annual maximum rainfall event to 

conduct the BFA. As a result, the exponential distribution, the Gumbel distribution and the gamma 

distribution were chosen for the rainfall duration, total rainfall depth and mean rainfall intensity, 

respectively; these are frequently used in the modeling of rainfall events [60–62]. Each probability 

distribution was goodness-of-fit tested by the Kolmogorov-Smironov test computed via a 

Monte-Carlo procedure. The p-value for the rainfall duration with exponential distribution was 

calculated as 0.5216, and that for the total rainfall depth with Gumbel distribution was 0.7800. 

Finally, the p-value for the mean rainfall intensity with gamma distribution was 0.7023. The high 

p-values for these three probability distributions indicate that they cannot be rejected at 0.05 

significance level. 

Before the optimal copula is determined, this study conducted the goodness-of-fit test using the 

function of “gofCopula()” provided by the R package “copula”[63]. The p-values for the three cases 

of bivariate analysis could be calculated as Table 3. As can be seen in this table, the p-values of all 

copulas in this study were high enough to confirm the goodness-of-fit. That is, all copulas were 

found to be statistically significant. 

Table 3. P-values calculated for three bivariate data pairs of the annual maximum rainfall events 

observed in Seoul, Korea. 

Case Clayton Frank 
Gumbel- 

Hougaard 
Gaussian 

Total rainfall depth and 

rainfall duration 
0.4461 0.6009 0.5120 0.9306 

Mean rainfall intensity 

and rainfall duration 
NA 0.3841 NA 0.6199 

Total rainfall depth and 

mean rainfall intensity 
NA 0.3012 NA 0.3412 

 

Next, this study estimated MSE and the AIC to select optimal copula for each bivariate data 

pair. Estimated MSE and AIC are summarized in Table 4. The optimal copula was determined as the 

copula with the lowest MSE and AIC. Therefore, the optimal copula for the total rainfall depth and 

the rainfall duration was found to be Clayton copula. In the case of the mean rainfall intensity and 

the rainfall duration, the Gaussian copula was selected as the optimal copula. For the total rainfall 

depth and the mean rainfall intensity, the Frank copula was chosen. 
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Table 4. The mean square errors (MSEs) and Akaike information criterions (AICs) calculated for 

three bivariate data pairs of the annual maximum rainfall events observed in Seoul, Korea. 

 Case Clayton Frank 
Gumbel- 

Hougaard 
Gaussian 

MSE 

Total rainfall depth and 

rainfall duration 
0.000352 0.000916 0.0216 0.000881 

Mean rainfall intensity 

and rainfall duration 
NA 0.00449 NA 0.00161 

Total rainfall depth and 

mean rainfall intensity 
NA 0.00132 NA 0.00168 

AIC 

Total rainfall depth and 

rainfall duration 
−156.206 −149.911 −81.323 −150.757 

Mean rainfall intensity 

and rainfall duration 
NA −115.382 NA −137.620 

Total rainfall depth and 

mean rainfall intensity 
NA −141.971 NA −136.681 

Figure 3 is the scatter plot indicating the cumulative probability calculated by the Gringorten 

plotting position formula and the optimal copula. In Figure 3, dotted lines represent the critical 

value to examine the goodness-of-fit of copula. In this study, the critical value was calculated to be 

0.192 for n = 50 and 5% of the significance level. All the points from three bivariate data pairs found 

to be within the upper and lower limit of K-S test. Therefore, all the optimal copula in this study can 

be regarded as verified one under K-S test. 

 

(a) 
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(b) 

 

(c) 

Figure 3. K-plot and Kolmogorov-Smirnov (K-S) test criteria of three optimal copula models for the 

annual maximum rainfall events observed in Seoul, Korea. (a) Clayton copula model; (b) Gaussian 

copula model; (c) Frank copula model. 

