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Abstract: Soil moisture (SM) is an important variable for the terrestrial surface system, as its changes
greatly affect the global water and energy cycle. The description and understanding of spatiotemporal
changes in global soil moisture require long time-series observation. Taking advantage of the
European Space Agency (ESA) Climate Change Initiative (CCI) combined SM dataset, this study
aims at identifying the non-linear trends of global SM dynamics and their variations at multiple time
scales. The distribution of global surface SM changes in 1979–2016 was identified by a non-linear
methodology based on a stepwise regression at the annual and seasonal scales. On the annual scale,
significant changes have taken place in about one third of the lands, in which nonlinear trends account
for 48.13%. At the seasonal scale, the phenomenon that “wet season get wetter, and dry season get
dryer” is found this study via hemispherical SM trend analysis at seasonal scale. And, the changes in
seasonal SM are more pronounced (change rate at seasonal scales is about 5 times higher than that at
annual scale) and the areas seeing significant changes cover a larger surface. Seasonal SM fluctuations
distributed in southwestern China, central North America and southern Africa, are concealed at the
annual scale. Overall, non-linear trend analysis at multiple time scale has revealed more complex
dynamics for these long time series of SM.
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1. Introduction

Soil moisture (SM), as an important element of the land surface system, playing an indispensable
role in ecology, agriculture, as well as hydrological and surface modeling research [1]. It stores
precipitation, provides essential water for plants, thus affecting ecosystem development, and
participates in the global water cycle and energy balance through evapotranspiration. In past
decades, changing climate factors such as precipitation and evapotranspiration associated with global
warming and greening have affected global soil water content. The extent which global SM has
changed is a paramount issue pertaining to climate change and its variability, due to the importance
and heterogeneity of these variations [2]. In view of this problem, some research has been conducted.
On a global scale, Dorigo et al. [3] assessed the trend distributions for the 1988–2010 period. Feng
and Zhang [4] studied the global trends in SM to test the paradigm of a “dry [region] gets drier, wet
gets wetter”. Similar trend analyses have been performed on regional scales as well [5–10]. In all the
aforementioned studies, SM is assumed to change linearly, although some of the changes occurring in
long time series could be non-linear. The disadvantage of simple linear analysis is that the overall
trend of SM during long time may conceal the actual change and change rate in different periods, thus
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interfering with the relevant analysis of SM-climate change feedback mechanism, water cycle, water
resources utilization and so on. In contrast, non-linear analysis can reveal the transition of variation
during long periods which is closer to the real change of factors. For example, Pan et al. [11] revealed
the existence of concealed browning trends of vegetation, when the vegetation of some regions turns
brown or sees a slowdown in greening, in spite of an overall tendency for global vegetation greening.
Thus, the subject of hidden trends in SM merits further study.

In addition to a non-homogeneous spatial distribution, SM has been shown to be heterogeneous
at different time scales by a large number of studies [12–17]. The spatial distribution of the 38-year
average SM at the seasonal scales is significantly different with that at the annual scales, owing to
the dominance of climate-related seasonal SM variations which are closely related to phenology and
vegetation growth. It is therefore necessary to analyze the multi-year dynamical changes of SM at both
the annual and seasonal time scales. Dorigo et al. [3] have shown global trend patterns at the annual
and the seasonal time scales, respectively. However, difference and connection between the results
at two time scales have not yet been pointed out. It can be found that global trend patterns at the
annual and the seasonal time scales in that study were differing, i.e., that in some areas, inter-annual
changes occurring during a given season were not consistent with changes happening during other
seasons or at the annual scale. Such a phenomenon was also documented in some studies of regional
SM dynamics in China, e.g., Qiu et al. [18] and Chen et al. [19]. The differences between the dynamic
trends of SM at various time scales have yet to be examined.

For a large-scale SM study, remote-sensing SM data present the advantages of periodicity, long time
series, wide spatial range and real-time observation, all of which are conducive to the analysis of spatial
distribution and temporal trends of changes. Whereas traditional SM measurement methods such as
drying and time domain reflectance are time-consuming, laborious and space-constrained [20,21], and
model simulation data have strong correlation both on spatial and temporal dimensions, remote-sensing
data provides a strong support for global SM research [22,23], although it’s observations are confined
to the surface. Many studies have demonstrated the feasibility of remote-sensing SM techniques
for climate change, land-atmosphere interaction [24–26], ecology [27,28], hydrology [29–31] and
drought [32–34] research studies.

