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Abstract: Nowadays, a noteworthy temporal alteration of traditional hydrological patterns is being
observed, producing a higher variability and more unpredictable extreme events worldwide. This is
largely due to global warming, which is generating a growing uncertainty over water system behavior,
especially river runoff. Understanding these modifications is a crucial and not trivial challenge
that requires new analytical strategies like Causality, addressed by Causal Reasoning. Through
Causality over runoff series, the hydrological memory and its logical time-dependency structure
have been dynamically/stochastically discovered and characterized. This is done in terms of the
runoff dependence strength over time. This has allowed determining and quantifying two opposite
temporal-fractions within runoff: Temporally Conditioned/Non-conditioned Runoff (TCR/TNCR).
Finally, a successful predictive model is proposed and applied to an unregulated stretch, Mijares river
catchment (Jucar river basin, Spain), with a very high time-dependency behavior. This research may
have important implications over the knowledge of historical rivers´ behavior and their adaptation.
Furthermore, it lays the foundations for reaching an optimum reservoir dimensioning through the
building of predictive models of runoff behavior. Regarding reservoir capacity, this research would
imply substantial economic/environmental savings. Also, a more sustainable management of river
basins through more reliable control reservoirs’ operation is expected to be achieved.

Keywords: Causality; causal reasoning; runoff fractions; hydrological time series; dynamic temporal
dependence propagation; predictive models

1. Introduction

In recent decades, the alteration of traditional hydrological patterns has been increasingly more
evident both worldwide and over a particular territory [1–3]. This is essentially materialized by more
frequent and therefore less anomalous extreme events such as floods and droughts [4–7]. This is
mainly due to global warming phenomenon [8–10], which is highly intensified by anthropogenic
actions [11–13]. Consequently, the stationarity in hydrological time series is not strictly kept [14–17],
and therefore, non-stationarity has become a common feature to deal with [18].

Not all the reasons that explain this increasing variability are brand new. Because of that, there is
a consequently strong need to have powerful and reliable analytical methods to build accurate models
that reproduce and forecast the future hydrological behavior of a river system [19–25]. Also, there is a
growing necessity to design analytical strategies that allow: (a) an increase of knowledge on temporal
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behavior of the hydrological series [26,27], and (b) the ability to extract the logical and non-trivial
time-dependency structure that underlies them [18,28–30].

This dual challenge, between powerful-reliable methods and new analytical strategies, is jointly
addressed through the scientific approaches shown in Molina et al. [28], Zazo [30], Molina and
Zazo [18,29] and Molina, et al [31], among others. This novel and active research line, focused on
Causality, is characterized by increasing the knowledge of temporal behavior of water resources. This is
done through the coupling among stochastic hydrological parametric models, such as Autoregressive
Moving Average (ARMA) models, and innovative methodologies based on Artificial Intelligence
(AI), such as Causal Reasoning (CR) supported by Bayesian modelling. In this sense, recent research
suggests that this union amongst “traditional-novel approaches” provides more accurate results in the
modelling of complex natural processes like hydrological behavior [22,32–34]. In addition, this opens
new perspectives for building stochastic hydrological predictive models, able to incorporate the
inherent uncertainty of the hydrological processes [29,35].

This work aims to develop a new methodological framework that will enable us to advance
on the knowledge over historical adaptive behavior of river runoffs. This was addressed through
Causality (Causal Reasoning, temporal dependence/independence), a powerful stochastic approach to
extract the hidden logical time-dependency structure that inherently underlies into hydrological series.
This approach ultimately comprises a new predictive method for the runoff temporal behavior.

In relation to previous works that integrate this research line, this paper represents a breakthrough
in the characterization of the temporally runoff fractions in a high dependence rivers context.
These fractions were first highlighted in Molina and Zazo [18] and referred to as Temporally Conditioned
Runoff (TCR, or fraction due to time) and Non-Conditioned Runoff (TNCR, or uninfluenced by time).
Now, both fractions have been determined and quantified based on dependence strength over time.
Furthermore, different dynamic management scenarios (time-step by time-step) were generated
according to the temporal dependence (time-lags) propagation, from which time series were obtained
for each fraction. In addition, a preliminary implementation of a dynamic predictive runoff model was
addressed based on the observed temporal behavior trends of both fractions in the different generated
scenarios. Finally, the reliability of the predictive model was assessed from a probabilistic perspective,
proposing two alternatives; the first one general and the second one detailed where the TNCR fraction
adds uncertainty to the prediction because it does not depend on time.

Given that this work implies a step forward over previous ones, it is not considered appropriate to
re-emphasize aspects such as the State of Art and theoretical and mathematical frameworks. To read a
comprehensive and in-depth review of them, the reader is referred to the aforementioned cited works
(please see [28,29,31]).

