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Abstract: In this paper, the fluid flow through rough fractures was investigated via numerical
simulation based on the lattice Boltzmann method (LBM). The accuracy of LBM was validated
through the numerical simulation of the parallel plate model and the verification of the mass
conservation of fluid flow through rough fracture. After that, the effect of roughness on fluid flow was
numerically conducted, in which, the geometry of fractures was characterized by the joint roughness
coefficient (JRC), fractal dimension (D) and standard deviation (σ). It was found that the JRC cannot
reflect the realistic influence of roughness on the permeability of single fracture, in which, an increase
in permeability with increasing JRC has been observed at the range of 8~12 and 14~16. The reason
behind this was revealed through the calculation of the root mean square of the first derivative of
profile (Z2), and an equation has been proposed to estimate the permeability based on the aperture
and Z2 of the fracture. The numerical simulations were further conducted on fluid flow though
synthetic fractures with a wide range of D and σ. In order to unify the parameter that characterizes the
roughness, Z2 was obtained for each synthetic fracture, and the corresponding relationship between
permeability, aperture and Z2 was analyzed. Meanwhile, it was found that the fluid flow behaves
differently with different ranges of Z2 and the critical point was found to be Z2 = 0.5. Based on
extensive study, it was concluded that Z2 is a generic parameter characterizing the roughness, and the
proposed equation could be used to predict the permeability for fluid flow in fracture.
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1. Introduction

The inherent fracture has a significant influence on the strength, deformation and seepage
characteristics of rock mass. In particular, the fluid flow through fractures has been a popular topic in a
variety of areas including petroleum engineering, hydraulic engineering, and geotechnical engineering.
For example, the production of nature resources (oil, gas), the leakage problem of waste and toxic
substances, and the seepage failure in tunnel and mines require accurate descriptions of fluid flow
through fractures.

The fluid flow in single fractures is quantified by the cubic law, in which, the transmissivity is
proportional to the cubic of aperture based on the assumption of a parallel plate model. The early
research on fluid flow in fractures can be tracked back to the work by Lomize [1] and Louis [2], who
verified the cubic law through laboratory test. The cubic law was also validated by Witherspoon et al. [3]
through the fluid flow in deformable rock fracture. In reality, rock fractures are not smooth but present
certain degrees of roughness due to a complex formation process, and the influence of roughness
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on fluid flow through fractures has been studied extensively. For example, Tsang [4] conducted a
numerical study to investigate the tortuosity on fluid flow through a single fracture and found that the
fraction of contact area of the rough fracture is the controlling factor to determine the magnitude of the
effect of tortuosity. Brown [5] used the finite difference method to calculate the volume flow rate and
electric current in simulated fractures composed of rough surfaces generated with a fractal algorithm.
Zimmerman and Bodvarsson [6] conducted an extensive theoretical analysis on the fluid flow through
fractures. Barton and Quadros [7] explored the correlation between the hydraulic aperture and joint
roughness coefficient (JRC). Murata and Saito [8] estimated the permeability and tortuosity of rock
fractures by using the fractal model. Min et al. [9] conducted a numerical study to investigate the
influence of stress on the permeability of fractured rock mass. Rasouli and Hosseinian [10] developed
a correlation to estimate the hydraulic parameters through a channel of combined JRC profiles under
different minimum closures using a finite element method. Further works include those by Xiong
et al. [11], who investigated the geometrical and hydraulic characteristic of rock fractures during shear
through both experimental and numerical study; Indraratna et al. [12], who proposed a 2D equivalent
finite volume model that considers the hydraulic aperture distribution to solve the flow problem in
deformable rough rock joints. Furthermore, Guha Roy and Singh [13] conducted a parametric study on
fluid flow through fracture based on finite element modeling, in which, the influence of inflow pressure,
aperture and shear displacement on the flow behavior were investigated. Ma et al. [14] and Ma and
Wang [15] investigated the correlation between permeability and external stress applied on fractured
rock mass through the concept of tortuosity. Chen et al. [16] conducted the experimental study to
explore the effect of fracture geometric characteristics on the permeability in deformable rough-walled
fractures. Recently, Rezaei Niya and Selvadurai [17] examined the relationship between the joint
roughness coefficient (JRC) and permeability of a fracture through the numerical study based on
COMSOL multiphysics. It is clear from the aforementioned studies that a deep understanding of fluid
flow through rock fracture requires both an accurate geometry description and conceptual model that
could characterize the flow behavior. Even with dramatic achievements, there is still a lack of a unified
equation that could effectively estimate the permeability of rock fracture due to four reasons: (1) the
differences in the geometry characterization of fracture roughness; (2) the difficulties and uncertainties
in experimental investigation; (3) the assumption and simplification in theoretical analysis; (4) the
difficulties in dealing with complex boundary conditions for conventional numerical models.