As a result, two main purposes encourage us to investigate global SM dynamics from new
perspectives based on a remote-sensing SM product. Firstly, although linear trends of global SM have
been presented before, it is still necessary to study the dynamics of SM change over longer periods
using a non-linear method, because non-linear trends have been illustrated to show concealed changes,
such as the vegetation trend discussed above. Secondly, there are climate-related fluctuations in SM
content during the seasons whereby, generally, it is wetter in summer and drier in winter. Whether
seasonal SM has changed under the long-term climate change remains to be clarified. Quantifying
seasonal SM changes may shed new light on interaction between the ground surface SM and climate
change and its impacts on the hydrological cycle. In this study, we reveal non-linear trends of global
surface SM and quantify seasonal SM changes and the difference between annual and seasonal SM
dynamics using the stepwise regression method and trend consistency analysis with the aim of further
understanding global surface SM changes and the impact of precipitation.

This paper is organized as follows. Firstly, based on gridded remote-sensing data, area-averaged
surface SM at hemisphere scale were calculated to analyze the distribution of monthly SM content and
annual and seasonal variation of hemisphere SM. Then, non-linear trend analysis of global surface
SM at each pixel will be performed at both the annual and seasonal scales. In addition to the spatial
trend distributions, the time-varying rates of SM were calculated at different time scales to explore the
difference between multi-scale SM trends. The datasets and methodology are described in Section 2.
Section 3 delineates the results of the study, including the area-averaged surface SM trend, the SM trend
distributions and their time-varying rates at the annual and the seasonal scales. At last, the comparison
between the surface SM trends obtained with the remote sensing SM dataset and those derived from
reanalysis product, as well as the trends of precipitation were estimated to test the reliability of results
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and explore the relationship between surface SM and precipitation change. The evaluation of the
results, as well as comparisons between the results of this study and previous research, and the
influence of precipitation on surface SM, are discussed in Section 4.

2. Data and Methods

2.1. Data

The Climate Change Initiative (CCI) dataset of the European Space Agency (ESA) is adopted for
monitoring the global SM trend and was obtained from the ESA website. To alleviate the effect of the
uneven time series of the various SM datasets (due to the difference in satellite service time), the ESA
CCI SM dataset has combined active and passive SM products derived from microwave remote-sensing
measurements. This ESA CCI SM v4.2 dataset provides the longest time series to date, covering the
period 1979–2016, and has been widely used for various Earth system research [35]. The dataset depth
is 10 cm and accuracy is deemed acceptable, with validation by global ground-based observations
yielding a mean correlation coefficient (R) and root mean square error (RMSE) of 0.46 and 0.04 cm3/cm3,
respectively. In order to evaluate the results based on the ESA CCI SM dataset, European Centre for
Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) monthly average SM
data were also analyzed for comparing which provide a reanalysis of the global atmosphere covering
the data-rich period starting from 1979, and continuing to the present time. The data assimilation
system used to produce ERA-Interim is based on a 2006 release of the Integrated Forecast System (IFS).
This product includes four volumetric soil water layers with depths of 7 cm, 28 cm, 100 cm and 255 cm,
respectively. In order to be comparable with the ESA CCI SM product, only the data of the soil water
layer 1 (0–7 cm) estimated from 1979 to 2016 and with a spatial resolution of 0.25◦ × 0.25◦, were used
in the study.

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) product is a global grid precipitation
(P) dataset specifically designed for hydrological modeling. This dataset is unique in that it optimally
merges a wide range of data sources based on gauges (GPCC, CPC Unified, and CHPclim), remote
sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and weather models (ERA-Interim, JRA-55,
and NCEP-CFSR) to provide the best possible P estimates at a global scale. This dataset presents the
advantages of a long time scale and a high spatial resolution. The data was resampled from 0.1◦ to
0.25◦ spatial resolution via the nearest neighbor method for the 1979–2016 period so that it can be
compared with the SM datasets.