Furthermore, the application of this new analytical strategy over annual runoff series applied to
reservoirs, dams, and their control operation seems quite straightforward. In this sense, the better
knowledge and prediction on temporal behavior of TCR and TNCR fractions will lead to a reconsidering
of the capacity of the storage reservoirs, especially convenient in the current context of global
warming and for high temporal dependent river basins. This might also help for reaching an optimal
dimensioning of dams, what would imply significant economic and environmental savings.

After this initial section, this work is organized as follows: a description of case study, hydrological
data, and applied methodology are shown in Section 2. Section 3 provides the main experimental
results from the research. In Section 4, the results are discussed in detail. Finally, Section 5 addresses
the general conclusions drawn from the study.

2. Materials and Methods

2.1. Case Study

Variability and randomness are the main characteristics of water resources in Spain [29,36], which
is essentially attributable to an uneven spatial and temporal distribution of the precipitations [18,37].
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Indeed, the annual average rainfall in Spain presents a latitudinal decrease pattern, from wet north-west
(around 2000 mm), to dry south-east with less than 200 mm [28,38]. This is aggravated by low capacity
of retention of Spanish soils; on average a 9% & 34% in the rest of Europe [39].

The selected case study was Mijares river (belonging to Jucar river basin, the second largest basin
on the Mediterranean side of the Iberian Peninsula). This river is situated in Eastern Spain, traditionally
known as “dry Spain”. This zone regularly suffers noteworthy drought conditions [40]. In particular,
an unregulated stretch, characterized by a very high time-dependency behavior and by the existence
of important water springs at its headwater was selected [41] (Figure 1a). This case study was defined
by gauging station “El Terde”, code number 8030 (Figure 1b).

Morphometrically, the sub-basin covers a medium-sized extension of 665 km2 [42], with a main
stream of 47.462 km in length, an average slope of 0.018 meter/meter. Therefore, it has a time of
concentration of 12.13 h, according to Spanish regulations [43].

In lithological terms, there are important formations of loams and clays with alternation of
gypsum and conglomerates or limestones and gypsums, being that these areas are generally of low
permeability. However, these areas may contain deeper aquifers with greater permeability and
productivity. In addition, there are small areas of limestones and dolomites where very permeable
aquifers are located, generally large and productive [44].

Annual runoff time series (Figure 1c) were supplied through the network of gauging stations
belonging to the Jucar River Basin Authority [45]. Regarding the historical runoff, it is well known in
Hydrology, at least in Spain (South Europe), that the “80 effect” which comprises a drastic reduction in
Rainfall and Runoff from the year 80. In this particular basin, this effect is clearly shown in that Figure,
where there is also an isolated rise for the period 1988–1991. Most of the authors and experts impute
this consequence to Climate Change.
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in Spain where the first month is October and the last is September of following year.
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2.2. Methodololy

This research was articulated in four sequential stages. Firstly, in order to characterize the basin
behavior, the memory and temporal behavior indicators of the historical time series were obtained,
as well as its main statistical parameters. After that, equiprobable synthetic runoff series were generated
through a parsimonious and unconditioned ARMA (1,1) model (Stage-1). Next, synthetic series were
applied to populate the Causal Reasoning, supported by Bayesian modelling. This stage was crucial
because it comprises the discovery and characterization of the logical and non-trivial time-dependency
structure that inherently underlies the hydrological series (Stage-2). Then in Stage-3, based on
dependence strength over the time, different dynamic management scenarios (time-step by time-step)
were generated. Each temporal dependence scenario contains the dynamic and stochastic identification
and quantification of the runoff temporal-fractions, TCR and TNCR. Afterward, an in-depth analysis
of each of them was done. Finally, in Stage-4, a preliminary implementation of a dynamic predictive
runoff model was performed and its reliability was assessed from a probabilistic perspective (Figure 2).
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2.2.1. Stage-1. Historical Series. Memory and Temporal Behavior Indicators

In order to preliminarily assess the temporal nature of the basin, the memory and temporal
behavior indicators of the historical time series were calculated. This was done through Hurst
coefficient (H) and correlogram, respectively, based on the general framework exposed in Salas
et al. [46] (pp. 41–44 and p. 49 respectively), and which are well established in the scientific community.
Given that the determination of H is not a matter of this research, the reader is referred to Tyralis
and Koutsoyiannis [47] where a full discussion about its accuracy is done through three different
approaches. After that, main statistical parameters of the historical time series were determined.
This essentially comprises getting the basic statistics parameters of the ARMA model, such as mean,
standard deviation, and variation and skewness coefficients.

