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Abstract: The use of global and regional climate models has been increasing in the past few decades,
in order to analyze the future of natural resources and the socio-economic aspects of climate change.
However, these climate model outputs can be quite biased, which makes it challenging to use
them directly for analysis purpose. Therefore, a tool named Climate Data Bias Corrector was
developed to correct the bias in climatic projections of historical and future periods for three primary
climatic variables—rainfall, temperature (maximum and minimum), and solar radiation. It uses the
quantile mapping approach, known for its efficiency and low computational cost for bias correction.
Its Graphical User Interface (GUI) was made to be feasible to take input and give output in commonly
used file formats—comma and tab delimited file formats. It also generates month-wise cumulative
density function (CDF) plot of a random station/grid to allow the user to investigate the effectiveness
of correction statistically. The tool was verified with a case study on several agro-ecological zones of
India and found to be efficient.
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1. Introduction

The changing climate is increasingly seizing the attention of scientist communities, irrespective
of their fields of interest, in the last few decades. Day-by-day, studies on climate change, and its
impact on different ecological systems are becoming familiar with the increasing use of Coupled
Model Inter-comparison Project (CMIP) derived future projections of global climate models (GCMs).
With advancing technology and computational methods, CMIP has been continuously working on
further improvement of GCM simulated outputs [1–3]. However, there are many research articles,
which have explicitly mentioned that the direct use of GCM-simulated projections is still unrealistic,
due to humongous uncertainty and bias present in them [4–6]. Therefore, there persists a requirement
to remove bias and to reduce the uncertainty from GCM outputs before application.

Different downscaling methods have been developed to remove the bias and uncertainty from
the GCM outputs. They are categorized into two major types—dynamic and statistical down-scaling.
Dynamic down-scaling is a model-based downscaling method, performed under different boundary
conditions, using different predictors (climatic variables) [7,8]. Whereas, statistical downscaling (like
bias correction method) is a statistical approach, which develops a statistical relationship between
observed and GCM outputs, in order to transform the unrealistic GCM outputs with substantial
uncertainty, to somewhat realistic data with reduced uncertainty as far as possible [7–9]. There have
been many studies in the last few decades, which have proposed different methods for statistical
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downscaling takes less computational cost compared to dynamic downscaling [5,9,10]. Among the
statistical methods, quantile mapping approach is one of the most popular, efficient, and straightforward
methods with less computation cost, which is being used by a lot of researchers to remove the bias
from the GCM outputs [11–14].

Most of process-based ecological and environmental simulation models require daily climatic data
of precipitation, temperature, and solar radiation as the minimum requirement to simulate different
biological and environmental conditions (for example, in hydrological model—SWAT, DRAINMOD,
etc., generally need precipitation and temperature data; in crop model—DSSAT, RZWQM, etc.,
precipitation, temperature, and solar radiation data are mandatory). These days, there are different
sources available (like [15,16]) which provide the downscaled bias corrected GCM future projections.
However, most of the time, there persists some bias in the data which one has to remove before its
use [17]. The reasons for persistent bias can be either due to the use of outdated methods of bias
correction, or removing bias only at monthly scale instead of daily [18–20]. Therefore, after realizing
that data is still not suitable for the application, researchers and scientists must apply the statistical
bias correction methods on GCM derived projections of these climatic variables for modeling purpose.
The bias correction process might sound quite simple, but when it has to be applied over a large spatial
area with a large number of stations/grids, it becomes complicated. For solving the complex problem
of bias correction, few packages have been developed in different languages. For example, Santander
Meteorology Group developed R package (downscaleR) and Matlab toolbox (MeteoLab), which include
several bias correction functions for precipitation and temperature data [21,22]. However, for the
application of these packages, one must know the programming languages in which these packages are
developed. Researchers might also need to remove the bias from solar radiation data, which is a very
common climatic variable for crop modeling, and these packages do not include solar radiation bias
correction process. Therefore, there is a need for an efficient tool that does not require any supporting
software and programming languages for its installation and simulations. The tool could help the
scientific community and save their precious time to bias correct GCM outputs of a large number of
stations/grids for elementary climatic variables—precipitation, temperature, and solar radiation.