2.2. Methodology

2.2.1. Trend Analysis

As shown in Figure 1, the area-averaged SM trends and trend distributions obtained from the ESA
CCI SM data were analyzed both at the annual and seasonal time scales. Here, the seasons are defined
as follows: the first season is from December to next February, the second season from March to May,
the third season from June to August, and the fourth season from September to November. SM data at
the annual and seasonal scales were both generated from monthly grid SM data, which were obtained
by averaging the valid daily SM data pixel by pixel. For area-averaged SM, annual trends and seasonal
inter-annual trends were estimated via polynomial fitting of the relationship between the years and
the annual/seasonal hemispherical mean SM value. For determining the distribution of global trends,
the non-linear methodology was carried out pixel-by-pixel on the annual/seasonal grid SM data to
discover the location of each trend type. Based on the trend recognition results, some comparisons are
carried out between results at the annual and seasonal scales based on statistical analysis, including
trend distribution, change rates, area, and meridional distribution of trend, to reveal the differences in
trend caused by the various time scales.
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Figure 1. Brief flow scheme of trend analysis.

Additionally, trend distributions of precipitation were estimated via the nonlinear methodology.
After resampling these data to an interval similar to that of the SM dataset, consistency between the
distributions of the precipitation trends and the ESA CCI SM trend distribution was calculated to
estimate the effects of these two climate factors on SM changes. Meanwhile, to verify the validity
of the ESA CCI SM data trends, the ERA-Interim reanalysis SM data were analyzed by the same
methodology. This allows the differences and the consistency between these two SM trend distributions
to be estimated. Based on the trends classification, consistent areas were classified as fully consistent
and currently consistent areas. For example, cubic up-down-up trends are currently consistent with
quadratic down-up trends and linear up trends.

2.2.2. Trend Recognition

In this study, a non-linear methodology was employed to estimate trends of variables whereby
variations were divided into cubic, quadratic, monotonic, and insignificant trends. First, stepwise
regression, which has been proved to be effective in revealing variable trends, was used on the variables
time series, based on the following equation [36]:

y = a0 + a1x + a2x2 + a3x3, (1)

where x is the year order, y is the variable such as annual SM, and a0, a1, a2, a3 are coefficients. In stepwise
regression, predictive variables are chosen automatically to achieve least predictive variables while
ensuring optimal predictive ability.

The resulting model was tested by F-test for both the regression model and all its coefficients so
that the trend type of variable was determined by the highest order of x. When the coefficient a3 passes
the significance test, the trend is cubic; in the case when the a2 coefficient passes while a3 does not
pass the significance test, the trend is quadratic temporarily. Other results are regarded as monotonic
trends, which are separated into significant and insignificant trends by a significance test. As shown in
Figure 2, after stepwise regression with the F-test and the coefficient test, the trend was recognized by
diagnosing the effectiveness of the turning points which were extreme points of regression model. For
a regression model, if two turning points distributed in the effective region of years (0~maximum year
order) exist, it is regarded as a cubic trend model; if only one turning point belongs to the effective
region, it is a quadratic trend model; and if no turning point exists in the time series, the model is
regarded as linear. The specific trend is then determined according to the sign of the effective coefficient.
After determining the trend type, the data of each stage were linearly regressed to estimate the change
rate of soil moisture at each stage, taking the turning point as the time boundary.
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Figure 2. Flow chart of trend recognition.

For nonlinear trends, the last trend (the part of the trend which follows the last turning point)
is regarded as the current trend of SM change, and can be classified as positive or negative. If the
current trend is increasing, such as the up-down-up and down-up trend, it is recognized as a positive
trend; by contrast, a down-up-down or up-down trend is regarded as negative. Similarly, for the linear
case, increasing (decreasing) trend is recognized to be positive (negative). Finally, trends were further
divided into the seven following types: two cubic trends (up-down-up, and down-up-down), two
quadratic trends (down-up, and up-down), two linear trends (up, and down), and insignificant trend.
The rates of change for each period of non-linear and linear trends were estimated by ordinary least
squares linear regression.