Secondly, a set of equiprobable synthetic runoffs were generated through a parsimonious and
unconditioned ARMA (1,1) according to Molina et al. [28] and Molina and Zazo [18,29], based on the
classical framework to generate ARMA models as shown by Salas et al. [46] (Chapter 5). A 20 years
warm-up period was defined for achieving a “non-conditioned” synthetic series generation process
without “boundary effects”.
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In the context of this work, it is worth mentioning that an ARMA (p, q) model is formed by adding
a moving average (MA) component to the Autoregressive (AR) component to model the temporal
correlation in time series [46]. AR component (“p” part) represents the temporal dependence delay
within a series; the MA component uses delays of the forecast errors to improve the process [28]. In this
sense, a generic ARMA model is expressed as [48]:

Xt = at +

p∑
j=1

(
∅ j ·Xt− j

)
−

q∑
j=1

(
θ j·at− j

)
(1)

where Xt is the value of the variable at a certain time-step t, p is the number of autoregressive parameters,
q is the number of moving average parameters, ∅ j and θ j are the coefficient of autoregressive and
moving average model respectively and at is a random variable that represents the historical residuals
(error term).

2.2.2. Stage-2. Causal Reasoning

Causality was addressed from the perspective of Causal Reasoning, which is characterized by
searching reasoning patterns focused on the cause, and where the objective comprises the prediction
of the effect [49]. As an analytical strategy, Bayesian modelling was selected, supported by software
HUGIN Expert version 7.3 [50]. It should be noted that Bayesian modelling is a powerful AI technique
based on a Probabilistic Graphical Model (PGM; [51–54]) that has significant advantages such as no
need for priori information of the process and use of raw data [55,56], its usefulness for analyzing
non-linear physical systems [57], or the ease of defining relationships in complex systems and offering
a compact representation of the joint probability distribution over sets of random variables [21].

Causal Reasoning is carried out over a set of random decision variables called “nodes” (water
years in this case), which are consecutively interconnected through “links” and a set of conditional
probability tables between decision variables [21,53,54]. Furthermore, the quantification of the variables’
relationship strength is performed by Bayes’ theorem, which is propagated over time by the conditional
probability; in this way the probability distributions are calculated for each decision variable as [58]:

P(A|B) =
P(A, B)

P(B)
=

P(A∩ B)
P(B)

(2)

where P(A|B) is a probability on event A, assuming that event B is true; P(A,B) is the joint probability of
events A and B; and P(B) is the probability of B.

The propagation of the Bayes’ Theorem allows, on one hand, dynamically analyze (time-step by
time-step) the mitigation (evolution) of temporal dependence over time, through the relative percentage
of runoff change that a time-step dynamically produces on the following ones. On the other hand,
it allows for generating the yearly interactions among one target year and the previous ones through
graphing of marginal dependencies in which each detected connection represents a time-dependency
relationship [29].

Hydrological memory of the basin was characterized in terms of the runoff dependence strength
over time. This was dynamically performed through interactions over the target year according to
the time-horizon defined by the propagation of temporal dependence. The strength of each yearly
interaction was evaluated by Dependence Rate (DR; from 0 to 1), expressed as [29]:

DR = 1 − (p-value) (3)

where p-value is the measure of the strength of evidence against the independence relationship [28,30].
Therefore, a DR value equal to 1 expresses a lot of evidence of a total dependence, while in contrast
0 represents little evidence against the independence. DR values were arranged in matrix form and
classified in two classes and grouped in 5 intervals (Table 1).
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Table 1. Dependence Rate (DR). Definition of classes and intervals.

Intervals
Classes

Range Color Code Description

[1.00, 0.95] Totally dependent

DR ≥ 0.50. A lot of evidence of relevant dependencies(0.95, 0.90] Highly dependent
(0.90, 0.75] Dependent
(0.75, 0.50] Slightly dependent

(0.50, 0.00] DR < 0.50. Little or null evidence of
significant dependencies

This approach, based on a parsimonious and unconditioned ARMA (1,1) combined with the
analytical power of Bayesian modeling, confers a high degree of freedom to the Causal Reasoning
that overcoming the temporal imposition of the ARMA model [30]. This makes it possible to discover
non-trivial relationships (time lag > 1) among decision variables, initially consecutively connected.
In addition it allows us to discover the hidden logical time-dependency structure, which inherently
underlies hydrological series [18,28,29].

For a complete definition of these processes, the reader is invited to refer to Molina et al. [28] and
Molina and Zazo [29].

2.2.3. Stage-3. Temporal Runoff Fractions

Once the dependence relationships among variables and propagation of the temporal dependence
were discovered through Causality, different management scenarios were dynamically/stochastically
generated based on methodological framework shown in Molina and Zazo [18], and a detailed analysis
of the temporal behavior was done.

In each time-step (time-lag) of the dependence propagation, both temporal-fractions, TCR (fraction
due to time) and TNCR (uninfluenced by time) were determined and quantified. In this sense, the sum
of both of them represents the total runoff for each water year. Both fractions are expressed as:

TCRi =

∑i−1
j=0 w j·Y j∑i−1

j=0 w j
, i = 1, . . . , TD (4)

TNCRi = (Ri − TCRi), i = 1, . . . , TD (5)

where TCRi is the weighted average conditioned runoff of the Target Year (i); w j expresses in weight
form the dependence of year j on Target Year (i; please see Figure 7b); Y j is the conditioned runoff for
the year j; TD is the temporal interval, expressed in years, of the propagation of dependence from
lag = 0 ([0,1] when the relative percentage change is maximum) to maximum lag (when the relative
percentage change is minimum and equal to zero; please see Figure 5); Ri is the runoff of the time series
in the target year; and TNCRi is the uninfluenced by time fraction for the target year.

