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Abstract: Modeling the water quality of rivers and assessing the effects of changing conditions is
often hindered by a lack of in situ measurements for calibration. Here, we use a combination of
satellite measurements, statistical models, and numerical modeling with CE-QUAL-W2 to overcome
in situ data limitations and evaluate the effect of changing hydrologic and climate conditions on
water temperature (Tw) in the Tigris River, one of the largest rivers in the Middle East. Because few in
situ estimates of Tw were available, remotely-sensed estimates of Tw were obtained from Landsat
satellite images at roughly 2 week intervals for the year 2009 at the upstream model boundary (Mosul
Dam) and two locations further downstream, Baeji and Baghdad. A regression was then developed
between air temperature and Landsat Tw in order to estimate daily Tw. These daily Tw were then used
for the upstream model boundary condition and for model calibration downstream. Modeled Tw at
downstream locations agreed well with Landsat-based statistical estimates with an absolute mean
error of <1 ◦C. A model sensitivity analysis suggested that altering upstream river discharge had little
impact on downstream Tw. By contrast, a climate change scenario in which air temperatures were
increased by 2 ◦C resulted in a 0.9 ◦C and 1.5 ◦C increase in Tw at Baeji and Baghdad, respectively.
Since Tw is a fundamental state variable in water quality models, our approach can be used to improve
water quality models when in situ data are scarce.
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1. Introduction

The Tigris River is one of the largest rivers in the Middle East and is one of two primary rivers,
along with the Euphrates River, that provide the primary source for drinking and irrigation water in
Iraq. Water quality in the Tigris River affects major cities along the river such as Mosul, Baeji, Tikrit,
Samarra, Baghdad, Kut, and Misan. Pollution discharges in the Tigris River can also affect water
quality in the Euphrates River since both rivers are connected through Tharthar Lake, an artificial lake
located 100 km northwest of Baghdad [1].

A primary indicator of water quality is water temperature Tw, since it influences chemical
and biochemical processes in waterbodies [2,3]. Water temperature also directly impacts the
flora and fauna of aquatic ecosystems, and eutrophication processes [4], plays an essential role
in altering bio-geochemical processes of a waterbody [5], and affects timing of fish lifecycle events
(e.g., spawning) [6]. Changes in water temperature can be driven by climate variations [7], and changes
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in thermal pollution from industrial processes [8] and land use [9]. Changes in a stream’s water
temperature were found to be strongly associated with changes in air temperature as a result of climate
change, and to a lesser extent by changes in the stream’s flow rate [10].

In a developing country such as Iraq, conventional monitoring of water quality (including
Tw) is challenging due to economic and logistical challenges. We therefore investigate whether a
combination of satellite remote sensing data and numerical modeling can fill this knowledge gap.
Remote sensed images have been used to monitor water temperature, turbidity, and chlorophyll-a
in waterbodies [5,11,12] and are well-suited to define climatological averages, assess spatial patterns
due to river flow and other forcing factors [13], and study long-term changes in natural resources [14].
Remote sensed images therefore provide an attractive way to assess water temperature, in particular
because of their spatial coverage and ability to fill gaps in the in situ record [15]. To estimate seasonal
changes in Tw at the river length scale, we use the Landsat 5 thematic mapper (TM) and Landsat 7
enhanced thematic mapper plus (ETM+), due to its roughly 2 week return period and spatial resolution
of 60–120 m. Since the width in the Tigris River varies between 150–300 m, the spatial resolution of
satellite pixels is adequate for estimating Tw. Brightness temperature (BT) is extracted from the spectral
radiance in the thermal bands of Landsat TM/ETM+. An emissivity correction is required to obtain the
radiant temperature in waterbodies and may vary with sediment concentration, algae concentration,
or other water properties [16].