The BFA was then conducted with the optimal copula model that was selected for each 

bivariate data of the annual maximum rainfall events. As a result, the AND return period andT  was 

estimated for each rainfall event, which was then compared with the return period calculated by the 

RIF (Equation (20)). In Figure 4, the return periods estimated using the BFA are presented by contour 

lines and those calculated using the RIF by solid circles. In addition, for easier comparison, different 

darkness was applied to fill the circle. For example, white color was applied to those rainfall events 

whose return periods were calculated to be less than 10 years by the RIF (i.e., T < 10). The light grey 

was applied to those rainfall events whose return periods were less than 30 years (i.e., 10 < T < 30) 

and the dark grey was applied to those rainfall events whose return periods were less than 50 years 

(i.e., 30 < T < 50). Finally, black color was applied to those rainfall event whose return period was 

calculated to be longer than 50 years (i.e., T > 50). 
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(a) 

 

(b) 

 

(c) 

Figure 4. Comparison of return periods estimated by the bivariate frequency analysis (BFA) and 

those calculated by the rainfall intensity formula (RIF). (a) Total rainfall depth and rainfall duration; 

(b) Mean rainfall intensity and rainfall duration; (c) Total rainfall depth and mean rainfall intensity. 
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Figure 4 shows the way that the return period of a rainfall event can be very different from that 

which has been estimated from the BFA. As the definitions of the two return periods in this figure 

are not identical, the results of frequency analysis can also be different [30,64]. Still, the authors 

expected to find a certain extent of consistency between the return period calculated by the RIF and 

the return period estimated by the BFA. However, this expectation was not fulfilled in the case 

where the total rainfall depth and the rainfall duration were considered as the two variables, as can 

be seen Figure 4a. The return periods of the rainfall events with the same return period calculated by 

the RIF could be totally different. That is, there are so many cases where the return period estimated 

by BFA is totally different from the return period calculated by the RIF. This finding indicates that 

the result of the BFA for the total rainfall depth and the rainfall duration does not reflect the return 

period calculated by the RIF. 

The return period calculated by the BFA in Figure 4b,c is somewhat proportional to the return 

period calculated by the RIF. This is more vivid in Figure 4c for which the total rainfall depth and the 

mean rainfall intensity were considered. This trend is still valid, even though it is not strong, for the 

case where the mean rainfall intensity and the rainfall duration were considered (Figure 4b). 

Obviously, when the rainfall duration is involved, the proportional trend between the return period 

calculated by the RIF and the return period estimated by the BFA becomes weak. 

4.2. Effect of Multicollinearity on the Estimated Return Periods 

The authors assumed that the results of the frequency analysis (i.e., the return period) for the 

same rainfall event should be the same regardless of the selected two variables (out of three). For 

example, this study considered a rainfall event with its duration of 2 hours and rainfall intensity of 

50 mm/hour (i.e., the total rainfall depth is 100 mm in 2 hours). Among three variables, the rainfall 

intensity, rainfall duration and total rainfall depth, one is redundant as it is calculated by the other 

two. Now, we can select any two variables for the bivariate frequency analysis. Regardless of the two 

variables selected, it is expected to obtain a similar result of bivariate frequency analysis (i.e., the 

return period) for the given rainfall event. 

To confirm this assumption, scatter plots were made to compare the return period calculated by 

RIF and the return period estimated by the BFA (Figure 5). In this figure, the x-axis represents the 

return period calculated by the RIF on a linear scale and the y-axis represents the resulting return 

period estimated by the BFA on a logarithmic scale. The authors tested all the linear, semi-log and 

log-log graphs and found that the semi-log was the best to search a possible relation between the 

two variables. 

 

(a) 
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(b) 

 

(c) 

Figure 5. Scatter plots of return periods estimated by the BFA and those calculated by the RIF. (a) 

Total rainfall depth and rainfall duration; (b) Mean rainfall intensity and rainfall duration; (c) Total 

rainfall depth and mean rainfall intensity. 

