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Abstract: Water resources’ use efficiency is an important issue under China’s rapid economic growth.
This is because some provinces’ economic development may be delayed due to lack of adequate
water resources. Whereas, high economically developed provinces may overuse water resources in
order to achieve their economic goals; while also creating a large amount of pollutants. To assess
water resources’ use efficiency from the resampling super data envelopment analysis (DEA) approach,
our research comprehensively utilizes the following as inputs and outputs: (1) water resources:
supply of water (SW), per capita water consumption (PCWC), and total water resources (TWR);
(2) economic development: gross domestic product (GDP); (3) environmental issues: governance
wastewater investment (GWI), wastewater discharge (WD), chemical oxygen demand (COD), and
other major pollutants (OMP). The results show that Tibet, Beijing, Guangdong, Qinghai, Shandong,
Sichuan, Yunnan, Tianjin, Jiangsu, and Henan have relatively good water resources’ use efficiency
with efficiency values larger than 1. The best efficiency is in 2015, while the worst is in 2017. Water
resources’ use efficiency shows significant regional differences in 2013–2017, with the best average
efficiency value in southwest China (1.4355) and the worst in north China (0.2987). The results of
the Wilcoxon test present that PCWC, GDP, COD, and OMP exhibit very significant differences, PN
and WD have significant differences, and SW and TWR have no significant influence. These results
imply that China’s regional governments must formulate a better water resource strategy based on
the water resource distribution of each region. Lastly, the emissions of environmental pollutants must
be strictly monitored.

Keywords: water resources use efficiency; resampling; data envelopment analysis; Wilcoxon test; China

1. Introduction

Water pollution has worsened in almost all the rivers in Africa, Asia, and Latin America ever since
the 1960s, with the greatest amount of pollutants occurring in low- and lower-middle income countries,
primarily due to higher populations and economic growth and the lack of wastewater management
systems. The trends in water availability and quality are accompanied by projected changes in flood
and drought risks. The number of people threatened globally from floods is projected to rise from
1.2 billion in 2018 to around 1.6 billion in 2050; these phenomena will directly impact the gross domestic
product (GDP) per capita of the eco-economy [1].

Limited water resources could cloud Asia’s bright future. With water as an essential ingredient
for economic development; it is estimated that threats to water security incur an annual cost of US$500
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billion or around 1% of the world’s GDP [2]. Total water resources (TWR) is contained surface water
resources, ground water sources, and deducting duplicate water resources. China’s TWR were not
stable in the period 2010–2017, as seen in Table 1, total water supply (SW) is the same as TWR, while
the total amount of wastewater discharged hit 700 billion tons in 2017. While China’s gross domestic
product (GDP) has increased year by year from 592,963 billion CN¥ to 820,754 billion CN¥ over the
period 2013–2017, sewage treatment investment (STI) has also risen yearly from 2013–2017 by 1055,
1196, 1249, 1486, and 1728 billion CN¥ [3], respectively. From the statistical data of China’s Ministry of
Water Resources (MWR), total water consumption was 3207 billion m3 and total wastewater discharge
was 756 billion tons in 2017.

Table 1. China’s total water resources (TWR), total water supply (SW) and gross domestic product
(GDP) in periods 2010–2017.

Variables 2010 2011 2012 2013 2014 2015 2016 2017

TWR (billion m3) 30,906 23,257 29,529 27,958 27,267 27,963 32,466 28,761
SW (billion m3) 6022 6107 6131 6183 6095 6103 6040 6043

GDP (billion CN¥) 412,119 487,940 538,580 592,963 641,281 685,993 740,061 820,754
STI (billion CN¥) 1173 972 934 1055 1196 1249 1486 1728

Source: Authors’ collection.