Parallel with conventional studies, the lattice Boltzmann method (LBM) developed in the past 30
years has received great popularity in the study of fluid flow in complex systems [18–21]. Compared
with the traditional computed fluid dynamic model, LBM presents an advantage in describing the
fluid flow in complex geometry and parallel implementation. Recently, a number of scholars adopted
the LBM to describe the flow behavior in rough fracture. Eker and Akin [22] investigated the influence
of average aperture, fractal dimension and anisotropy on fluid flow through synthetic fractures using
the LBM. Wang et al. [23] and Ju et al. [24] conducted a study on the influence of surface roughness on
flow behaviors through a combination of the fractal model and LBM. Dou and Zhou [25] studied the
solute transport in a single rough fracture. Even with the promising application of the LBM in solving
fluid flow problems, studies to quantify the permeability from fracture geometry based on the LBM
are rarely reported.

Due to the limitations of the aforementioned studies, a systematic investigation of the fluid flow
through rough fracture has become necessary and valuable. Thus, the lattice Boltzmann method was
adopted to solve the fluid flow problem in fractures characterized by different approaches, thus trying
to obtain a unified equation to predict the permeability of fractures. To this end, this paper is structured
as follows. Firstly, the theoretical background of the LBM is introduced briefly, and the geometric
characterization of fractures and its implementation in the lattice Boltzmann model is presented. After
that, the accuracy of the LBM is validated through the parallel plate model and the mass conservation
of fluid flow through rough fractures. Then, the fluid flow through fractures with different JRCs is
numerically conducted and an equation is proposed to estimate the permeability of rock fractures.
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The roughness effect on the fluid flow is further investigated based on the fractal model, and the
applicability of the proposed equation is validated. The discussion and conclusion will be drawn at
the end of this paper.

2. Methodology

2.1. Lattice Boltzmann Method (LBM)

The lattice Boltzmann method is one of the “bottom up” approaches developed in the past three
decades to solve single-phase or multi-phase flow problems in fracture/porous media. Originating from
the kinetic theory, the LBM has the appealing features of programming simplicity, intrinsic parallelism,
and straightforward resolution of complex solid boundaries and multiple fluid species [26,27].

In this work, the incompressible LBGK model is used, in which, the evolution equation of the
density distribution function is expressed as

fi(x + cei∆x, t + ∆t) = fi(x, t) + Ωi( fi(x, t)) (1)

where c = ∆x/∆t, ∆x and ∆t are the lattice grid spacing and time step, respectively, ei is the discrete
velocity direction, and Ωi( fi(x, t) is the collision operator given by

Ωi = −
1
τ
( fi − f eq

i ) (2)

where τ is the relaxation time and f eq
i is the equilibrium distribution function.

The macroscopic density and velocity can be obtained as

ρ =
M∑

i=1

fi (3)

ρu =
M∑

i=1

fiei (4)

Accordingly, the incompressible Navier–Stokes equations can be derived through multi-scaling
expansion as

∇ · u = 0 (5)

∂u
∂t

+∇ · (uu) = −∇p + ν∇2u (6)

where p = c2
sρ is the pressure, and ν is the kinetic viscosity, given by

ν = (2τ− 1)c2∆t/6 (7)

The fundamental principle and explanation of the LBM can be found in the work by Guo et al. [18],
which will not be discussed in detail.