Furthermore, in order to highlight the analytical capacity and discovery potential that this
methodological framework offers for the basin water resources management, for each time-lag,
two different time series were obtained, one for each temporal fraction. Next, the main statistical
parameters and the coefficients of different ARMA models for each time series were determined.
Consequently, the differences in the parameters and the coefficients will be exclusively due to
“discovered nuances” into the temporal behavior. This was done supported by software TRASERO
version 2.3.0 [48]. Akaike Information Criterion (AIC; [59]) was applied as criterion of models’ selection.
This was done by maximizing the expected log-likelihood of a particular model through the maximum
likelihood method. The optimal model will be the one with the lowest AIC value [60].
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2.2.4. Stage-4. Post-Process.

This represents the last stage of the research. It comprises, on one side, a preliminary design of the
predictive model from a probabilistic perspective, and, on the other, the assessment of the prediction
reliability. The predictive model was based on the hidden temporal conditionality that inherently
underlies of the historical series and that has been discovered through Causality (Stage-3).

Additionally, some studies have demonstrated the validity of stationary assumptions and
stochastic parametric models applied to the generation of hydrological predictive models, such as
references [61,62]. Recently, Papacharalampous et al. [61] presented an exhaustive study in which
large-scale results versus traditional approaches focused on cases studies are provided. Its main
conclusion is that stochastic and machine learning methods provide similar forecasts. Earlier, Tyralis
and Koutsoyiannis [62] justified the validity of the stationarity hypothesis applied to stochastic methods
in a context of prediction of hydroclimatic variables.

In agreement with the above conclusions, the predictive model was performed through stochastic
hydrological parametric ARMA models. This was generated by parsimonious ARMA models, one for
each temporal fraction (TCR and TNCR). They were developed from a time series obtained in Stage-3,
according to temporal horizons of dependence mitigation.

Given that the availability of water resources in Spain is characterized by a high seasonal and
annual variability [63–65], the predictive model was generated by a time-horizon of one (1) year
(Dep-1). For that reason, the training dataset was 69 years (time period: 1945/46 to 2013/14) and the
prediction was done over water year 2014/15. The obtained value of this final year was used to assess
the predictive reliability based on the resulting probability.

Finally, the reliability of the predictive model was assessed from a probabilistic perspective, by
suggesting two alternatives. The first one general and the second one detailed. The second approach is
based on the fact that the TNCR fraction does not depend on time, and, consequently, adds uncertainty
to the prediction. For that, two Monte Carlo simulations from ARMA models with 5000 data were
done. The probabilistic approach was based on Gringorten probability expressed as [66]:

F(yi)
=

i− 0.44
n + 0.12

(6)

where F(yi) is the value is the value of the data distribution function yi, i the occupied position by the
data in the series ordered from lowest to highest, and n the total number of data in the series.

3. Results

3.1. Statistical Analysis

Figure 3 shows both the main results drawn from the traditional statistical analysis performed
(Figure 3a) and the temporal correlation through correlogram (Figure 3b). Please note that the Anderson
limits of a correlogram define the temporal non-dependent region; in this way, if the correlation
coefficient for a certain time-lag is located inside this region, this time-step is temporally non-dependent.
In addition, regarding Hurst coefficient, the resulting value was 0.84, which indicates that analyzed
runoff series has a high long-term memory. This is in agreement with the observed temporal behavior
shown by the correlogram. In Figure 3b it can be clearly observed that the zone of the highest
dependency is mainly located in the time-lag interval [0,7].

An in-depth analysis of the correlogram reveals isolated points that may provide uncertainty
on time dependence (see time-lags 4, 7 and 8). In these points, the correlation coefficient (rk) is very
close to the Anderson limits, rk4 = 0.225 [−0.257, 0.226], rk7 = 0.216 [−0.263, 0.231] and rk8 = 0.231
versus [−0.265, 0.232]. In addition, from rk8 to rk10 a slight trend toward an independent area of the
correlogram is also observed. This is due to the average and static behavior that a correlogram offers.
However, these doubts on the dependent nature of runoff series and its time-horizon will be solved by
means of the dynamic analysis through the Causality.
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Synthetic series, obtained through a parsimonious and unconditioned ARMA (1,1) model, maintain
the main statistical parameters of the runoff series (Table 2). In this sense, Figure 4 shows the spectrum
of generated synthetic series to populate and train the Causal Reasoning through Bayesian modelling.

Table 2. Main statistical parameters. Historical series versus set of synthetic series from Autoregressive
Moving Average (ARMA) (1,1).