Freshwater resources in China add up to 2.8 trillion m3, or 6% of the global total and ranking
No. 6th in the world, after Brazil, Russia, Canada, the U.S., and Indonesia. China’s per capita water
resources, however, only stand at 2100 m3, or 28% of the global average, making China one of the most
water scarce countries in the world. The main use of water consumption is for production purposes at
89.3% in China for 2014, with primary industries accounting for 63.5%, secondary industries accounting
for 22.9%, and domestic water consumption at 9.0%. China’s total national water supply is 609.5 billion
m3 in 2014, surface water sources is 80.8%, ground water sources is 18.3%, and other water sources
is 0.9%. Water resources differ substantially between years and are unevenly distributed in time.
Sometimes precipitation and river runoff are highly concentrated within a year in China. However,
there is severe pollution of water bodies. The Chinese government takes resource conservation and
environmental protection as a basic policy, plays an active and significant role in facilitating rational
water allocation with the management and protection of water resources; raising water resources’ use
efficiency and controlling rapid increase in water demand [4]. Damkjaer and Taylor utilized various
indices to explore the metrics of water scarcity [5], China is considered water scarce from these indices.
Therefore, water resources’ use efficiency is a necessary topic for research, especially as the metrics of
water scarcity become increasingly serious. Finding solutions to improve this efficiency is necessary in
order to solve environmental and resource problems.

The use and management of water resources are complicated issues because it is important and
necessary natural resources and economic resources that affects structural changes in the ecology and
environment Conflicts may also arise between environmental sustainability and economic development.
Therefore, previous research on water resources’ use efficiency focused on improving equipment and
technology such as: 1) wastewater treatment’s technical advancement [6–8]; and utilizing economic
and statistical methods to assess water resources’ use efficiency through; 2) traditional statistical
methods [9–11]; 3) data envelopment analysis (DEA) [12–20]; and 4) undesirable outputs [21,22].
A brief description runs as follows.

1) Wastewater treatment’s technical advancement: Wakeel and Chen [6] used the concept of
the water-energy relationship to explore urban planning and management issues and proposed a
processing direction for a city that does not have any large-scale wastewater recycling, and reuses policy
and management systems; therefore, wastewater should be recycled to avoid energy consumption
during the extraction stage. Panepinto et al. [7] focused on energy consumption to evaluate the energy
efficiency of a large wastewater treatment plant in Italy, proposed an energy balance for the whole
plant to be finally evaluated, and suggested some energy optimization solutions to decrease related
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costs. Cano et al. [8] utilized thermal pre-treatments to recover heat from the biogas engine and found
that thermal hydrolysis presents great potential to be fully integrated into a wastewater treatment
plant with complete energy recovery and self-sufficiency.

2) Traditional statistical method: Wei and Guojun [9] used the regression analysis approach to
assess urban water resources’ utilization efficiency, and water estimation in the Hebei Province of China.
Morales and Heaney [10] utilized ordinary least squares and data envelopment analysis to assess
the benchmarking of non-residential water use efficiency in Austin, Texas. Long and Pijanowski [11]
employed a host of spatial analyses to explore a variety of spatial correlations between water scarcity
and water use efficiency from 2003 to 2013 in China, targeting local to national scales, and found that
the bivariate Global Spatial Autocorrelation indicates significant positive spatial correlation between
water scarcity and water use efficiency.