Based on the identified research gap, the objectives of this research article are

• To develop a Climate Data Bias Corrector (CDCB) tool for removing the bias for climatic model
simulated outputs of precipitation, temperature, and solar radiation data, and

• To apply CDBC on the agro-ecological zones (AEZ) of India for its verification and to analyze the
climate change for the mid and late century.

2. Methods and Tool Description

2.1. Bias Correction—Quantile Mapping

The quantile mapping approach has been used due to its simplicity, effectiveness, and low
computational cost for development of the CDBC tool, for bias correction of climate models’ outputs.
A quantile mapping approach (also known as ‘probability mapping’ and ‘distribution mapping’),
is comprised of development of the statistical relationship between observed and model simulated
outputs, by replacing the simulated values with observed ones at same cumulative density function
(CDF) of used distribution depending on the climate variable (Figure 1). Bias correction of precipitation
values (higher than 0) is performed by fitting the daily precipitation values of each month to Gamma
distribution (which also only accounts for values greater than 0) (Table 1). Similarly, temperature
values vary from negative to positive. Therefore normal distribution fits best for temperature data. In
the same way, solar radiation data follows beta distribution as beta distribution accounts values from 0
to 1; therefore, solar radiation data at first is generally transformed into 0 to 1 range, which is again
transformed back to the normal range after bias correction (Table 1).
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developed using a free and open-source widget toolkit- PyQt [27] available in Python [28] (a high-
level programming language getting popular in scientific areas) in such a way that it takes input and 
provides output in a commonly used tab and comma delimited files (*.txt and *.csv). There are two 
separate tabs developed in its graphical user interface (GUI) for bias correction of historical and 
future data. In the historical tab, a user has to provide two files, one with observed and other with 
model-simulated historical data of the same period (30 years, a general recommendation for climate 
change studies). The first two rows of the files must be latitude and longitude, and the first column 
must be the date column. Other columns will have the data of the same variable for a given latitude 
and longitude. Similarly, future tab takes three files for bias correction of future data-observed 
historical data, model-simulated historical data, and model simulated future data. Here, observed 
and model-simulated data must be of the same period to get accurate results. All the files must have 
the same order of latitude and longitude. To check the feasibility of tool, it provides an option to 
visualize the CDF plot, which draws for the randomly select station/grid for all the months (refer to 
Figure 2b for example). The tool is easy to install in all the versions of Windows and does not require 
any supporting software for its installation. The tool is developed in Python and the source code 
(available at [29,30] is distributed under Massachusetts Institute of Technology (MIT) license. This 
allows any user to modify/update the code in the future without any restriction [31]) for further 
improvement as well as the addition of new methodologies to remove the bias from GCM and RCM 

Figure 1. The demonstration of quantile mapping bias correction approach (Modified from Kim et
al. [26]). Please refer to Table 1 for the variable definitions.

Table 1. Distributions and equations used for bias correction of different climatic variables.

Distributions/Climate Variables Equations References

Gamma/Precipitation xms.corr =

{
F−1

oh (Fmh(xms)), xms ≥ xth
0, xms < xth

[23]

Normal/Temperature xms.corr = xms + F−1
oh (Fms(xms)) − F−1

mh(Fms(xms)) [24]
Beta/Solar Radiation xms.corr = F−1

oh (Fmh(xms)) [25]

Note: where x is climatic variable, xms.corr is bias corrected model simulated data; to categories between the wet and
the dry day threshold value xth is used (day with precipitation greater than 1 mm is assumed to be a wet day); F is
CDF, whereas F−1 is its inverse. (o = observed, m = model, h = historical period, and s = simulation period). Here,
the simulated period can either be historical or a future period.