Parameters Historical Runoff Series Average of All Annual Synthetic Series

Mean: 27.06 Hm3 26.75 Hm3

Standard deviation: 15.23 Hm3 16.12 Hm3

Skewness coefficient 1: 1.05 1.58
Variation coefficient: 56% 59%
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3.2. Analysis of the Temporal Conditionality through Causal Reasoning

The temporal dependence propagation (mitigation) for the period 1945/46 to 2013/14 was evaluated
by means of a dynamic analysis of the relative percentage of change evolution over the whole time
period. Figure 5 shows the discovered dependence through the maximum (MAX or positive) and
minimum (MIN or negative) wrap-around shapes and fourth-order functions, which describe the
temporal behavior, these last ones with high determination coefficients (R2 = 0.99 in both cases).Water 2019, 11, x FOR PEER REVIEW 10 of 19 
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the evolution of the relative percentage of change over the time period 1945/46 to 2013/14.

It is also worthy highlighting the lack of symmetry in the Figure 5, with a positive (MAX)
wrap-around evidently dominant over the negative one (practically null). This reveals a clear
dependence behavior which coincides with that observed in the correlogram (see Figure 3b). However,
the dynamic propagation of dependence by Causal Reasoning encompasses a time-horizon of
exclusively 7 years (from maximum value of relative percentage change (time-lag = 0 [0,1]) to
minimum value (y-axis equal zero; time-lag = 7 [6,7]), versus 10 years shown by the average and static
behavior that the correlogram offers (Figure 3b). Furthermore, uncertain points on time dependence
shown in the correlogram (rk4 and rk7) have been eliminated by Causal Reasoning. This is shown by
the dominant positive wrap-around that reveals that dependence exists but with less force. In this
sense, both indeterminacies (rk4 and rk7) might be due to the same aforementioned reasons for the
observed difference in the time horizon.

A detailed analysis of the graph of dependence propagation highlights a double dependence
behavior. The first one, between interval [0,4], of greater dependence, presents a rapid mitigation
of dependence from a relative percentage of change of 4,612.7 (time-lag = 0) to 167.7 (time-lag = 4),
and where the maximum dependence is observed in the interval [0,1]. In contrast, the second one, in the
interval [4,7] and with a reduced relevance, shows a smooth mitigation and a non-significant increase in
the final interval [6,7]. These discovered, different and continuous behaviors might indicate a temporal
behavior both in the short ([0,4]) and medium ([4,7]) term that is not detected by the correlogram.

Additionally, the analytical power and suitability of Causal Reasoning applied to complex natural
systems are clearly revealed in Figure 6, in which a large number of non-trivial dependency relationships
(time-lag >1) amongst water years (decision variables) are revealed. Every detected connection shows
an independent relationship that is measured by its p-value.

Finally, from the graph of marginal dependencies and for a 100% independence level threshold
and Equation (3), Figure 7 presents, in matrix form, the hydrological memory of the basin in terms of
the runoff independence/dependence strength, over time.



Water 2019, 11, 877 10 of 18

Water 2019, 11, x FOR PEER REVIEW 10 of 19 

 

 

Figure 5. Causal modelling of the mitigation/propagation of temporal dependence by an analysis of 
the evolution of the relative percentage of change over the time period 1945/46 to 2013/14. 

Additionally, the analytical power and suitability of Causal Reasoning applied to complex 
natural systems are clearly revealed in Figure 6, in which a large number of non-trivial dependency 
relationships (time-lag >1) amongst water years (decision variables) are revealed. Every detected 
connection shows an independent relationship that is measured by its p-value. 

 
Figure 6. Graph of Marginal Dependencies. Note: The displayed threshold of level of independence 
is 0.05 (up to 95% of dependency relationships are shown amongst water years or decision variables). 

Finally, from the graph of marginal dependencies and for a 100% independence level threshold 
and Equation 3, Figure 7 presents, in matrix form, the hydrological memory of the basin in terms of 
the runoff independence/dependence strength, over time. 

Figure 6. Graph of Marginal Dependencies. Note: The displayed threshold of level of independence is
0.05 (up to 95% of dependency relationships are shown amongst water years or decision variables).Water 2019, 11, x FOR PEER REVIEW 11 of 19 

 

 
Figure 7. (a) Matrix of independence. The cell value is p-value. (b) Matrix of dependence. The cells 
show dependence rate (DR) value of each relationship. Row values indicate year interactions with 
respect to target year (main diagonal cell). Note: In order to achieve a better knowledge about the 
results obtained a part of the matrixes is only shown (1945/46 to 1958/59), nevertheless the results 
encompass the whole time period of the runoff series. For the color code please see Table 1. 

3.3. Management Scenarios 

Applying Equations 4 and 5 over runoff series, the two temporal fractions (TCR and TNCR) 
were determined and quantified in agreement with the graph of mitigation/propagation of temporal 
dependence (see Figure 5). 