3) Data envelopment analysis (DEA) approach: The DEA approach is able to deal with single or
multiple inputs and outputs and can discover the reasons behind efficiency and inefficiency, making it
a good technique for evaluating resources and environmental efficiency [12,13]. Ali and Klein [14]
used the dynamic DEA approach to assess water use efficiency and productivity of irrigation districts
in southern Alberta over the period 2009–2012. Kulshrestha and Mittal [15] employed DEA for
assessing the relative performances of water supply utilities, suggested that the inputs and outputs
should be assets, number of employees, capital, system assets, water treatment plants, staff wages,
operating and management expenses, supply volumes, water quantity sold, number of connections,
peak water supply, etc., and proposed that DEA measures can be widely applied in the water supply
sector for the benefit of all these stakeholders. Azad et al. [16] used the non-radial DEA approach
to evaluate the economic efficiency of irrigated agricultural enterprises in Australia and found that
irrigated farms are comparatively more efficient in overall farm activity management, but they are not
very efficient in managing water resources. Ren et al. [17] utilized the two-stage DEA approach to
evaluate water resource use efficiency on a real-case study in the Gansu Province, China for 2003–2013.
Gungor-Demirci et al. [18] applied two-stage DEA to assess the performances of individual districts of
a California water utility for the year 2014, and proposed that DEA offers a useful way to identify the
strengths and weaknesses of individual districts and to guide subsequent managerial improvement
initiatives. Kamarudin and Ismail [19] evaluated the performance of water supply services in Malaysia
with the DEA approach. Liao et al. [20] used DEA and the Malmquist index to evaluate the utilization
efficiency of water resources in 12 western provinces of China in 1999–2008, taking GDP, fixed assets,
annual water supply and the population’s water usage as inputs and outputs.

4) Undesirable outputs: Environmental issues are the most critical variables in energy and water
resource’ use efficiencies. Under the results that improving economic growth may produce undesirable
outputs, such as wastewater, CO2, etc., these bad outputs may cause a negative trend in environmental
sustainability. How to balance economic development and environmental protection is thus a very
important issue. Wang et al. [21] used the Tobit model DEA approach to assess water use efficiency
and its influencing factors in China over the period 2008–2016, taking the inputs of labor, capital, and
water and outputs of undesirable sewage and desirable per capita GDP, and found that provinces
with the highest water efficiency are located in economically developed eastern China. The spatial
pattern of water use efficiency in China is consistent with the general pattern of regional economic
development. Feng et al. [22] used the directional distance function DEA approach to assess the
performance of wastewater treatment in China over 2011–2015, employing the inputs of capital,
population, and expenses and the good output of GDP and bad output of wastewater and chemical
oxygen demand (COD).

Exploring water resources’ use efficiency must contain the issues of water resources’ supply and
demand, economic development and environmental negative impact problems, and then across multiple
periods. These studies above utilize the dynamic network DEA to consider only across multiple periods or
two stages [17,18,20], or use desirable and undesirable outputs to consider only economic development
and environmental negative impact problem [21,22]. They do not consider the problem that the statistical
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confidence interval and best efficiency is equal to 1. As such, our research refers to previous literature on
non-oriented slacks-based measure (SBM), super SBM DEA, and resampling super-SBM DEA approach to
get actual water resources’ use efficiency, rankings, and 95% confidence interval of each decision making
unit (DMU) [23–25]. We also utilize 2013–2014 data to calculate water resources’ use efficiency in 2014
and for the period 2013–2015, in order to calculate this efficiency for 2015 and the years 2016 and 2017.
The results help us to understand the efficiency change of cross-multiple periods, which can be used as a
reference for establishing a cross-period water resource use policy.

Another important contribution of this present research is that it contains economic (GDP),
water resources’ supply and demand (water supply, per capita water consumption, governance
wastewater investment, total water resources), and environmental variables (wastewater discharge,
COD, other major pollutants) as inputs and outputs. The relationships among these variables and
water resource’ use efficiency can identify key issues in economic development and environmental
protection. The abovementioned wastewater discharge (WD), COD, other major pollutants (OMP)
are bad outputs. We refer to Hsieh et al. and Ma et al. [26,27] to adjust bad outputs, as good output
variables, and utilize the maximum emission value of each bad output in all DMUs as the base; whereby
the adjustment value equals (maximum value of DMUs - original emissions value of each DMU) + 1 to
become good outputs. These results illustrate the relationships among rapid economic growth, water
resources’ use policy, and environmental degradation in China at the provincial level, thus spurring
local governments to make a careful assessment of appropriate related policies when actively targeting
economic development at the same time.