When the three scatter plots were compared, firstly it was found that the three results of the 

BFA are not consistent at all. The overall result is very dependent on the two variables that are 

considered in the frequency analysis. Even though the two variables were selected from the same 

rainfall event data, the results of the frequency analysis are totally different from each other. A closer 

look at this figure shows that, as can be seen in Figure 5a, the return periods that were estimated 

from the analysis of the total rainfall depth and the rainfall duration do not show any obvious 

increasing trends with respect to the return period. That is, the return period calculated by the RIF 

did not affect the return period. A rather consistent increasing trend was, however, found in Figure 

5b,c. Between the cases that are shown in Figure 5b,c, Figure 5c more effectively shows the way that 

the return period estimated by the BFA is more similar with the return period calculated by the RIF 

and that the range of the return period estimated by the BFA is also much smaller than that of Figure 

5b. 

The above findings are also summarized in Table 5 for a comparison. As shown in Table 5, the 

means of the three cases are very different from one another. The mean for the case where the total 

rainfall depth and the mean rainfall intensity were considered is the lowest at approximately 31.1 
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years, but it is rather high at approximately 34.1 years for the case for which the total rainfall depth 

and the rainfall duration were considered. The result is extreme for the case for which the mean 

rainfall intensity and the rainfall duration were considered, which shows that the mean return 

period is higher than 100 years. Even in the case for which the total rainfall depth and the mean 

rainfall intensity were considered, the range of the estimated return periods is rather absurd. 

Table 5. The mean and range of the return period (years) for annual maximum rainfall events 

observed in Seoul, Korea. 

Case Mean Range 

Total rainfall depth and 

rainfall duration 
34.1 1.1–1,105.0 

Mean rainfall intensity and 

rainfall duration 
118.2 2.1–1,289.4 

Total rainfall depth and mean 

rainfall intensity 
31.1 1.3–629.6 

 

In fact, above results could be expected by comparing the variance inflation factors estimated 

for the three components that are considered in this study. The variance inflation factor of the 

rainfall duration was estimated as 4.87 and that of the total rainfall depth was estimated as 3.65. In 

the case of the mean rainfall intensity, the variance inflation factor is 1.81. As a result, the rainfall 

duration is highly vulnerable to the multicollinearity problem because its variance inflation factor is 

higher than four. It could also be concluded that the BFA for which the total rainfall depth and the 

mean rainfall intensity are used is more reasonable than the use of the bivariate data including the 

rainfall duration. In case of considering the rainfall duration, high uncertainty about the estimation 

of return period cannot be avoided.  

However, a note of caution is due here. In fact, several ties (i.e., repeated values) are observed 

for the rainfall duration. As discussed in [65], on the one hand, an issue of model identifiability may 

arise (both considering the marginals and the copula at play), and on the other hand, the assessment 

of the return periods may be affected. Several randomization techniques have been outlined in 

[66,67] in order to deal with ties, but in the present work we pass over the issue. 

The explanation in the previous paragraph could also be confirmed by the regression analysis 

based on Equation (9). First, the regression equation derived was as follows: 

log 0.74 0.0031 0.0045 0.068T D R I      (21) 

The significance of the above equation was found to be very high (p-value 162 10  ). However, the 

significance of those predictors varied. The p-values for I and R were found to be much smaller than 

that of D. This result indicates that there is some problem in relating the return period with all those 

three predictors. 

The authors thus considered the multicollinearity issue to decrease the number of predictors. 