Many studies have validated the use of Landsat data and, more generally, long-wave infrared
radiation to estimate surface water temperature and have explained the advantages and potential
drawbacks of this approach [17–24]. A typical maximum uncertainty of 0.5 ◦C was estimated for
different water body types [16]. Within a river, the action of bottom-derived turbulence produces
boils that break the surface and introduce spatial variations in water temperature as much as 0.5–1 ◦C
during periods of strong surface heating or cooling (e.g., [25]). Averaged over a large region of boils
(as a Landsat image does), the actual bias or difference between the average surface temperature and
in situ temperature is much smaller and is on the order of 0.1–0.2 ◦C [25]. Recording only the surface
of the water body is one limitation of using remote sensing [22]; spatial resolution, spectral resolution,
radiometric resolution, and temporal resolution are other limitations of using satellite images. Further
limitations and sources of error in a river can include contamination by surface effects, clouds, and
shadows from clouds, buildings, and other objects [16]. Nonetheless, these errors and biases are small
compared to water temperature changes over the seasonal time-scale considered here, provided that
careful data validation and quality assurance techniques are applied to remove spurious data.

Landsat images are easily available and provide spatially and temporally continuous earth
observations. Landsat TM/ETM+ images might effectively be used to link spatial and temporal
influences on surface water temperature with in situ observations [17]. Coarse spatial resolution
imagery from moderate resolution imaging spectroradiometer (MODIS) have been widely used to
assess spatial and temporal temperature variation in large lakes and reservoirs [26], while medium
spatial resolution satellite imagery from Landsat have been used to map and quantify the longitudinal
and temporal thermal patterns along rivers [27]. Therefore, Landsat thermal images can accurately be
used to estimate water temperature in river systems due to providing finer spatial resolution compared
with MODIS. Compared with airborne remote sensed images, which are always limited to small
areas in most cases, thermal images acquired from Landsat sensors provide a long time period global
coverage [21].

In this paper, we investigate the feasibility and utility of: (1) using satellite remote sensing to
estimate seasonal patterns of Tw in the Tigris River; (2) using satellite estimates of Tw and in situ
meteorological data to estimate daily and synoptic-scale variations in Tw (e.g., reaction to heat waves);
(3) integrating remote sensing with numerical modeling, and (4) using numerical modeling to study
the impacts on Tw of changing upstream hydrological conditions and future climate change.
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2. The Tigris River Study Area

Along with the Euphrates River, the 1850 km long Tigris River forms the primary freshwater
system in Iraq. About 58% of the Tigris basin lies within Iraq with a catchment area of 253,000 km2.
The average annual flow of the Tigris River is 672 m3/s as it enters Iraq with a mean average of 701
m3/s between 1960–1984 dropping to 596 m3/s between 1985–2008 [28]. Generally, peak flows in the
Tigris River occur between April and May. Our study area extends from Mosul Dam (River Km, Rkm,
0) to Kut Barrage (Rkm 880) as shown in Figure 1. Four tributaries join the Tigris River study area:
The Upper Zab (Rkm 120), the Lower Zab (Rkm 240), Adhaim River (Rkm 458), and Diyala River (Rkm
605). Water from the Tigris River at Samarra Barrage located 125 km upstream of Baghdad is diverted
to Tharthar Lake, an artificial lake located 100 km northwest of Baghdad through the Tigris–Tharthar
canal, 75 km in length. This water transfer was originally conceived to prevent flooding in Baghdad.
High saline water is diverted from Tharthar Lake to the Tigris River during dry seasons through the
65 km long Tharthar–Tigris canal. This canal enters the Tigris River 25 km upstream of Baghdad.
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Figure 1. The Tigris River study area from Mosul Dam (River km 0) to Kut Barrage (River km 880).

3. Methodology

The thermal band of the Landsat 5 thematic mapper (TM) and Landsat 7 enhanced thematic
mapper plus (ETM+) sensors were used to estimate Tw throughout the study domain. We focus
on the year 2009 since both daily flow and meteorological data were available for this year, though
selected images were obtained from the year 2004 to validate our approach using sparse in situ Tw.
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Satellite-based estimates of Tw were then used in conjunction with daily air temperature measurements
to develop a statistical model of Tw. The statistical model then formed the model boundary condition
for Tw at Mosul Dam and enabled model verification at selected downstream locations.