Figure 8 shows the different generated dynamic management scenarios. In addition, Table 3 
summarizes the evolution of both temporal fractions with respect to the mean value of runoff. In each 
time-lag, it can be clearly seen, as the percentages of TCR exhibit high values (always above 65% and 
up to mean value of 86.1%), what agrees with the Hurst coefficient (0.84). Furthermore, the dual 
pattern of revealed behavior by Figure 5 in two intervals [0,4] and [4,7] is also observed. 

The discovery potential that this methodological framework offers for the management of the 
water resources of a basin is shown in the Tables 4 and 5. 

Table 3. Temporally Conditioned Runoff (TCR) and Temporally Non-conditioned Runoff (TNCR) 
Fractions. Analysis of temporal behavior for a reference threshold 2. 

Dependence Propagation (time-lags) 
Analysis of Peaks Analysis of Valleys Average Behavior 
% TCR % TNCR % TCR % TNCR % TCR % TNCR 

Dependence 1 year 84.8 15.2 87.4 12.6 86.1 13.9 
Dependence 2 year 78.1 21.9 76.7 23.3 77.4 22.6 
Dependence 3 year 73.5 26.5 72.4 27.6 73.0 27.0 
Dependence 4 year 70.1 29.9 67.2 32.8 68.7 31.3 
Dependence 5 year 66.9 33.1 68.8 31.2 67.9 32.1 
Dependence 6 year 65.4 34.6 67.9 32.1 66.7 33.3 

2 Reference threshold: Mean value of the runoff. 
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show dependence rate (DR) value of each relationship. Row values indicate year interactions with
respect to target year (main diagonal cell). Note: In order to achieve a better knowledge about the
results obtained a part of the matrixes is only shown (1945/46 to 1958/59), nevertheless the results
encompass the whole time period of the runoff series. For the color code please see Table 1.
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3.3. Management Scenarios

Applying Equations (4) and (5) over runoff series, the two temporal fractions (TCR and TNCR)
were determined and quantified in agreement with the graph of mitigation/propagation of temporal
dependence (see Figure 5).

Figure 8 shows the different generated dynamic management scenarios. In addition, Table 3
summarizes the evolution of both temporal fractions with respect to the mean value of runoff. In each
time-lag, it can be clearly seen, as the percentages of TCR exhibit high values (always above 65% and up
to mean value of 86.1%), what agrees with the Hurst coefficient (0.84). Furthermore, the dual pattern
of revealed behavior by Figure 5 in two intervals [0,4] and [4,7] is also observed.

Table 3. Temporally Conditioned Runoff (TCR) and Temporally Non-conditioned Runoff (TNCR)
Fractions. Analysis of temporal behavior for a reference threshold 2.

Dependence Propagation (time-lags)
Analysis of Peaks Analysis of Valleys Average Behavior

% TCR % TNCR % TCR % TNCR % TCR % TNCR

Dependence 1 year 84.8 15.2 87.4 12.6 86.1 13.9
Dependence 2 year 78.1 21.9 76.7 23.3 77.4 22.6
Dependence 3 year 73.5 26.5 72.4 27.6 73.0 27.0
Dependence 4 year 70.1 29.9 67.2 32.8 68.7 31.3
Dependence 5 year 66.9 33.1 68.8 31.2 67.9 32.1
Dependence 6 year 65.4 34.6 67.9 32.1 66.7 33.3

2 Reference threshold: Mean value of the runoff.

The discovery potential that this methodological framework offers for the management of the
water resources of a basin is shown in the Tables 4 and 5.

Table 4. TCR Fraction. Evolution of the main statistical parameters according to time dependence.

Parameters

TCR Fraction

Dependence Propagation (time-lags)

1 2 3 4 5 6

Mean (Hm3) 23.50 21.24 20.18 19.26 18.04 17.26
Standard deviation (Hm3) 14.86 13.76 13.62 13.05 11.39 10.64

Maximum (Hm3) 72.05 70.67 70.63 69.08 66.27 62.96
Minimum (Hm3) 4.11 3.75 3.73 0.65 3.46 2.96

Range (Hm3) 67.94 66.92 66.90 68.43 62.81 60.00
Skewness coefficient 1 1.47 1.42 1.50 1.48 1.70 1.78

Variation coefficient (%) 63 65 68 68 63 62
Kurtosis 2.05 2.08 2.43 2.75 4.30 4.83

1 Classic skewness coefficient.

Regarding the ARMA models coefficients of the TCR fraction, their range does not show a
significant variability. However, slight nuances are evident in their behavior because of the propagation
of time dependence. Classical analysis does not detect this because the coefficients are unique and fixed
in each model. In contrast, the TNCR fraction variability is greater, especially in the ∅1 coefficient (from
0.9979 to 0.9993) versus the fixed coefficients of the historical series (0.9985 and 0.9992). This would
allow for a better characterization of this uninfluenced by time fraction, and therefore, the uncertainty
of temporal behavior would be reduced.
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Table 5. ARMA model selection. parameters and the coefficients.