2.2. CDBC Description

CDBC was developed for removing the bias from GCM and regional climate model (RCM) derived
outputs of climate variables—precipitation, temperature, and solar radiation for the historical as well
as the future period based on equations described in Table 1 (Figure 2a). The tool was developed using
a free and open-source widget toolkit—PyQt [27] available in Python [28] (a high-level programming
language getting popular in scientific areas) in such a way that it takes input and provides output in a
commonly used tab and comma delimited files (*.txt and *.csv). There are two separate tabs developed
in its graphical user interface (GUI) for bias correction of historical and future data. In the historical
tab, a user has to provide two files, one with observed and other with model-simulated historical data
of the same period (30 years, a general recommendation for climate change studies). The first two
rows of the files must be latitude and longitude, and the first column must be the date column. Other
columns will have the data of the same variable for a given latitude and longitude. Similarly, future tab
takes three files for bias correction of future data-observed historical data, model-simulated historical
data, and model simulated future data. Here, observed and model-simulated data must be of the same
period to get accurate results. All the files must have the same order of latitude and longitude. To check
the feasibility of tool, it provides an option to visualize the CDF plot, which draws for the randomly
select station/grid for all the months (refer to Figure 2b for example). The tool is easy to install in all
the versions of Windows and does not require any supporting software for its installation. The tool
is developed in Python and the source code (available at [29,30] is distributed under Massachusetts
Institute of Technology (MIT) license. This allows any user to modify/update the code in the future
without any restriction [31]) for further improvement as well as the addition of new methodologies to
remove the bias from GCM and RCM projections (please refer to Getting Started [32] and Technical
Manual [33] to better understand the tool usage and installation procedure).
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Figure 2. (a) Graphical user interface (GUI) of Climate Data Bias Corrector (CDBC), and (b) tool
generated cumulative density function (CDF) curve of temperature on a monthly basis for a randomly
selected grid for comparison of observed, before and after bias correction time series.

3. Application of CDBC: A Case Study

3.1. Study Area

India has a total geographical area of about 3.28 Million km2, which has been classified into 20
Agro-ecological zones (AEZs) [34] (Figure 3), is being used as the study area for testing the Climate
Data Bias Corrector (CDBC) tool. The reason for selecting AEZs to test CDBC, instead of any political
boundary, is to ensure whether the tool is capable of removing bias from GCM simulated outputs
of different climatic conditions as every AEZ has unique climatic range, soil types, physiography,
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and growing period of crops. For instance, Western Himalayan zone (AEZ-1) is cold-arid eco-region,
which receives annual precipitation less than 150 mm, whereas Western Plain, Kutch, and Part of
Kathiawar Peninsula (AEZ-2) and Deccan Plateau (AEZ-3) are hot-arid eco-regions, which receive
annual precipitation less than 500 mm. Similarly, there are semi-arid (AEZ-4 to 8), sub-humid (AEZ-9
to 15), humid-per humid (AEZ-16 to 18) and coastal (AEZ-19 and 20) eco-region, which are varied in
terms of soil, climate, physiography, and length of growing period [34,35].

Water 2019, 11, x FOR PEER REVIEW 5 of 13 

 

different climatic conditions as every AEZ has unique climatic range, soil types, physiography, and 
growing period of crops. For instance, Western Himalayan zone (AEZ-1) is cold-arid eco-region, 
which receives annual precipitation less than 150 mm, whereas Western Plain, Kutch, and Part of 
Kathiawar Peninsula (AEZ-2) and Deccan Plateau (AEZ-3) are hot-arid eco-regions, which receive 
annual precipitation less than 500 mm. Similarly, there are semi-arid (AEZ-4 to 8), sub-humid (AEZ-
9 to 15), humid-per humid (AEZ-16 to 18) and coastal (AEZ-19 and 20) eco-region, which are varied 
in terms of soil, climate, physiography, and length of growing period [34,35]. 

 

Figure 3. Map of the agro-ecological zones of India. 