3. Results

3.1. Area-Averaged Soil Moisture (SM)

Monthly SM data constitute the basis of SM trend analysis at the annual and seasonal scales. As
shown in Figure 3a, hemispherical monthly mean SM content ranges from 0.05 m3/m3 to 0.25 m3/m3

and average SM in the northern hemisphere is lower than that in the southern hemisphere (0.13 m3/m3

to 0.24 m3/m3). The distribution peaks in July (February) in the northern (southern) hemisphere
respectively which means that SM is highest in summer. The global spatial pattern of mean SM content
from 1979 to 2016 (Figure 3b) exhibit large variations, with values ranging from 0 to 0.41 m3/m3. The SM
content in southern China and central South America is the highest, while that in the Sahara Desert
and the Arabian Peninsula is the lowest. SM values in regions of tropical forests i.e., the Amazon Plain,
Congo basin and Indonesia are set to NaN in original datasets because dense vegetation in such areas
limits the accuracy of SM retrieval from microwave sensors.
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Figure 3. (a) Statistics of global average soil moisture (SM) at monthly scale in 1979–2016; (b) global
pattern of SM average over the 1979–2016 period.

Figure 4 displays the annual and seasonal values of hemispherical mean SM for the entire period
of the dataset and their corresponding trends. The present mean SM over the northern hemisphere
is about 0.02 m3/m3 higher than that of the 1980s at both the annual and all the seasonal scales.
The maximum seasonal mean SM is reached in summer (values mostly in the 0.16~0.18 m3/m3 range);
followed by autumn (0.12~0.14 m3/m3), spring (0.08~0.12 m3/m3), and winter (0.05~0.09 m3/m3) in the
northern hemisphere.
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Figure 4. Annual and seasonal mean SM in the northern hemisphere (a) and in the southern hemisphere
(b) and their trends between 1979 and 2016.

In the northern hemisphere, the trend of mean SM at the annual scale between 1979 and 2016
(dark blue line in Figure 4) follows a cubic down-up-down pattern. The annual values indeed show a
gradual SM decrease from 1979 to the mid-1990s, followed by a period of increase (mid-1990s to late
2000s) and a more stable period starting 2010. Similar to the annual trend, the hemispherical mean SM
trends in spring, autumn and winter are of the cubic down-up-down type, whereas that in summer is a
monotonously increasing trend. This implies that wetter seasons get wetter, while dryer seasons get
slightly dryer in recent years in the northern hemisphere.

In the southern hemisphere, mean SM fluctuates greatly at both seasonal and annual scales
and polynomial regression relationship with years is weak. Mean SM in summer and autumn
(0.18~0.22 m3/m3) has increased during the period of 1979–2016 which is higher than that in spring
and winter (0.15~0.18 m3/m3). This means that phenomenon of “wetter seasons are wetting” also
exists in the southern hemisphere whereas there is no obvious increasing or decreasing trend SM in a
dryer season.
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3.2. Annual Trend Distribution

Through trend recognition, 32% of the total land pixels with valid SM time series are estimated to
present a significant trend. According to the pie chart of trends in Figure 5, cubic trends (green and
yellow in Figure 5) only account for 4.38% of the significant trends, are dispersed randomly within the
areas of significant changes areas, and can therefore be considered negligible. Quadratic and linear
trends account for 43.75% and 51.87%, respectively, which means that nonlinear and linear trends
respectively account for half of all the significantly changed areas. Positive linear trends (dark blue in
Figure 5) are distributed over the northeastern part of North America, the Sahara Desert in Africa, and
the southern Arabian Peninsula. Within Asia, the areas are scattered throughout the continent from
the northern West Siberian Plain in the north to the Irrawaddy River Basin (Myanmar) in the southeast.
The distribution of the decreasing linear trend areas (red in Figure 5) is more widely distributed
throughout the world, with various parts of the five inhabited continents being covered by this trend.
Notable regions include the Cordillera in South America, the north and northeastern parts of Canada in
North America, Ethiopia and Somalia in East Africa, Scandinavia in Europe, and the Japanese islands
and Mekong river basin in Asia.Water 2019, 11, 883 8 of 16 
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The distribution of quadratic trends is as follows: the areas of “down-up” trend (light blue in
Figure 5) are also largely represented in the results, being distributed within continental areas of
northern Africa, central and east Asia, Central America, east Europe, and the western coast of central
South America. The “up-down” trend (orange color in Figure 5) is similar to, but narrower than that of
the linear ‘down’ trend. In the time series at each of these locations, the turning points (marking the
year when the direction of the trends change) are not concentrated geographically (not shown). This
means that the changes from up to down are slow rather than sudden.