2.2. Characterization of Fracture Roughness

2.2.1. Joint Roughness Coefficient

Originating from the difficulties in characterizing the roughness, Barton et al. [28] introduced the
joint roughness coefficient (JRC) to investigate the mechanical and hydraulic behaviors of jointed rock
mass. The JRC is obtained from the comparison between the given profiles with the standard profile
shown in Figure 1a. The proposed parameter has the advantage of being easily obtained in practice,
and thus it is widely used to characterize the geometry of fracture profiles. The process to obtain the



Water 2019, 11, 1081 4 of 15

height of the profiles for Barton’s standard profiles are demonstrated in Figure 1, in which, a profile
with a certain JRC value is extracted (Figure 1b) and binarized according to the threshold value that is
distinguished in the solid line (black) and background (white) (Figure 1c). After that, the height of
different locations (x) is obtained as shown in Figure 1d.
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Figure 1. Process to obtain the height of Barton’s standard profiles: (a) Standard profiles from Barton et
al. [28]; (b) Profile extraction; (c) Binarization of profile based on image processing; (d) Digitalization of
the standard profiles according to the location of the black line (0) in the binarized image.

2.2.2. Fractal Theory

To quantitatively describe the geometry of the fracture profile, the mathematical model developed
by Brown [29] is used to characterize the fracture roughness for its limited parameters and easy
implementation. According to Brown [29], the natural joints present remarkable similarities, and the
profiles could be described as a decreasing power law of the power spectra, which is of the form
G(k) = Ck−α (where G is the power spectral density, k is the wave number related to the wavelength,
C is the proportionality constant, and α is the exponent index, typically ranging from 2 to 3). This power
law indicates that the fracture surface topography can be described by fractal geometry, where the
fractal dimension D is related to the power spectrum exponent as D = (7− α)/2, which is frequently
used as the measurement of surface texture. Meanwhile, it was found that the roughness is also related
to the standard deviation of the profile. In statistics, the standard deviation (σ) is used to quantify the
amount of variation for the profile. To this end, the rough-walled fracture in rock is characterized by
two important parameters, fractal dimension (D) and standard deviation (σ).

Accordingly, the open source code SynFrac developed by Ogilvie et al. [30] is used to generate the
synthetic fracture, in which, the fractal dimension varies from 1.0 to 2.4 and the standard deviation
varies from 1 to 3 mm. Selected profiles are presented in Figure 2, and an obvious increase in roughness
with increasing fractal dimension and standard deviation has been observed.
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the discrete parameters should be chosen for the consideration of both the numerical stability and 
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Figure 2. Profiles for synthetic fractures with different fractal dimensions and standard deviations:
(a) profiles of different fractal dimensions with standard deviations of 1 mm; (b) profiles with different
standard deviations at a fractal dimension of 2.4.

2.3. Numerical Implement of Rough Fracture in the LBM

The influence of roughness on fluid flow is investigated through the two-dimensional
incompressible LBGK model. To this end, the 2D profile of fracture surface is imported to the
LBM so as to generate a fractured model as shown in Figure 3. The length of the fractured model is set
as 10 cm to keep it consistent with a realistic profile. The aperture between two parallel rough profiles
varies from 0.1 to 0.4 cm and the height of the fractured model is kept constant at 2 cm so that the full
fracture would be in the range of the model domain. The pressure is applied at the inlet and outlet of
the fracture and the “half-way wall bounce-back” scheme is used to simulate the non-slip boundary at
the fluid–solid interface [31].
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In order to represent the physics of a real system, it is necessary to convert the physical system to
the discrete system so that the LBM simulation is equivalent to the physical system [18]. Meanwhile,
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the discrete parameters should be chosen for the consideration of both the numerical stability and
accuracy, and the details on parameter choice can also be found in [32]. Accordingly, the corresponding
parameters used in the physical model, dimensionless model and lattice model are listed in Table 1.
It should be mentioned that the Reynolds numbers are identical for the three models, and the viscosity
of the dimensionless model is related to the Reynolds number as

ν =
1

Re
(8)

With the Reynolds number given as 100, the viscosity is calculated as 0.01 and the corresponding
relaxation time is calculated as 0.53 based on Equation (7).