3.2. Data Preparation 

India Meteorological Department (IMD) provides daily gridded climate data for precipitation 
and temperature (minimum and maximum), which were collected from years 1976 to 2005. As the 
daily observed values of solar radiation were not available, simulated daily values of solar radiation, 
from the National Centers for Environmental Prediction (NCEP), between 1979–2005, were used as 
the observed proxy dataset. Weather information for same climate variables simulated from five 
GCMs (Beijing Climate Center, China Meteorological Administration, China (BCC CSM1.1), 
Meteorological Research Institute, Japan (MRI-CGCM3), Norwegian Climate Center, Norway 
(NorESM1-m),  Institut Pierre Simon Laplace, France (IPSL-CM5A-LR), and Atmosphere and Ocean 
Research Institute (University of Tokyo), National Institute for Environmental Studies, and Japan 
Agency for Marine-Earth Science and Technology (MIROC5)) (selected based on the availability of 
all the required climate variables and high resolution) developed by CMIP Phase 5 were collected for 
historical (1976–2005) and future period of time (2005–2100) for four representative concentration 
pathways (RCPs-2.6, 4.5, 6.0 and 8.5) [36]. RCPs are the pathways depending on greenhouse gas 
emission and radiative forcing levels. The average radiative forcing achieved by different RCPs by 
the end of this century is denoted on its nomenclature like RCP 2.6 has 2.6 Wm−2, RCP 4.5 has 4.5 
Wm−2, and so on for other RCPs. The carbon concentration is assumed to be reached about 490, 650, 
850, 1370 ppm by the end of the 21st century for RCP 2.6, 4.5, 6.0, and 8.5, respectively [37]. All the 

Figure 3. Map of the agro-ecological zones of India.

3.2. Data Preparation

India Meteorological Department (IMD) provides daily gridded climate data for precipitation and
temperature (minimum and maximum), which were collected from years 1976 to 2005. As the daily
observed values of solar radiation were not available, simulated daily values of solar radiation, from the
National Centers for Environmental Prediction (NCEP), between 1979–2005, were used as the observed
proxy dataset. Weather information for same climate variables simulated from five GCMs (Beijing
Climate Center, China Meteorological Administration, China (BCC CSM1.1), Meteorological Research
Institute, Japan (MRI-CGCM3), Norwegian Climate Center, Norway (NorESM1-m), Institut Pierre
Simon Laplace, France (IPSL-CM5A-LR), and Atmosphere and Ocean Research Institute (University of
Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and
Technology (MIROC5)) (selected based on the availability of all the required climate variables and high
resolution) developed by CMIP Phase 5 were collected for historical (1976–2005) and future period of
time (2005–2100) for four representative concentration pathways (RCPs-2.6, 4.5, 6.0 and 8.5) [36]. RCPs
are the pathways depending on greenhouse gas emission and radiative forcing levels. The average
radiative forcing achieved by different RCPs by the end of this century is denoted on its nomenclature
like RCP 2.6 has 2.6 Wm−2, RCP 4.5 has 4.5 Wm−2, and so on for other RCPs. The carbon concentration
is assumed to be reached about 490, 650, 850, 1370 ppm by the end of the 21st century for RCP 2.6, 4.5,
6.0, and 8.5, respectively [37]. All the collected climate data were rescaled to a spatial resolution of
1◦ × 1◦ using linear interpolation to maintain the uniformity and ease in explanation.
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3.3. Bias Correction and Climate Change Estimation

After the data was prepared, the CDBC tool was used to remove the bias from the GCM data
for historical (1976–2005: 1990s) as well as future period (2036–2065: 2050s and 2066–2095: 2080s) for
all the climate variables, rainfall, temperature (maximum and minimum), and solar radiation at the
grid scale (1◦ × 1◦). After that, the average time series for each AEZ was prepared by aggregating the
gridded data (both observed and GCM simulated data) of their respective AEZ for ease in comparison
and calculations of climate change. To check the feasibility of the tool, observed and multi-ensemble
of GCMs simulated historical data of the 1990s were compared at the AEZ scale, before proceeding
towards the bias correction of the GCM simulated data of 2050s and 2080s. After the feasibility test
and bias correction of all the GCM data, changes in climatic variables in the mid-century (2050s) and
late-century (2080s) in future were analyzed at the AEZ scale.