ARMA Model (p, q) AIC ∅1/∅2 θ1/θ2

Historical
records

(1, 0) −5.8705
(1, 1) −5.8704 0.9985 0.0007
(1, 2) −5.8703 0.0007/0.0007

(2, 0) −5.8704
(2, 1) −5.8703 0.9992/−0.0007 0.0001
(2, 2) −5.8702 0.0001/0.0007

TCR Fraction TNCR Fraction

AIC ∅1/∅2 θ1/θ2 AIC ∅1/∅2 θ1/θ2

Dep-1

(1, 0) −5.8267 −5.8469
(1, 1) −5.8266 0.9984 0.0007 −5.8468 0.9986 0.0007
(1, 2) −5.8266 0.0007/0.0007 −5.8467 0.0007/0.0007

(2, 0) −5.8266 −5.8468
(2, 1) −5.8266 0.9992/−0.0008 0.0001 −5.8467 0.9993/−0.0007 0.0001
(2, 2) −5.8265 0.0001/0.0007 −5.8466 0.0001/0.0007

Dep-2

(1, 0) −5.9146 −5.4748
(1, 1) −5.9145 0.9985 0.0007 −5.4747 0.9979 0.0010
(1, 2) −5.9144 0.0007/0.0007 −5.4746 0.0010/0.0010

(2, 0) −5.9145 −5.4748
(2, 1) −5.9144 0.9993/−0.0008 −0.0001 −5.4747 0.9990/−0.0010 0.0001
(2, 2) −5.9143 −0.0001/0.0007 −5.4746 0.0001/0.0010

Dep-3

(1, 0) −5.8417 −5.5094
(1, 1) −5.8416 0.9984 0.0007 −5.5093 0.9980 0.0010
(1, 2) −5.8415 0.0007/0.0007 −5.5093 0.0010/0.0010

(2, 0) −5.8416 −5.5093
(2, 1) −5.8415 0.9992/−0.0008 −0.0001 −5.5093 0.9990/−0.0010 0.0001
(2, 2) −5.8414 −0.0001/0.0007 −5.5092 0.0001/0.0010

Dep-4

(1, 0) −5.8236 −5.5015
(1, 1) −5.8235 0.9984 0.0007 −5.5014 0.9980 0.0010
(1, 2) −5.8234 0.0007/0.0007 −5.5013 0.0010/0.0010

(2, 0) −5.8235 −5.5014
(2, 1) −5.8234 0.9992/−0.0008 −0.0001 −5.5013 0.9990/−0.0010 0.0001
(2, 2) −5.8233 −0.0001/0.0007 −5.5012 0.0001/0.0010

Dep-5

(1, 0) −5.8776 −5.5647
(1, 1) −5.8776 0.9984 0.0007 −5.5646 0.9981 0.0010
(1, 2) −5.8776 0.0007/0.0007 −5.5645 0.0010/0.0010

(2, 0) −5.8776 −5.5646
(2, 1) −5.8776 0.9992/−0.0008 −0.0001 −5.5645 0.9990/−0.0010 0.0001
(2, 2) −5.8776 −0.0001/0.0007 −5.5644 0.0001/0.0010

Dep-6

(1, 0) −5.9128 −5.5902
(1, 1) −5.9127 0.9985 0.0007 −5.5901 0.9981 0.0009
(1, 2) −5.9126 0.0007/0.0007 −5.5900 0.0009/0.0009

(2, 0) −5.9127 −5.5901
(2, 1) −5.9126 0.9992/−0.0008 −0.0001 −5.5900 0.9991/−0.0009 0.0001
(2, 2) −5.9125 −0.0001/0.0007 −5.5899 0.0001/0.0009

3.4. Predictive Model. Probability-Based Assessment

Figure 9 shows the design of the dynamic predictive model over the time-horizon of one (1) year
(target water year 2014/15). This was performed by means of the conditioned data (Table 3), TCR and
TNCR fractions time series for a one-year time dependency (Dep-1; Figure 8) and two parsimonious
ARMA (1,0) models, defined each of them over those runoff temporal-fractions. It should be noted that
model selection was carried out by Akaike Information Criterion, due to AIC of the ARMA models
from (1.0) to (2.2) reported a slight difference in each one of the fractions (TCR: [−5.8267, −5.8265];
TNCR [−5.8469, −5.8466]; see Table 5).
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year (Dep-1).

On the other hand, the reliability of the predictive model is shown in Table 6, both a general
approach and a detailed one developed through a definition of TNCR intervals which is an uninfluenced
fraction of the time. From this approach, this adds an uncertainty component to the prediction because
this fraction does not depend on time. The recorded value of target water year to assess the predictive
reliability, 28.4 Hm3 was supplied by the Jucar River Basin Authority (please, see Reference [41]).

Table 6. Prediction Analysis for a Dependence Propagation one year (Dep-1).