3.1. Satellite Data Acquisition

Publically available Landsat archives were accessed from the US Geological Survey (USGS)
database at http://glovis.usgs.gov/. Three Landsat images were stitched together to cover the Tigris
River study area (Figure 1) including path/row 170/35, 169/36, and 168/37; as a result, images were
typically made on different days and a synoptic view of the entire study region was rarely available.
We used thermal bands (band 6) level 1 and level 2 of both Landsat 5 TM and Landsat 7 ETM+ for the
simulated year of 2009; level 2 data were used to define clouds, land pixels, and data quality, while
level 1 data were used for actual Tw estimates. Generally, Landsat images were acquired at 10:30 AM
local time in Iraq with (7000 × 8000) pixels each with a spatial resolution of 120 × 120 m and 60 × 60 m
for thermal bands of Landsat 5TM and Landsat 7 ETM+ respectively.

3.2. Estimation of Surface Water Temperature of the Tigris River

To estimate Tw, the digital number associated with each Landsat pixel was converted into radiance
and then into the brightness temperature (BT) using the inverse of Planck’s law [29–31]. An emissivity
correction was applied to estimate the radiant temperature of the Tigris River. An emissivity of 0.975
was applied and was assumed constant throughout the year. Thirty-six Landsat images were available
to estimate Tw at Mosul Dam (upstream model boundary), while 20 and 26 Landsat images were
available to estimate Tw at Baeji and Baghdad, respectively. Table 1, Table 2, and Table 3 list Landsat
images used in this study to estimate Tw at Mosul Dam, Baeji, and Baghdad, respectively. Level 2
data were used to remove land-pixels and pixels contaminated by clouds. To reduce the noise in the
remaining pixels, a boxed region of 2 × 2 km was defined at Mosul Dam, Baeji, and Baghdad (see
Figure 2), and the median value of water temperature within the box region was used to estimate
Tw (see e.g., [29]). We validated this approach using in situ estimates of Tw (10 sampling points) (see
chapter three in [32]) at a station located 3 km upstream of the confluence of the Tigris River with the
Tharthar–Tigris canal for the period from June through December of 2004. The comparison showed a
significant correlation between satellite-based Tw and field data, with an R2 value of 0.92 and a p-value
of 4 × 10−6. The same method was used to estimate Tw at Baeji and Baghdad using a combination of
Landsat 5 TM and Landsat 7ETM+. Figure 3 shows snapshots of Tw at both Baeji and Baghdad during
different times of the year. Seasonal variability of ~20 ◦C is observed at both locations between winter
and summer. Water is generally slightly warmer in Baghdad, though the lack of field data precludes
direct analysis. Some spatial variability and error are evident in each image, caused for example by
bridges in Baghdad, contamination from land pixels, or cloud effects not captured by Level 2 data.
We choose a measurement location away from obvious sources of bias and our median filter reduced
the effects of outliers; however, some bias in each measurement remained possible. Nevertheless, as
shown below, the good correlation of Landsat Tw with meteorological measurements (Section 3.3) and
sparse in situ data validated our approach and suggested that errors were primarily random and not
systematic. Moreover, the good comparison between Landsat Tw and our process-based numerical
model (see results) also suggested that the satellite images were correctly capturing both seasonal and
shorter-time scale fluctuations.

http://glovis.usgs.gov/
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Table 1. Landsat images used to estimate Tw in the Tigris River at Mosul.