4. Results and Discussion

4.1. CDBC Performance at Grid and AEZ Scale

The monthly averaged 30-year daily time series of multi-ensemble GCMs derived rainfall,
temperature, and solar radiation were compared with the observed time series of the 1990s, at a
randomly selected grid at latitude 23.0◦ and longitude 80.0◦, before and after bias correction to evaluate
the bias correction performance of the tool at the grid scale (Figure 4). From Figure 4, it is clear that
the tool has reduced the uncertainty among the different GCMs historical projections, which proves
that the tool can be used in removing bias from the future projection of GCM outputs. However, for
further cross-examination of tool performance at a large area, a similar approach has been followed
for AEZ scale. The monthly average of AEZ scaled time series of rainfall, temperature, and solar
radiation, aggregated from daily gridded data for the 1990s was used to evaluate the performance of
bias correction for each climatic variable. Figure 5 illustrates the bias correction capability of the tool in
one of the AEZs, i.e., AEZ-3. Similarly, the performance of the tool for other AEZs was also verified to
ensure that the tool is capable of removing bias from the GCM data under different climatic conditions
(please refer to Supplementary Materials, Figures S1–S8). There was a tremendous uncertainty, as
well as bias, in all the five GCMs present in the raw multi-ensemble GCMs outputs (Figure 5a–d),
which were successfully removed by using CDBC tool preserving the seasonal pattern of the climatic
variables (Figure 5e–h).
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Figure 4. Comparison of observed and multi-GCM ensemble (error bars represent variability among
the five GCMs) time series of 1990s for before and after bias correction of (a) rainfall, (b) maximum
temperature, (c) minimum temperature, and (d) solar radiation at a randomly selected grid (latitude
23.0 and longitude 80.0).
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Figure 5. Comparison of observed and multi-GCM ensemble (error bars represent variability among
the five GCMs) time series of 1990s for before and after bias correction of (a) rainfall, (b) maximum
temperature, (c) minimum temperature, and (d) solar radiation in AEZ 3.

4.2. Expected Changes in Climatic Variables by 2050s and 2080s

After the tool was verified at AEZ scale with the observed data for the 1990s, it was used to bias
correct the future GCMs projected gridded data for two-time scenarios (2050s and 2080s) and four
RCP scenarios (RCP 2.6, 4.5, 6.0, and 8.5). Like the historical data (observed and model simulated), the
gridded GCM projections for the 2050s and 2080s were also aggregated to develop the time series at
AEZ scale for all the five GCMs. Then, the multi-ensemble bias corrected GCM projections for the
future period were compared with that for the historical period to estimate the changes in climatic
variables for different RCPs scenarios and future periods. Changes in climatic variables were estimated
annually as well as separately for summer (April–September) and winter seasons (October–March).

4.3. Future Changes in Climate Variables on the Annual Scale

Rainfall in all the AEZs is expected to increase in the future for all RCPs (Figure 6a). The expected
increase in rainfall in arid (AEZ 1–3) (2050s: 8.9–51.3%, 2080s: 16.3–100.0%) and semi-arid regions (AEZ
4–8) (2050s: 18.0–37.8%, 2080s: 16.3–71.3%) are observed to be higher than that in humid (AEZ 16–18)
(2050s: 4.8–12.8%, 2080s: 4.5–23.2%) and sub-humid (AEZ 9–15) (2050s: 8.9–23.8%, 2080s: 9.2–37.3%)
regions. Coastal region (AEZ 19–20) (2050s: 11.7–25.0%, 2080s: 8.5–46.8%) is also ascertained to have a
significant increase in rainfall in all the RCP scenarios and periods, which is found to be higher than
that in the humid region. Worse RCP scenarios resulted in higher rainfall amount in the future.