Table 1. Parameters used in the lattice Boltzmann model.

Parameters Physical Model Dimensionless Model Lattice Model

Reynolds number, Re 100 100 100
Model length, Lx 10 cm 10 1001
Model width, Ly 2 cm 2 201

Reference velocity, u 0.01 cm/s 0.01 1
Density, ρ 1.0 g/cm3 1.0 1.0
Viscosity, ν

1.0 0.01 cm/s 0.01 -

Relaxation time, τ - - 0.53
Grid spacing, dx - 0.01 1

Time step, dt - 0.0001 1
Pressure gradient, ∆P/L - 8× 10−4 8× 10−8

3. Numerical Study of Fluid Flow through Rough Fractures

3.1. Numerical Validation

The simplest model of fluid flow through a rock fracture is the parallel plate model [33], in which,
the exact theoretical solution can be readily obtained from given boundary conditions. The analytical
solution for velocity is expressed as

u(z) =
1

2ρν

(Po − Pi
L

)
((h/2)2

− z2) (9)

where Po is the pressure at outlet and Pi is the pressure at inlet, which lead to the pressure gradient of(Po−Pi
L

)
; ρ is the density, ν is the viscosity, h is the aperture and z is the distance from the center line.

The total volumetric flux through the fracture can be obtained from integrating the velocity across
the fracture from z = −h/2 to z = h/2,

Q =
Wh3

12ρν

(Po − Pi
L

)
(10)

where W is the width of the fracture, which equals to 1 for 2D problems.
The permeability of the fracture can be calculated as

k =
Q
Ai

=
Q

(Wh) ·
(Po−Pi

L

) =
h2

12
(11)

where A is the cross-sectional area of the fracture and i is the pressure gradient.
The accuracy of the LBM is validated through the numerical simulation of fluid flow through the

parallel plate model. The fracture setup and the boundary condition are the same as the illustration in
Figure 3 excepting that the fracture is characterized by two parallel plates. The velocity profiles for the
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parallel plate model with different apertures are presented in Figure 4, which is compared with the
analytical solution in Equation (7), with a good agreement being achieved.
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Figure 4. The comparison between the analytical solution and numerical simulation for fluid flow
through the parallel plate model with different apertures.

The LBM is further validated for the fluid flow through fractures with roughness, the rough
profile with JRC = 17~18 is imported to the LBM, and the aperture is set as 0.4 cm. With the same
boundary condition and parameters, the velocity distribution is obtained as shown in Figure 5a, and
the velocity profiles at different cross sections (A~E) are monitored, which are presented in Figure 5b.

The total volumetric flux is calculated for each of the cross sections based on the following equation,

Qx =

Ny∑
i=1

vxidy · 1 =

Ny∑
i=1

vxidy (12)

where Ny is the number of lattices along the y axis for each of the cross sections and vxi is the velocity
along direction x for the lattice at position yi.

It was found that the volumetric fluxes at different positions are calculated as QA = QB = QC =

QD = QE = 3.6 × 10−4cm3, which indicates that the mass conservation can be perfectly realized
through the LBM simulation. Based on the numerical simulation of fluid flow through the parallel
plate model and rough fracture model, it is concluded that the LBM is an effective and accurate tool to
explore the effect of roughness on the fluid flow through fracture.
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3.2. Fluid Flow through a Fractured Model with Roughness

The parallel plate model can only be considered as a qualitative description of fluid flow through
real fractures. Real fracture surfaces are often not smooth parallel plates but with roughness, and
a number of parameters have been proposed to characterize the fracture roughness, such as the
joint roughness coefficient (JRC), tortuosity, fractal dimension (D) and standard deviation (σ), etc.
However, there is no unified parameter that could effectively quantify the influence of roughness on
permeability of fractured rock. To this end, the LBM is used to investigate the fluid flow through
fracture characterized by different approaches.