Path/Row
169/35 Date JDAY 2009 Cloud

Cover %
Path/Row

170/35 Date JDAY 2009 Cloud
Cover %

LE7

4 February 2009 35 3

LE7

11 November 2009 42 8
27 May 2009 147 6 2 May 2009 122 0
28 June 2009 179 0 18 May 2009 138 0
14 July 2009 195 0 3 June2009 154 0
30 July 2009 211 0 5 July 2009 186 0

15 August 2009 227 0 28 December 2009 362 12
31 August 2009 243 0

LT5

26 May 2009 146 1
16 September 2009 259 14 13 July 2009 194 0

2 October 2009 275 0 29 July 2009 210 0
18 October 2009 291 0 30 August2009 242 0

LT5

3 May 2009 123 1 15 September 2009 258 0
19 May 2009 139 2 1 October 2009 274 0
4 June2009 155 0 17 October 2009 290 0

20 June 2009 171 5
6 July 2009 187 5

22 July 2009 203 1
7 August 2009 219 1
23 August 2009 235 0

8 September 2009 251 0
24 September 2009 267 5

10 October 2009 283 0
26 October 2009 299 1

11 November 2009 315 0

Table 2. Landsat images used to estimate Tw in the Tigris River at Baeji.

Path/Row
169/36 Date JDAY 2009 Cloud

Cover %
Path/Row

169/36 Date JDAY 2009 Cloud
Cover %

LE7

4 February 2009 35 3

LT5

3 May 2009 123 16
8 March 2009 67 4 19 May 2009 139 0
27 May 2009 147 0 4 June 2009 155 0
30 July 2009 211 2 20 June 2009 171 0

15 August 2009 227 0 22 July 2009 203 3
16 September 2009 259 4 7 August 2009 219 1

2 October 2009 275 0 23 August 2009 235 0
18 October 2009 291 0 8 September 2009 251 0

24 September 2009 267 0
10 October 2009 283 2
26 October 2009 299 3

11 November 2009 315 0

Table 3. Landsat images used to estimate Tw in the Tigris River at Baghdad.

Path/Row
168/37 Date JDAY 2009 Cloud

Cover %
Path/Row

169/37 Date JDAY 2009 Cloud
Cover %

LE7

12 January 2009 12 14

LE7

19 January 2009 19 14
28 January 009 28 2 4 February 2009 35 1

13 February 2009 44 7 20 February 2009 51 9
17 March 2009 76 0 8 March 2009 67 11
18 April 2009 108 1 27 May 2009 147 8
20 May 2009 140 6 14 July 2009 195 3
5 June 2009 156 0 30 July 2009 211 1

21 June 2009 172 0 15 August 2009 227 0
7 July 2009 188 0 16 September 2009 259 3
23 July 2009 204 0 2 October 2009 275 0

25 September 2009 268 0 18 October 2009 291 1
11 October 2009 284 2

10/27 October 2009 300 4
12 November 2009 316 0
14 December 2009 348 14
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Figure 3. Seasonal variation in Tw in 2009, estimated from Landsat satellite images for Mosul Dam
on (a) 10 January; (b) 26 May; (c) 30 August; (d) 1 October for Baeji on (e) 4 February ; (f) 27 May;
(g) 15 August; (h) 2 October and for Baghdad on (i) 4 February; (j) 27 May; (k) 15 August; (l) 2 October.

3.3. Statistical Algorithms of Tw

To model the water temperature of the Tigris River, both an upstream boundary condition and
in-stream values for model verification were needed. Because Landsat-based Tw estimates were
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under-sampled in time, we developed a statistical model to obtain an estimate of Tw at Mosul Dam,
Baeji, and Baghdad at the daily time scale. As shown below, this approach captured daily and synoptic
scale (weather-pattern based) variations and was therefore more appropriate than one based on linear
interpolation from sparse remote sensing data. Moreover, the statistical model formed a basis for
validating our numerical model within the domain, particularly since fewer satellite-based estimates
were available downstream of Mosul.

To develop a statistical model for Tw, we correlated satellite-based Tw with corresponding weighted
air temperatures (Ta) at Mosul, Baeji, and Baghdad. Since Ta includes meteorological variability, daily
average values of Ta were weighted using an exponential filter, as described in [33]:

Ta =

∑t/∆t
n=1 Ta(t− n∆t) exp[−(n− 1)k∆t]∑t/∆t

n=1 exp[−(n− 1)k∆t]
(1)

where t is the response time in the water column (5 days), ∆t is the time step (1 day), and k (measured
in s−1) is the surface heat exchange coefficient (J/s m2 ◦C) divided by (water density × Specific heat ×
average depth in the water) (s(J/m2 ◦C)).