From the distribution map, pixels belonging to the same trends are generally seen to be clustered
together, except in the region of the Tibetan Plateau where negative trend areas are surrounded by
regions of positive trends. The meridional distribution of the trends (Figure 5) highlights that the
significant trends are mostly distributed within the northern hemisphere which is consistent with the
result of area-averaged analysis. In particular, linear increasing trends mainly cover the mid and low
latitude regions, while negative trends generally distribute towards higher latitudes. In addition, most
of the positive trends are located in arid areas, including some areas where they have turned from
drying to wetting such as part of northwest China. Through the regional statistic on continental scale
(Table 1), regional proportions of significant changed area in Asia is the largest in six continents, which
means that the SM content in Asia is more unstable than that in other regions. In addition, most of
the regions with significant changes in Asia are inland areas, which are more likely to be affected by
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changes in surface cover types. Among the significant trends, a linear decreasing trend accounts for the
largest proportion in North and South America, Asia and Europe, followed by a quadratic “up-down”
trend, which means that majority of the significant change areas in these four continents are drying
up. On the contrary, in Africa and Oceania, linear increasing trend and quadratic “down-up” trend
account for more percentage, means that most of the significant change areas are getting wet.

Table 1. Statistic of significant change in each continent.

Significant
Change (%)

Proportion of Significant Change (%)

/\/ \/\ \/ /\ / \

South America 25.04 1.55 4.94 9.16 29.24 12.57 42.54
Asia 43.41 1.65 2.57 18.52 25.53 16.15 35.58

Africa 25.18 1.07 5.90 30.11 7.18 34.21 21.53
North America 28.41 1.26 2.37 23.25 24.92 15.68 32.52

Europe 29.68 0.82 1.93 16.33 30.40 9.29 41.23
Oceania 6.31 1.35 2.56 19.68 17.65 36.79 21.97

Symbols in table are identical to those of Figure 5. “Significant change” presents the percentage of significantly
changed pixels in all land pixels on every continent; and “Proportion of significant change” illuminates percentage
of different trend in all significant change (maximum value emphasized in red and the second-largest value is
highlighted in blue).

Figure 6 shows the rates of change at each pixel before (Figure 6a) and after (Figure 6b) the turning
point of the quadratic trends, calculated by linear regression. These rates mostly range between 0.6%�

and −0.6%� m3/m3 per year which count for about 80% of all valid area (Figure 6c). Increasing rates
of SM at the Turan Lowland, Kazakh Hills, Tibetan Plateau and Mekong River Basin in Asia are
significantly higher than in other regions. Comparatively, SM content in northern and eastern Asia, the
Brazilian Plateau, the Mississippi River Basin and southern Africa has been decreasing rapidly. Rates
in mostly areas have no significantly change during period of 1979–2016 except a few regions (black
ellipses in Figure 6). The SM in northern Canada, northern Russia, the Sahara Desert, the Mongolian
Plateau and parts of the Loess Plateau (China) has changed from decreasing (rate ≥ 1%� per year) to
increasing (rate ≤ 1%� per year). In the Tibetan Plateau, where SM increased significantly during the
first period, a decreasing trend is seen in the later period. Although the SM rates of change in most
regions of the world is stable, the regions seeing large changes, such as the Tibetan Plateau in China,
require more attention and management measures to mitigate these changes.Water 2019, 11, 883 9 of 16 
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Figure 6. Average rates of change of the annual SM trend before (a) and after (b) the turning point of
the quadratic trends. (c) Statistics of global surface SM changing rates. Regions where the rate has
changed significantly between the two periods are underlined by black ellipses.