Similarly, the solar radiation time series was also analyzed to determine any significant changes in
mid-century and late-century for all the plausible scenarios (Figure 6b). In all the scenarios, sub-humid
AEZs are expected to experience a slight decrease in solar radiation values annually up to 0.2 MJ/m2 by
2050s and 0.4 MJ/m2 by 2080s. However, other regions are expected to experience a very ambiguous
pattern of increase and decrease in solar radiation values for different scenarios. Though, humid AEZs
and most of semi-arid AEZs could experience a significant decrease up to 0.3 MJ/m2 by 2080s in last
two worst scenarios (RCP 6.0 and 8.5). Similarly, there might be a small decrease in the average annual
value in RCP 8.5 for both the future periods in the coastal AEZs. All the changes experienced by
different agro-ecological regions in solar radiation are quite small.



Water 2019, 11, 1102 8 of 13Water 2019, 11, x FOR PEER REVIEW 8 of 13 

 

 

Figure 6. Climate change analyzed based on annual mean changes in (a) rainfall, (b) solar radiation, 
(c) maximum, and (d) minimum temperature with respect to 1990s for two future periods- 2050s and 
2080s and all the representative concentration pathways (RCP) scenarios. 

Similarly, the solar radiation time series was also analyzed to determine any significant changes 
in mid-century and late-century for all the plausible scenarios (Figure 6b). In all the scenarios, sub-
humid AEZs are expected to experience a slight decrease in solar radiation values annually up to 0.2 
MJ/m2 by 2050s and 0.4 MJ/m2 by 2080s. However, other regions are expected to experience a very 
ambiguous pattern of increase and decrease in solar radiation values for different scenarios. Though, 
humid AEZs and most of semi-arid AEZs could experience a significant decrease up to 0.3 MJ/m2 by 
2080s in last two worst scenarios (RCP 6.0 and 8.5). Similarly, there might be a small decrease in the 
average annual value in RCP 8.5 for both the future periods in the coastal AEZs. All the changes 
experienced by different agro-ecological regions in solar radiation are quite small. 

Figures 6c and d show the change in maximum and minimum temperature for different agro-
ecological zones of India for various combination of future period and plausible scenarios. It is 
evident that, due to the increasing concentration of carbon dioxide (CO2) (a greenhouse gas) in the 
atmosphere, the temperature will rise. Therefore, with the time and moving towards the worst 
scenarios, higher rise in temperature is expected. The maximum rise in temperature is expected in 
arid and sub-humid regions, which could vary from 1.1–5.9 °C, and 1.1–4.9 °C, respectively. The least 
increase in temperature was found in coastal regions, varying from 1.0–3.2 °C. The remaining two 
regions, i.e., semi-arid and humid regions, are expected to experience an increase in a temperature 
varying from 1.0–4.3 °C on an average. 

Mishra and Lilhare [38] reported a similar increase in rainfall and temperature using CMIP5 data 
on different Indian sub-continent major river basins. Kumar et al. [39] downscaled the high resolution 
multi-model climatic projections to quantify the changes in climatic variables, also found similar 
results on the country-wide scale. Similarly, other researchers also found similar changes in the 
climatic variables over the different part of the country [40–42]. The changes in a different climatic 
variable, based on annual time series analysis of a future period compared to a historical period, are 

Figure 6. Climate change analyzed based on annual mean changes in (a) rainfall, (b) solar radiation, (c)
maximum, and (d) minimum temperature with respect to 1990s for two future periods—2050s and
2080s and all the representative concentration pathways (RCP) scenarios.

Figure 6c,d show the change in maximum and minimum temperature for different agro-ecological
zones of India for various combination of future period and plausible scenarios. It is evident that, due
to the increasing concentration of carbon dioxide (CO2) (a greenhouse gas) in the atmosphere, the
temperature will rise. Therefore, with the time and moving towards the worst scenarios, higher rise in
temperature is expected. The maximum rise in temperature is expected in arid and sub-humid regions,
which could vary from 1.1–5.9 ◦C, and 1.1–4.9 ◦C, respectively. The least increase in temperature was
found in coastal regions, varying from 1.0–3.2 ◦C. The remaining two regions, i.e., semi-arid and humid
regions, are expected to experience an increase in a temperature varying from 1.0–4.3 ◦C on an average.