The exponential filter reduced the weight of air temperature as the time lag increased; essentially,
meteorological conditions with a lag of 1-day influenced water temperature more than air temperature
several days earlier. We experimented with various time-lags and found that a 5-day lag minimized error.

A continuous water temperature model with air temperature lags of up to 5 days performed best,
resulting in a 1.15 ◦C standard error with statistically-based estimates of Tw. These air temperature
measurements were provided by the Iraqi Ministry of Transportation. The basic regression equation
follows [34] and is:

Tw=a + bTa + cQ, (2)

where Tw is water temperature (◦C), Ta is 5 days weighted average of air temperature (◦C), Q is flowrate
(m3/s), and a,b,c are coefficients.

Although flowrate Q theoretically affects Tw by altering the mean depth and advection rate, we
found no statistically significant relationship (we revisited this later with a sensitivity analysis of the
model). Therefore, flowrate was eliminated from the Tw regression equations such that:

Tw (Mosul) = 4.30 + 0.73×Ta, (3)

Tw (Baeji) = 4.77 + 0.70×Ta, (4)

Tw (Baghdad) = 3.42 + 0.76×Ta, (5)

The statistical relationship at Mosul Dam (R2 0.846, p-value 9.4E × 10−17) was used for the model’s
upstream boundary conditions. The relationships at Baeji (R2 0.878, p-value 3.33 × 10−11) and Baghdad
(R2 0.968, p-value 8.40 × 10−21) were used for comparison with model predictions. The c coefficients
and p-values were −0.0002 and 0.93, −0.0004 and 0.74, and 0.008 and 0.28, at Mosul Dam, Baeji, and
Baghdad, respectively.

Figure 4 shows scatter plots of Tw estimated from Landsat images and the 5-day weighted average
of air temperature (Ta) at Mosul Dam, Baeji, and Baghdad.

A 95% confidence interval (CI) was estimated for remotely sensed water temperatures at both
Baeji and Baghdad using:

95% CI = Tw ± tn−2 ∗ Sy

√
1
n
+

(Ta − x)2

(n− 1)S2 , (6)

where Tw is water temperature estimated from statistical models, Ta is 5 days weighed air temperature,
Sy is the standard error of the developed statistical model, S is the variance in Ta (square of standard
deviation), n is sample size, x is the average of Ta in the sample.
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Estimated daily Tw at Mosul Dam, Baeji, and Baghdad used in the Tigris River model are shown in
Figure 5. Estimates of Tw showed that water temperatures of the Tigris River ranged between 6 ◦C and
31 ◦C over the year 2009, with the largest temporal gradients observed in spring/fall and the smallest
gradients observed during the summer. While factors such as image cloud cover and contamination of
river pixels by land reflection could possibly cause some uncertainty in the measurements, the general
pattern follows expected seasonal patterns.
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4. CE-QUAL-W2 Model

We next used the 2-D numerical model CE-QUAL-W2 (W2) to model Tw in the Tigris River. W2 is
a two-dimensional (longitudinal and vertical) water quality model developed by the U.S. Army Corps
of Engineers and Portland State University [35]. W2 simulates river/reservoir water levels, vertical and
horizontal velocities, water temperature, and user-defined water quality constituents which include
nutrients, algae, dissolved oxygen, and suspended sediment. W2 has been applied to over a thousand
reservoirs, lakes, and river systems all over the world [35].