3.2.1. Rough Fracture Characterized by the JRC

In this part, Barton’s standard profiles are used to generate the fractured model and the permeability
for fracture with different JRC and apertures are calculated based on the simulation results, and the
selected results are presented in Figure 6a. It was found that the theoretical solution of permeability
in Equation (9) can be reproduced by the LBM based on the result of JRC = 0 (parallel plate model).
With the presence of roughness, the permeability of single fracture is modified as

k = f ·
h2

12
(13)

where f is the correction factor due to roughness.
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Accordingly, f is calculated for each of the simulation results, which is presented in Figure 6b.
It was found that the correction factor decreases with the increase in the JRC and increases with
aperture. However, it is noticed that an unrealistic trend has been observed in the red and green
rectangular zones from Figure 6b, in which, a larger JRC value presents a higher correction factor (or
permeability).

It is widely known that the JRC is obtained through the comparison between the given profile and
standard profile which requires experiences, and sometimes, it is observation dependent. It is reasonable
to give the conclusion from Figure 6b that the JRC is perhaps not an ideal choice for the characterization
of fluid behavior in fractured rock. Therefore, it is necessary to explore a more reasonable and accurate
parameter that could reflect the real behavior of fluid flow through rough fracture.

Inspired by the work by Myers [34], the root mean square of the first derivative of profile (Z2) is
adopted, which is expressed as

Z2 =

√
1
L

∫ x=L

x=0

(
dy
dx

)2

dx =

√√√
1

N(δx)2

N−1∑
i=1

(yi+1 − yi)
2 (14)

where L is the length of profile, N is the number of segments, δx is the horizontal distance between the
adjacent points (L/N), and yi is the height of the discrete point.
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It is clear from Equation (12) that the value of Z2 depends on the selection of point interval (∆x),
which should be chosen to reflect the real roughness of profile. According to the work by Li and
Zhang [35], ∆x generally varies from 0.25 to 1.27 mm. To this end, ∆x = 0.5 mm is used to obtain
the reasonable Z2 for profiles with different JRCs as presented in Figure 7a, which shows the reverse
trend compared with Figure 6b. It is reasonable to conclude that Z2 is a more reasonable parameter to
quantify the correction of cubic law. To this end, the correlation between f and Z2 is demonstrated in
Figure 7b, and an obvious decrease in f with Z2 has been observed.
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where L is the length of profile, N is the number of segments, δx is the horizontal distance between 
the adjacent points (L/N), and yi is the height of the discrete point.  

It is clear from Equation (12) that the value of Z2 depends on the selection of point interval (∆x), 
which should be chosen to reflect the real roughness of profile. According to the work by Li and 
Zhang [35], ∆x generally varies from 0.25 to 1.27 mm. To this end, ∆x = 0.5 mm is used to obtain the 
reasonable Z2 for profiles with different JRCs as presented in Figure 7a, which shows the reverse 
trend compared with Figure 6b. It is reasonable to conclude that Z2 is a more reasonable parameter 
to quantify the correction of cubic law. To this end, the correlation between f and Z2 is demonstrated 
in Figure 7b, and an obvious decrease in f with Z2 has been observed. 

 
Figure 7. The relationship between the correction factor, the JRC and Z2: (a) relationship between Z2

and the JRC, (b) relationship between the correction factor and Z2.