3.3. Seasonal Trend Distributions

Figure 7 presents the trend distributions during the four seasons and their meridional distribution.
In addition, the respective percentage of each trend is indicated in a separate panel (Figure 7e). These
statistics vary largely depending on the season as shown in Table 2, and the percentage of areas with
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significant changes is 33%, 42%, 47%, and 38% from the first to the fourth season, respectively. This is
larger than for the annual trends (32%). At every season, the number of pixels with linear trends is
larger than that of non-linear trends, and the monotonously increasing trend (“up”) is the dominant
trend, whereas the cubic seasonal trends are negligible. In the northern hemisphere, the meridional
distribution of positive trends (quadratic ‘down-up’ trend and linear increasing trend) in four seasons
is homogeneous, whereas the negative trends (quadratic ‘up-down’ trend and linear decreasing trend)
present greatly seasonal variation. Variation of SM seasonal trend distributions did not show obvious
regularity due to large land area and complex topography in the northern hemisphere. In the southern
hemisphere, the dominant trend in summer (first season) and winter (third season) is positive trend
and negative trend, respectively, which is consistent with the phenomenon of “wetter seasons get
wetter, while dryer seasons get drier”.
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Figure 7. Spatial distribution of the different trends of SM on all valid lands and their meridional
distribution during the: (a) first season (winter in northern hemisphere while summer in southern
hemisphere), (b) second season (spring in northern hemisphere while autumn in southern hemisphere),
(c) third season (summer in northern hemisphere while winter in southern hemisphere), and (d) fourth
season (autumn in northern hemisphere while spring in southern hemisphere). (e) Percentage of the
respective trends at each season. Symbols in panels (a–d) are identical to those of Figure 5.

Spatial distribution of quarterly trends varies greatly such that most regions present different
trends at the various seasons, or trends at the annual scale different from those at the seasonal scale.
For example, the SM in the Tibetan Plateau and in northern Asia presents no significant trend during
the first season, whereas significant trends can be seen both at the annual scale and during the other
seasons. In northwestern Eurasia, central North America, central Africa, and the Brazil Plateau, the
increasing current trend in the first season is different from the annual and other seasonal trends.
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In southeastern China, the SM is decreasing during the first and fourth seasons, but increasing in the
second and third seasons, which explains why no significant change is observed at the annual scale.

Table 2. Pixel numbers of different trend at annual and seasonal scales and the percent account of all
valid land pixels.

Annual First Seasonal Third Seasonal Fourth Seasonal

Pixels Percent Pixels Percent Pixels Percent Pixels Percent

/\/ 1040 0.45 1471 0.64 3415 1.49 1756 0.77
\/\ 2217 0.97 1664 0.73 2770 1.21 2772 1.21
\/ 14,975 6.53 18,252 7.96 19,587 8.54 21,958 9.57
/\ 17,576 7.66 10,579 4.61 21,577 9.41 11,221 4.89
/ 13,011 5.67 34,176 14.90 32,009 13.95 40,569 17.69
\ 25,031 10.91 9719 4.24 28,891 12.59 7868 3.43
- 155,543 67.81 153,532 66.93 121,144 52.81 143,249 62.45

SUM 229,393 100 229,393 100 229,393 100 229,393 100

Symbols in table are identical to those of Figure 5.

Two main pieces of information arise from the comparison between the annual and the seasonal
trends. First, the absence of change at the annual scale in some areas does not necessarily mean that
no change occurred in these regions, e.g., southeastern China. This explains why the surface with
significant seasonal changes is larger than that of annual changes. Second, the areas seeing significant
changes at the annual scale do not always experience consistent changes depending on the season.
Thus, in several instances, the annual variations misrepresent the actual changes of seasonal SM which
are directly related to vegetation growth.