4.1. W2 Model Inputs

To run the Tigris River model, initial and boundary conditions of all inflows (mainstem
and tributaries), bathymetry, shade file, wind sheltering, and meteorological data were required.
The bathymetry of the Tigris River from Mosul Dam (Rkm 0) to Kut Barrage (Rkm 880) were provided
from the Iraqi Water Resources Ministry, along with river discharge stage measurements at Mosul
Dam, Baeji City, Samarra Barrage, and Baghdad (Figure 1). Satellite estimates of water temperature
developed for Mosul Dam and Baeji (see Section 3) were used to define water temperatures for the
Upper and the Lower Zab tributaries, respectively, while the water temperature estimated for Baghdad
was used to define water temperatures for both the Audaim and Diyala tributaries. The Tw upstream
boundary condition at Mosul was obtained from daily estimates of Tw obtained from statistical models
based on satellite data (see Section 3).

4.2. Meteorological Data of the Tigris River Model

Meteorological data required to model surface heat transfer includes air and dew point temperature,
wind speed and direction, cloud cover and solar radiation. Meteorological data for the year 2009
were provided for three cities with a frequency of every four hours from the General Organization
for Meteorology and Seismic Monitoring, housed within the Iraqi Ministry of Transportation.
The meteorological stations as shown in Figure 2 were located at the center of Mosul city (about 50 km
south of the upstream model boundary condition at Mosul Dam), at the center of Tikrit city (about
55 km south of Baeji), and at the international airport in Baghdad (about 18 km west of Baghdad).
Available meteorological data include daily air temperature, dew point temperature, wind speed, and
cloud cover at Mosul, Baeji, and Baghdad. Spatially, meteorological data at Mosul were used to cover
the study area from Mosul Dam (Rkm 0) to Baeji (Rkm 290), while meteorological data at Baeji and
Baghdad were used to cover the study area from Baeji (Rkm 290) to Samarra Barrage (Rkm 390), and
from there to Kut Barrage (Rkm 880), respectively. Short-wave solar radiation was estimated internally
in W2 based on latitude, longitude, time of year, and cloud cover.

5. W2 Model Development and Calibration

After developing all boundary condition and forcing function input files, the mainstream of
the Tigris River from Mosul Dam (River km 0) to Kut Barrage (River km 880) was simulated for the
year 2009.

Flowrates and water levels in the mainstem of the Tigris River were first compared to field data.
During flow calibration, additional flow was added or subtracted as distributed tributaries along the
mainstem of the Tigris River to account for unknown diversions for agriculture and the return flow
caused by additional human activities. The overall percentage error of model predictions of flow rate
at Baeji, downstream of Samarra Barrage, and Baghdad was 1.9%, 0.8%, and 0.8%, respectively.

After flow calibration, predicted Tw was compared to the statistical Tw model from satellite
imagery. Figure 6 shows W2 model predictions of water temperatures compared with statistical
models of Tw at both Baeji and Baghdad, respectively. At both stations, W2 model predictions of
water temperatures follow the same seasonal pattern as statistical models of Tw and lie within the
95% confidence interval of satellite estimated Tw. A bias in W2 model predictions in winter months
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(December, January, and February) was observed and could be due to uncertainty in satellite estimates
of water temperatures caused by undetected thin clouds [16] or perhaps seasonal changes in emissivity.
Alternatively, we note that the statistical models of Tw may be biased towards optimizing summer
conditions, given the much larger number of satellite images available during this time period. As
a direct result, our numerical model may capture winter conditions less well, due to less certainty
in the applied boundary condition. Figure 7 shows diurnal variability in W2 model predictions of
water temperature at Baeji and Baghdad during a week in the summer of 2009. Although W2 model
predicts diurnal variability of Tw, all earlier analyses in Section 3 were based on the daily average Tw.
Table 4 lists error statistics in daily average model predictions using meteorological input data with
four-hour frequency and with daily average frequency. As expected, the results showed that W2 model
predictions of Tw using daily average meteorological data produced higher errors compared with W2
model predictions using meteorological input data with a four-hour frequency.
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The model did not generally predict river stratification because the river is shallow and well-mixed
vertically. Only in the deeper sections at the Barrages did the model predict limited stratification
during the heating period that disappeared during night time cooling.