Mishra and Lilhare [38] reported a similar increase in rainfall and temperature using CMIP5
data on different Indian sub-continent major river basins. Kumar et al. [39] downscaled the high
resolution multi-model climatic projections to quantify the changes in climatic variables, also found
similar results on the country-wide scale. Similarly, other researchers also found similar changes in the
climatic variables over the different part of the country [40–42]. The changes in a different climatic
variable, based on annual time series analysis of a future period compared to a historical period, are
interlinked with the hydrological cycle. The increase in carbon concentration is expected to trigger the
increase in temperature, which is the main reason for the increase in rainfall [43,44]. The increase in
temperature fastens the hydrological cycle, due to a rise in evapotranspiration. This increase would
result in increasing rainfall events, along with extreme events [44]. Rainfall and solar radiation are
inversely proportional to each other. Due to the fastening of the hydrological cycle, the incoming solar
radiation would be intercepted by the cloud resulting in decreasing solar radiation value.

4.4. Seasonal Changes in Climate Variables in Future

Like the annual analysis, changes in climatic variables have also been analyzed seasonally for
two major seasons of the year—summer and winter. For summer, the analysis was performed from
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April to September. Whereas, for winter, it was performed from October to March. On analysis, it was
found that the percentage increase in rainfall, in the winter, is higher than that in summer in most of
the AEZs except AEZ 1 (arid) and AEZ 15 (sub-humid) (Figures 7a and 8a). By the end of the 21st
century, it is expected that most of arid (AEZ 2, 3), semi-arid (AEZ 4–8), and coastal regions (AEZ 20)
could experience an extreme increase in winter rainfall (up to 200%). However, the increase in summer
rainfall is expected to be approximately up to 80%. Similarly, solar radiation was also analyzed on
a seasonal basis. Most of the AEZs of different major climatic regions are expected to experience an
increase in winter solar radiation as compared to summer except AEZ 3, 8, 17, 19, and 20, where
there is a significant probability of a slight decrease in winter solar radiation, ranging up to 0.6 MJ/m2

(Figures 7b and 8b) by 2080s. By analyzing the temperature on a seasonal basis, a significant increase
in maximum and minimum temperature was observed in most of AEZs, up to 1.4 ◦C. Similarly, few
AEZs (AEZ 3, 7, 8, 14, 19, and 20) are projected to have an increase up to 0.8 ◦C in the maximum
temperature during the winter than in the summer by the end of this century. There was only one AEZ
(AEZ 8) where the increase in minimum temperature by 2080s was observed to lesser in winter than in
summer. Overall, a very slight change in the seasonal analysis of climate change was found compared
to the annual changes except for the changes in rainfall. In winter, the percentage change of rainfall
is expected to be more than that in summer. However, by magnitude and distribution, the summer
rainfall will still be expected to dominate during all the future periods of the whole century.
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Figure 7. Climate change analyzed based on mean changes in summer (Apr.–Sep.) in (a) rainfall,
(b) solar radiation, (c) maximum, and (d) minimum temperature with respect to 1990s for two future
periods—2050s and 2080s and all the RCP scenarios.
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Recent pursuit and the advancement of climate change impact studies on numerous concerns have
steered the use of CMIP datasets for a better understanding of the future. However, the recommendation
of bias correction, before the use of these datasets, has convoluted the situation for the researchers, as
the bias correction is a complicated process, which needs knowledge of mathematics, statistics, and
a high-level programming language. The researchers, who are engaged with field experiments or
sciences in agriculture and want to use future climatic projections in their modeling work, are generally
not familiar with the statistical approach used in the bias correction. Therefore, to assist them with bias
correction, the Climate Data Bias Corrector (CDBC) has been developed.