Besides, the changing rate of SM trends also differs depending on the scale (annual or seasonal).
The seasonal variations of SM are more severe than the annual variations, with the seasonal changing
rate of (ranging from −0.005 m3/m3 to 0.005 m3/m3 per year) being largely higher than that of the
annual trends (between −0.001 m3/m3 and 0.001 m3/m3 per year). Most of the non-linear change rates
have little difference between before and after the turning point, except for the areas underlined by
black ellipses in Figure 8 where absolute value of change rate exceeds 0.005 m3/m3 per year. In the
northern hemisphere, the rate of SM changes at higher latitudes largely differs with the season. During
the first and the fourth season (winter and autumn), SM change rate in southwestern China, the
Sahara, northern North America and northwestern Eurasia has increased, with the rate changing from
decreasing to increasing in most of these regions. In summer, SM change rate in the region of the
Tibetan Plateau has seen significant changes, with decreasing rates appearing in this area after the
turning point and values exceeding 0.005 m3/m3 per year. In the southern hemisphere, in the Brazil
Plateau and the southern part of central Africa, the increasing (decreasing) rates in summer (autumn
and winter) slow down significantly during the second period (after the turning point). This implies
that, in the northern hemisphere, the seasonal SM distribution and its change rate vary greatly with
the seasons, while the change of seasonal SM in the southern hemisphere has slowed down and the
seasonal difference is decreasing.
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4. Discussion

4.1. Evaluation of Results

To verify the results based on the ESA CCI SM dataset, the ERA-Interim reanalysis SM dataset has
been analyzed via same methodology. Comparing the global maps of mean SM from 1979–2016, the
map generated from the ESA CCI SM dataset (Figure 3b) is more detailed than that obtained from the
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ERA-Interim SM dataset (Figure 9a). This is due to the data at each pixel observed by remote sensing
being independent from each other, in contrast with the re-analysis data which have a strong spatial
correlation. Figure 9b,c show the trend patterns of the ERA-Interim SM, and its consistency with ESA
CCI SM at the annual scale, respectively. The areas seeing significant trends are more extensive in the
ERA-Interim SM than that in the ESA CCI SM. Regions with “up-down” trends in the Americas, parts
of northern and western Asia, and northeastern Africa, are found to be consistent with the negative
trends of the ESA CCI SM dataset. The largest wetting trends observed in the Turan Lowland (Russia),
Irrawaddy River basin (Myanmar) and Loess Plateau (China) are also seen in the ERA-Interim SM
dataset. Dramatic changes in high latitude and the Tibetan Plateau are not presented in results based
on ERA-Interim SM dataset. Thus, the trends pattern of the ESA CCI SM dataset is mostly consistent
with those obtained from the ERA-Interim reanalysis dataset, albeit with some differences in their
spatial extent.Water 2019, 11, 883 13 of 16 
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Figure 9. (a) Global pattern of mean SM from 1979–2016 based on the ERA-Interim (European Centre for
Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis) SM dataset. (b) Spatial distribution
of annual trends (b) from the ERA-Interim SM, and (c) their consistency with European Space Agency
(ESA) Climate Change Initiative (CCI) SM. “Cur-con”, “Com-con”, “D”, and “I” are abbreviations for
“Currently consistent”, “Completely consistent”, “decreasing”, and “increasing”, respectively.

However, there are some issues about the trend analysis results that should be discussed based on
a quality assessment of the data. Firstly, the area-average SM in the mid-1990s is generally lower than
that in other years due to missed daily SM data in the northern hemisphere which are largely related
to coverage of data source sensors (AMI-WS (Active Microwave Instrument—Windscat) and SSMI
(Special Sensor Microwave Imager) were used in 1990s). Although interpolated data via the PCHIP
(Piecewise Cubic Hermite Interpolating Polynomial [37]) method corrects this problem, it does not
deny that changes in sensors may affect the trend analysis of area-average SM. Secondly, non-linear
trend in most regions transits gently (the difference of change rate before and after turning point is
small), except for that in regions of high latitudes and the Tibetan Plateau. The authenticity of this
extreme phenomenon remains to be verified, which might due to inaccurate detection of SM under
frozen surface and snow at high latitudes or altitudes.
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In summary, compared with ERA-Interim dataset, the ESA CCI SM dataset can monitor more
detailed SM distribution, and the trend recognition results in most areas are credible, except for the
disputed results in high latitudes and the Tibetan Plateau.