Compared with the statistical models developed at both Baeji and Baghdad, W2 model predictions
were usually biased slightly low with an absolute mean error of 0.93 ◦C and 0.97 ◦C at Baeji and
Baghdad, respectively. To some extent, this may reflect the surface heating that occurs in a thin
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surface film and can bias radiation-based estimates of surface water temperature higher than in situ
measurements during the day (see e.g., [25]). The W2 model predictions of Tw had a mean error of
0.2 ◦C and 0.45 ◦C at Baeji and Baghdad, respectively, compared to the statistical model consistent
with the [15] observation that Landsat thermal images overestimated in situ stream data on average by
1.2 ◦C.Water 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 7. Diurnal variability in model predictions of Tw at Baeji and Baghdad.

Table 4. Statistical errors in daily average model predictions of Tw.

Statistical Error Four-Hour Meteorological Input Data Daily Average Meteorological Input Data

Error (◦C) Baeji Baghdad Baeji Baghdad
ME (◦C) −0.2 −0.45 −0.53 0.06

AME (◦C) 0.93 0.97 1.52 1.04
RMSE (◦C) 1.17 1.2 1.52 1.25

N 360 360 360 360

5.1. Scenario Development

To obtain better insight into the factors which impact water temperature in the Tigris River,
multiple scenarios were implemented with the numerical model to simulate the effect of changing
management of upstream hydrology and the impact of climate change. These scenarios were then
compared with the base W2 model (existing conditions).

The mean annual discharge of the Tigris River at Mosul decreased by 15% after 1984 [28] as a
result of upstream changes in flow management. Therefore, flow boundary conditions at Mosul Dam
were increased by 15% over 2009 levels to study historical river flow conditions and whether flow
reduction has impacted downstream water temperatures. In the future, river discharge in the Tigris
River is expected to continue to decrease after several dams in Turkey are completed. Therefore, we
also studied the effect of a potential further decrease in upstream flow by 15%.

As reported by the Intergovernmental Panel for Climate Change [36], “semi-arid and arid areas
are particularly exposed to the impacts of climate change on freshwater (high confidence).” According
to [37], mean air temperatures in Iraq during winter and summer in 2020s will be 1.7 ◦C and 2.1 ◦C,
respectively using GFDL-R15 model, compared to the 1961–1990 period. Therefore, the effects of
future climate change on water temperatures in the Tigris River was investigated by increasing air
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temperature by 2 ◦C. The corresponding dewpoint temperature was also adjusted, assuming a constant
relative humidity. Altered air temperature increased the average annual dew point temperatures at
Mosul from 7.67 ◦C to 9.50 ◦C, Baeji from 8.20 ◦C to 10 ◦C, and Baghdad from 7.58 ◦C to 9.40 ◦C. We
neglected possible changes in precipitation and run-off, since the sensitivity of the system to river flow
changes is already captured thru the management scenarios described above. This level of climate
change was consistent with [38] estimate of future climate change impacts on temperatures in Iraq.

5.2. Model Management Scenarios

Water temperatures in 2009 were simulated to be slightly cooler, in general, under a historical
flow regime (Figure 8). Compared with the base W2 model, increasing upstream river flow by 15%
(MS1) produced a temperature difference that varied between −0.18 to 0.06 ◦C at Baeji and between
0.18 to 0.13 ◦C at Baghdad.Water 2019, 11, x FOR PEER REVIEW 14 of 18 
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Compared with the base W2 model, decreasing upstream flow at Mosul Dam by 15% (MS2) on
aggregate slightly increased water temperatures (Figure 8). Results showed the temperature differences
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at Baeji and Baghdad varied between −0.08 to 0.25 ◦C and −0.13 to 0.19 ◦C respectively, with the
largest increases during spring and the smallest during fall. Since flow decreases are most likely to
be apparent during the spring freshet in March–May, our results likely underestimated Tw changes
during that time of year.