One variable, the rainfall duration, was excluded in this step as its variance inflation factor was very 

high to be 4.87. In general, the variable with its variance inflation factor higher than 4 is excluded in 

the multivariate regression analysis [43–45]. Now the regression equation with two predictors, the 

total rainfall depth R and the mean rainfall intensity I, was derived again. 

log 0.68 0.0049 0.064T R I     (22) 

The significance for above Equation (22) was still very high (p-value 162 10  ). Furthermore, 

this equation did not contain any variable statistically insignificant. This result indicates that the 

multicollinearity issue was removed. Furthermore, these results indicate that it is important in the 

multivariate frequency analysis of rainfall events to consider the multicollinearity issue. This 

multicollinearity among predictors can hinder the effective estimation of the return period of a given 

rainfall event. 
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Additionally, the choice of the method to calculate return period has a significant influence on 

the outcome [68]. For this reason, the OR case return period and the COND case return period were 

also estimated using total rainfall depth and mean rainfall intensity. 

Figure 6 shows the estimated OR case return period and conditional return period with the 

return period calculated by the RIF. In the case of OR case return period, there were many results 

overlapped by other results. Still, there was a consistency between the OR case return periods 

calculated by BFA and those calculated by the RIF. There was also a similar tendency of results for 

the case of conditional return period. Therefore, the results of OR case return period and conditional 

return period found to support the result of this study derived by considering multicollinearity. 

  

(a) (b) 

Figure 6. Scatter plots of OR case and Conditional return periods estimated by the BFA and those 

calculated by the RIF. (a) OR case return period; (b) Conditional return period. 

In the study from Kroll and Song [69], the regression model results with/without 

multicollinearity issue have been compared based on the prediction ability. The variables with the 

high variance inflation factor have been screened for the regression model. As a result. it was 

concluded that the negative effect of multicollinearity could be magnified without screening, as the 

size of sample (or degree of freedom) decreased. In this study, the authors suggest selecting the 

variables having small variation inflation factor for the bivariate frequency analysis. Actually, this 

conclusion about excluding variables with the multicollinearity problem well agrees with the 

conclusion from Kroll and Song [69]. 

5. Conclusions 

A rainfall event simplified by a rectangular pulse is defined by three components: the rainfall 

duration, the total rainfall depth, and mean rainfall intensity. However, as the mean rainfall 

intensity can be calculated by the total rainfall depth divided by the rainfall duration, any two 

components can fully define the rainfall event (i.e., one component must be redundant). In this 

study, the selection issue of the two variables for the BFA was discussed. This issue is possibly 

associated with the multicollinearity in multivariate regression analysis. That is, high 

interdependency among predictors cause the increase of the variance of the regression coefficient 

and finally lead to the low quality of resulting estimate. To verify this assumption, the annual 

maximum rainfall events collected in Seoul, Korea was analyzed as an example. The BFA was 

repeated three times with different pairs of the two variables among the three components of the 

rainfall events, i.e., rainfall duration, total rainfall depth, and mean rainfall intensity. Finally, the 

return periods of the rainfall events were estimated and compared with those calculated by the RIF. 
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As a result of the BFA of the annual maximum rainfall events, the return period of a rainfall 

event was estimated very differently for each event among the three cases that are considered in this 

study. For example, return period of the rainfall event observed in 2010 range from 6.6 years to 295.0 

years depending on the two variables selected. This dependency of the resulted return period on the 

selected variable pair could be explained effectively using the multicollinearity among the variables. 

Among the three variables that are considered in this study, the rainfall duration caused the most 

serious multicollinearity problem. As a result, the resulting return period of the BFA could be most 

biased when the rainfall duration was considered in the BFA. This result indicates that the result of 

the BFA is most realistic when the total rainfall depth and the mean rainfall intensity were 

considered. The return periods estimated by the BFA are very consistent with return periods 

calculated by the RIF. 

In conclusion, the result of the BFA with the total rainfall depth and the mean rainfall intensity 

was confirmed as the most reasonable case among the three cases for which different pairs of the two 

variables were considered. This result also completely agreed with the multicollinearity issue among 

the correlated predictors. Similar results with this study are expected in other regions, unless the 

correlation structure among mean rainfall intensity, rainfall duration and the total rainfall depth is 

totally different. However, it is also true that the result can vary a bit region by region, which is 

obviously dependent upon the regional climate. 
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