Based on the trend shown in Figure 7b, the following equation is proposed to reflect the effect on
roughness on the permeability of fracture,

k =
h2

12
· e

(
αZ2√

h
)

(15)

where α is the parameter that reflects the influence of roughness on the permeability of single fracture,
which is given as −0.35 with confidence interval of (−0.37, −0.32) and R-square of 99.76%.
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To this end, the relationship between permeability, Z2 and aperture is summarized in the k-Z2-h
space in Figure 8, and a good agreement has been observed from the comparison between the numerical
simulation and the proposed equation.
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3.2.2. Rough Fracture Characterized by Fractal Dimension and Standard Deviation

In this part, the synthetic fracture is generated based on the geometric parameters listed in
Table 2, and the numerical simulations on corresponding fractured model are conducted through
LBM. The boundary condition and parameters used in the numerical simulation are set the same as
previous part. The permeability is calculated for different profiles at different apertures as presented
in Figure 9, and it is clear that the permeability decreases with the increase in fractal dimension and
standard deviation.

Table 2. Parameters of the synthetic fractures.

Fractal Dimension Standard Deviation (cm) Aperture, h (cm)

1.0; 1.2; 1.4; 1.6
1.8; 2.0;2.2;2.4 0.1; 0.2; 0.3 0.1; 0.2; 0.3; 0.4
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Recall that Z2 is an effective parameter to estimate the permeability of single fracture with
roughness. To validate the proposed equation, Z2 is calculated for each of the synthetic profiles, and the
relationship between Z2 and fractal dimension is presented in Figure 10. Accordingly, based on the
numerical results in Figure 9, the relationship between correction factor, aperture and Z2 is summarized
in Figure 11, and a decrease trend of the correction factor with increasing Z2 being observed for
apertures varies from 0.1 and 0.4 cm.
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Meanwhile, Equation (15) is used to predict the permeability of fractures characterized by fractal
dimension and standard deviation. It was found that a good agreement has been obtained in the range
from Z2 = 0 to Z2 = 0.5. When Z2 is larger than 0.5, a large deviation of the numerical results from the
prediction has been observed. It should be mentioned that the proposed equation is obtained from the
result of fluid flow through fracture characterized with Barton’s profile, where Z2 varies from 0 to 0.4
as demonstrated in Figure 7a. Therefore, Equation (15) with α = −0.35 is not applicable for the fracture
geometry with Z2 > 0.5. To validate the generic feature of the proposed equation, the curve fitting is
conducted for the numerical result of Z2 > 0.5, and α is obtained as −0.75. To this end, Equation (15)
can be modified as,

k =


h2

12 · e
(
−0.35Z2√

h
)
, Z2 < 0.5

h2

12 · e
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−0.75Z2√

h
)
, Z2 > 0.5

(16)

Accordingly, the numerical results are compared with Equation (16), and excellent agreement
has been obtained, which is presented in Figure 12. It was also concluded that the fluid flow behaves
differently for Z2 < 0.5 and Z2 > 0.5, and the proposed equation is capable to predict the permeability
for rough fracture with desirable accuracy.Water 2019, 14 of 16 
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4. Conclusions

Based on the numerical study of fluid flow through fractures characterized by the joint roughness
coefficient, fractal dimension and standard deviation, it was found that the lattice Boltzmann method
is an effective tool to solve the fluid flow problem with a complex boundary condition at desirable
accuracy. The following conclusions can be drawn:

(1) The JRC is not an ideal choice to characterize the fluid flow in fractures and the permeability
increases with the JRC at the values of 8~12 and 14~16, which is inconsistent with the
roughness characterization.

(2) The root mean square of the first derivative of profile (Z2) is found to be an effective parameter
that shows good agreement between the roughness and permeability, and the correction factor
increases with aperture and deceases with roughness represented by Z2.

(3) An equation with a simple form has been proposed to estimate the permeability from aperture
and Z2, and the applicability of the proposed equation is also validated from fluid flow in a
synthetic fracture of a wide range of fractal dimensions and standard deviations.

(4) The critical value of Z2 (0.5) on the estimation of permeability in fractures has been obtained,
and the proposed equation has been improved to characterize flow behavior at a large degree
of roughness.
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