4.2. Comparisons with Previous Research

The global SM dynamics identified via the non-linear method documented in this study present
some differences with previous research results based on linear methods. Areas of nonlinear trends
account for about half of all significantly changed land both at annual and seasonal scales. Some of
the areas, such as most regions in central Asia, north Africa and parts of the Americas, where linear
change were observed at annual scale, as in Dorigo et al. [3], Feng and Zhang [4], and Feng [38] appear
to present non-linear significant trends. In northeastern Asia, the current study reveals the presence
of ‘up-down’ quadratic trends rather than monotonously increasing trends as previously reported.
In most drylands parts of Asia and Africa, SM exhibits positive trends (including ‘down-up’ and
monotonously increasing trends), which contradict the conclusion of ‘drier in dry and wetter in wet
over land’. Therefore, in some instances, the actual dynamics (non-linear trends) have been concealed
by the linear analysis methods used to analyze the data.

The phenomenon of “wet seasons is wetting and dry seasons is drying” were found in this study
via detailed seasonal analysis of SM trend variation, which was not mentioned in previous studies.
Another previously unmentioned fact is that the differences between annual and seasonal SM changes
are reflected not only on the trend distributions but also on the changing rates. Previous studies
suggest that the changing rates at different time scales have a similar range at either the global or the
regional scales. The current study, however, documents seasonal SM changing rates larger than those
of the annual SM trends. In addition, the surface in which trends are significant is larger at the seasonal
than at the annual scale, and seasonal SM fluctuates considerably in southwestern China, central
North America and southern Africa. This was concealed in the annual scale results and previously
unreported. The significance of these results highlight the importance of studying the seasonal scale in
order to refine our knowledge of major changes for SM-related research or applications.

4.3. Influence of Precipitation

Soil moisture dynamics are closely related to changes of precipitation [15,39–41] which is the main
source of SM. During the 1979–2016 period, annual precipitations have significantly changed in 15% of
the valid global lands except in the Amazon and Congo River basins. The trends are positive in most of
these regions (Figure 10a). Parts of central, northeastern and northwestern Asia, as well as the northern
part of North America, and central South America show a “down–up” trend, while monotonously
increasing trends are also distributed across these regions. Besides this majority of positive trends, a
few regions of negative trends are scattered throughout central Asia, eastern Europe, central North
America, and the northeastern part of South America. Regions where the trends of precipitation are
consistent with the ESA CCI SM trends include the north and northeastern parts of North America
(Figure 10f), the Sahara Desert and Congo Plateau in Africa (Figure 10c), parts of the Eastern European
Plain (Figure 10d), and central (Figure 10a) and northeastern Asia (Figure 10b). Among these, only a
small part of Africa’s plateau exhibits a negative trend, which means that in most regions an increase
in precipitation is accompanied by an increase in SM, whereas, the relationship between the decrease
of SM and precipitation change is weak.
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5. Conclusions

In this study, global surface soil moisture (SM) dynamics over the 1979–2016 period were
documented via a non-linear methodology at both the annual and seasonal scales, based on the ESA
CCI SM dataset. SM variations were classified into cubic, quadratic, linear, and insignificant trends.
Non-linear trends account for about half areas of significant trends, which proves the necessity of
non-linear analysis. A seasonal phenomenon was found that “wet season got wetter, and dry season
got dryer”, which is more pronounced in the southern hemisphere. In addition, the difference of SM
trends at various time scales revealed that SM dynamics at the seasonal scale are enhanced compared
with those at the annual scale, which is seen both in terms of trend distributions and changing rate.
Most seasonal dynamics which is closer to ecosystem change were concealed by annual dynamics, and
seasonal change rate (ranges mainly in ±5%� per year) is 5 times higher than the annual change rate
(ranges mainly in ±1%� per year). Despite controversial SM changes in some regions, the results based
on the ESA CCI SM dataset are convincing by comparison with results of the same analysis based on
the ERA-Interim reanalysis SM dataset. Overall, the non-linear trend analysis method and analysis at
various time scales reveal more changes in the long-term dynamics of SM, making such a method a
useful tool to get clearer understanding of environmental changes. Considering the non-linear and
multi-scale characteristics of SM dynamics is necessary for relevant research and applications.
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