Probability TCR TNCR 3
Runoff Prediction

Overall Detailed

0.50 14.68 2.06 16.74 14.68 ± 2.06 [12.62, 16.74]
0.60 16.82 2.62 19.44 16.82 ± 2.62 [14.20, 19.44]
0.70 19.38 3.37 22.75 19.38 ± 3.37 [16.01, 22.75]
0.80 22.67 4.30 26.97 22.67 ± 4.30 [18.37, 26.97]
0.85 25.17 5.06 30.23 25.17 ± 5.06 [20.11, 30.23]
0.90 28.38 6.12 34.50 28.38 ± 6.12 [22.26, 34.50]
0.95 34.46 8.03 26.43 34.46 ± 8.03 [26.43, 42.49]

3 TNCR: Fraction uninfluenced by time.

4. Discussion

This methodology allows knowing, in detail and jointly, the behavior of water resources in the
short and medium term (Figure 5; [0.4] and [4.7]), as well as their time-horizon (7 years versus 10 of the
correlogram; Figures 3b and 5). In this sense, it is worth highlighting the coherence between the Hurst
coefficient (0.84) and the results obtained (asymmetry in Figure 5). It is also remarkable the existing
agreement between the dual pattern of behavior presented in Figure 5 (intervals [0,4] and [4,7]) and
the analysis of the TCR and TNCR fractions´ temporal behavior evolution shown in Table 3 (time-lags
1 to 4; 84.8% to 70.1%).

Furthermore, the potential of this methodological framework for the basin water resources
management largely became clear when the temporal behavior nuances of each fraction series (Tables 4
and 5) were discovered. It is important to mention that these nuances cannot be detected by the
classical approaches. This was revealed by the variability of the ARMA model coefficients, especially
noteworthy in the case of TNCR Fraction (Table 5).

Regarding the predictive model, it shows a high level of reliability, 82.4% in general perspective, and
within 85% to 90% through a detailed approach ([20.11, 30.23] and [22.26, 34.50] for a time-dependency
of one-year; see Table 6).
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Moreover, detailed analysis over the temporal fractions presents crucial and convenient
implications over dimensioning, and control operations of reservoirs and dams. This is clearly
shown on the uncertainty that TNCR fraction adds to the predictive model. In a sense, for a runoff of
28.4 Hm3 in the target water year, there is an uncertainty among 5.06 and 6.12 Hm2 due to the fraction
not influenced by time, approximately 17.8 or 21.5% of the total runoff, respectively. Therefore, in a
management context, that volume should be jointly provided by the reservoir-dam and its control
operations in the previous year. In this way, the failure capacity of the infrastructure is reduced
or minimized.

Although reservoir dimensioning involves knowing multiple key aspects such as capacity-area-
elevation curves, downstream impacts and sediments inflow, among others, this methodological
framework might effectively contribute to achieving a better dimensioning of reservoirs and
dams. This will necessarily improve service guarantees through detailed knowledge of the runoff

temporal-fractions (TCR and TNCR), especially TNCR fraction, which it is not temporally dependent.
Furthermore, this methodology opens new perspectives for building dynamic and stochastic

hydrological predictive models. Also, more river basins sustainable management approaches are
expected to be designed. This may be produced through more reliable control operation of reservoirs
within the current context of global warming, and for high temporal dependent river basins.

Future research will incorporate the analysis of spatial dimension behavior in the design of
causal models.

5. Conclusions

This research supposes a breakthrough in the temporal characterization of runoff series. Here,
Causality has discovered a hidden and logical structure of temporal interdependence that inherently
underlie the hydrological series. This represents a latent behavior pattern that was waiting to be
discovered and that the classical approaches had not been able to reveal. This was performed by means
of the coupling of a stochastic hydrological parametric, parsimonious and unconditioned ARMA
model, and Causal Reasoning. The latest was supported by Bayesian modelling, which is a powerful
AI technique based on probabilistic graphical model.

The methodological framework makes possible to generate dynamic management scenarios
according to the propagation (mitigation/evolution) of the dependence (time-lags), taking into account
the runoff dependence strength over time. In that sense, two opposite temporal-fractions, the Temporally
Conditioned Runoff (TCR) fraction, and Temporally Non-Conditioned Runoff (TNCR) fraction were
determined and quantified within the runoff series. Furthermore, the observed behavior trends of
TCR/TNCR fractions made it possible to build a predictive runoff model with a high level of reliability.

The application of this new analytical strategy over annual runoff series applied to dimensioning
of reservoirs, dams, and control operation of reservoirs seems quite straightforward. In this sense,
a design more adjusted to the real needs of reservoirs-dams through a better knowledge and prediction
on temporal behavior of TCR and TNCR fractions is expected to be achieved. This will lead to a
reconsideration of the capacity of the storage reservoirs, especially their convenience in the current
context of global warming and for high temporal dependent river basins. This would imply substantial
economic and environmental savings in the future.

This research has demonstrated that past information provides prior knowledge of the future with
a high degree of reliability. Furthermore, this research reinforces the suitability of Causality (Causal
Reasoning) in modelling the temporal behavior of the water resources of a highly dependent basin
from a dynamic and stochastic perspective.
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