The tool has been verified in this study on AEZs of India as well as in a study on climate change
impact on the hydrology of the Great Miami River watershed in Ohio, USA by Shrestha et al. [17].
After testing it on different AEZs of India which are varied in terms of climate and other crop-related
parameters as well as in one of the watersheds of USA which is again possess a completely different
climatic condition than India, it can be claimed that the tool is not region specific and can be used
anywhere around the world.

5. Summary and Conclusions

An increase in the use of the global climate model (GCM) simulating future projections has
triggered an idea for the introduction of a tool—the Climate Data Bias Corrector (CDBC), designed to
remove the bias and reduce the uncertainty among the GCMs derived daily projections. To illustrate
the capability of the CDBC tool, we conducted a case study to monitor its performance and its use on
a large number of grids. In this case study, five GCMs simulated historical, and future projections
along with observed gridded data were used to analyze the annual, as well as seasonal, changes in
climatic variables—rainfall, temperature, and solar radiation for mid- (2050s) and late- (2080s) term of
the current century. The CDBC tool was used to remove the bias from all five GCM data for historical
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(1990s) and future periods (2050s and 2080s). To evaluate the performance of the tool, the observed data,
and bias removed GCM simulations for the historical period, were compared at the grid, as well as the
AEZ scale. From the results, it is observed that the tool has performed quite well in rectifying the GCM
historical outputs. The monthly pattern and uncertainty among different GCMs have been reduced to
a great extent. After that, the climate change analysis was conducted to determine the expected change
in climate by 2050s and 2080s for all AEZs of India, using CDBC outputs for different GCMs. The
climate change results were also found to be similar to IPCC and other researchers expectations. The
change in climate was also evaluated on a seasonal basis for summer and winter separately, in order to
check whether the tool is capable of preserving the intra-annual seasonality in climate change analysis.
The results seem to depict an obvious pattern reported by several climatologists and scientists.

Therefore, the developed tool could help improve the future simulation and reduce uncertainty
from the simulated outputs induced, due to the uncertainty and bias in future climatic projections. This
could insight a better understanding of future scenarios, simulated using different agricultural and
hydrological models. Hence, it is a practical tool, which can be used by diverse scientific communities
analyzing the climate change impact at large, as well as small scales. The tool is designed in an
open-source programming language—Python. Therefore, there is a scope of future modification or
addition of new algorithms, and along with that, there is no license issue that will be advantageous for
its users all over the world especially in developing nations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/5/1102/s1,
Figure S1: Comparison of observed and multi-GCM ensemble (error bars represent variability among the five
GCMs) time series of 1990s for before bias correction of rainfall for all the AEZs, Figure S2: Comparison of
observed and multi-GCM ensemble (error bars represent variability among the five GCMs) time series of 1990s for
after bias correction of rainfall for all the AEZs, Figure S3: Comparison of observed and multi-GCM ensemble
(error bars represent variability among the five GCMs) time series of 1990s for before bias correction of maximum
temperature for all the AEZs, Figure S4: Comparison of observed and multi-GCM ensemble (error bars represent
variability among the five GCMs) time series of 1990s for after bias correction of maximum temperature for all
the AEZs, Figure S5: Comparison of observed and multi-GCM ensemble (error bars represent variability among
the five GCMs) time series of 1990s for before bias correction of minimum temperature for all the AEZs, Figure
S6: Comparison of observed and multi-GCM ensemble (error bars represent variability among the five GCMs)
time series of 1990s for after bias correction of minimum temperature for all the AEZs, Figure S7: Comparison of
observed and multi-GCM ensemble (error bars represent variability among the five GCMs) time series of 1990s for
before bias correction of solar radiation for all the AEZs, Figure S8: Comparison of observed and multi-GCM
ensemble (error bars represent variability among the five GCMs) time series of 1990s for after bias correction of
solar radiation for all the AEZs.
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