W2 model predictions of the longitudinal profile of Tw in the Tigris River (Figure 9) shows an
impact on Tw as a result of changing the upstream flow. The locations of the greatest changes in
temperature are related to flow affecting the location of the daily maximums and daily minimums in
the river.
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W2 model results suggested that future climate change (MS3) will significantly impact water
temperatures. For 2009 flow conditions in a warmer climate, simulated Tw (Figure 8) increased to
0.94 ◦C at Baeji and to 1.54 ◦C at Baghdad, with the largest increases occurring during the summer
season. While we only modeled the effect of increased air temperature and dew point, the lack of
sensitivity to flow rates (Figure 8) suggests that the effect of any altered seasonal precipitation patterns
or annual mean precipitation will have only minor effects on water temperature, with the largest effects
observed during the spring (see below).

The effects of altered river flow on Tw are largest during the spring freshet from April to May
with a difference of about ± 0.2 ◦C, due to the larger influence of along-channel advective terms in the
energy balance (Figure 8).

Hence, seasonal variation in Tw of the Tigris River is highly affected by meteorological forcing data
and atmospheric heat flux, including short-wave solar radiation, long-wave atmospheric radiation,
back radiation, evaporation, and conduction. Figure 10 shows W2 model predictions of monthly
average heat fluxes in the Tigris River at Baeji and Baghdad, in which atmospheric heat flux, a function
of air temperature, is the dominant input flux. Also, compared with Baeji, evaporation, and conduction
fluxes are higher in Baghdad because of the higher water temperatures. Therefore, dissolved oxygen
and other water quality constituents, which depend on hydro-chemical reactions, likely face increasing
pressure as the climate warms.
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6. Conclusions

Water temperatures (Tw) of the Tigris River from Mosul Dam (River km 0) to Kut Barrage
(River km 880) were modeled for the year 2009 using the 2-D hydrodynamic and water quality
model CE-QUAL-W2. Satellite data from Landsat 5 TM and Landsat 7 ETM+ sensors were used to
estimate Tw for upstream boundary conditions and for downstream model calibration. Remote sensing
proved to be a feasible method for integrating satellite-based data to estimate Tw in the Tigris River.
Statistical algorithms for water temperatures at Mosul Dam, Baeji, and Baghdad were developed by
correlating satellite data to daily air temperatures. The flowrate of the Tigris River affects temperature
by controlling the water depth and the response time. However, flowrate, as an independent variable,
proved to be a weak predictor of Tw. This is confirmed by W2 model sensitivity studies, which showed
that changing river flow by 15% produced only slight changes in Tw, well under the statistical error of
satellite estimates. W2 model predictions of Tw at Baeji and Baghdad showed a bias in winter months,
possibly due to undiagnosed issues with the underlying satellite data or a bias in the statistical models
towards fitting summer conditions. W2 model predictions of Tw at Baeji and Baghdad showed less
error using meteorological input data with four-hours frequency compared with W2 model predictions
using daily average data. Hence, finer resolution meteorological data than daily average is important
for temperature modeling of river systems.

Overall, the temporal variation in Tw was mainly controlled by the atmospheric heat flux and is
thus more sensitive to future changes in the surface energy flux (the climate change scenario MS3) than
altered flow conditions caused by either flow management or precipitation changes. A modeled 15%
increase in upstream flow at Mosul Dam showed a maximum decrease of 0.18 ◦C in Tw at Baeji and
Baghdad, respectively, while decreasing upstream flow resulted up to 0.25 ◦C and 0.19 ◦C maximum
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increase in Tw at Baeji and Baghdad, respectively. On the other hand, climate change scenario showed
as much as a 0.94 ◦C and 1.54 ◦C increase in Tw at Baeji and Baghdad, respectively, in the summer
season. On average, a 2-degree increase in average annual air temperature increased the average
annual water temperature from 20.71 ◦C to 21.70 ◦C. The implications of such future water temperature
increase to the water quality of the Tigris are not negligible and will be investigated in a future paper.
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