This research utilizes resampling super-SBM DEA to evaluate water resources’ use efficiency of China
provincial level in 2013–2017. We can get annual efficiency and the confidence interval (97.5, 90, 80, 75, 60,
50, 40, 25, 20, 10, 2.5%) of each DMU. The definition of water resources’ use efficiency is the ratio of outputs
to inputs. The variables of input and output herein are comprehensive considerations related to water
resources’ supply and demand, economic output, and environmental emissions, after referring to and
correcting previous research [21,23–25]. These water resources’ variables use to create economic growth,
but also cause environmental pollution problems. Therefore, this efficiency value is a comprehensive
consideration of positive and negative factors, and is also an important contribution of this research. These
efficiencies are relative and thus they allow us to understand regional governments’ water supply and
demand situation, and to explore the mutual influence relationship between achieving economic growth
goals and mitigating environmental pollution. For the assessment of water resources’ use efficiency in the
provinces and municipalities in China, we take the following DMUs: Beijing, Shanghai, Tianjin, Chongqing,
Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Sichuan, Fujian, Guangdong, Guangxi, Yunnan, Guizhou,
Hebei, Shandong, Henan, Shanxi, Shaanxi, Gansu, Ningxia, Qinghai, Hainan, Inner Mongolia, Liaoning,
Jilin, Heilongjiang, Xinjiang, and Tibet. Their results provide very important reference information in
formulating water resource use policies in China at the provincial level.

2. Research Method

The DEA approach evaluates the relative efficiency of an individual DMU from the distance
of each DMU to the frontier [28]. This approach follows the model developed by Charnes, Cooper
& Rhodes, and modified by Banker, Charnes & Cooper [29,30]. However, these models are unable
to process undesirable outputs and the best efficiency is equal to 1 in multiple DMUs. Since water
resources’ use efficiency is related to environmental variables, it may be affected by undesirable outputs,
such as WD, COD, OMP, etc. Thus, it is necessary to get actual efficiency values when discussing water
resource use polices.

The traditional DEA does not require special production functions. Thus it is difficult to have
statistical inference from DEA scores. Some research used bootstrap DEA to construct confidence
intervals [31], but one cannot understand the change in the situation of inputs and outputs through this
method. The resampling DEA approach solves the problem of input and output values being subject to
change in measurement errors, hysteretic factors, and arbitrariness in efficiency scores [23–25]. We thus



Water 2019, 11, 1069 5 of 15

use the super-SBM model of DEA-Solver-Pro to calculate water resources’ use efficiency (ρ*) and the
objective function as Equations (1) and (2):

ρ∗((x0, y0))
s = minγ,s+ ,s−

1
m

∑ xi
xt

i0

1
q
∑q

i=1
yi
yt

i0

(1)

where xi(i = 1, 2, . . . , m) are input variables and yi(i = 1, 2, . . . , q) are output variables, the input
excesses s− and output shortfalls s+ for each DMU.

Subject to
x ≥ Xtγ

y ≤ Ytγ

x ≥ xs
0, y ≤ ys

0

L ≤ eγ ≤ U, y ≥ 0,γ ≥ 0

(2)

This article aims to get a triangular historical model efficiency score and its confidence interval
for each DMU. We first respectively assume the downside limit, the mode, and the upside limit by a,
m, and b. We employ a triangular distribution on the data as exhibited, and the observed input and
output values represent mode m. Here, α and β show upside and downside error rates, and a and b
can then be expressed as Equation (3).

a = (1− α)m (0 ≤ α ≤ 1)

b = (1 + β)m (β ≥ 0)
(3)

The data generation process of triangular distribution (TDP) is:

TDP(x) =
(x− a)2

(m− a)(b− a)
(a ≤ x < m)

= 1−
(b− x)2

(b−m)(b− a)
(m ≤ x ≤ b)

(4)

We assume a uniform random number ε (0 ≤ ε ≤ 1) and then obtain an input/outputω from:

ω = a +
√
ε(m− a)(b− a)

(
ε ≤

m− a
b− a

)
= b−

√
(1− ε)(b−m)(b− a)

(
ε ≥

m− a
b− a

) (5)

The data of inputs and outputs in multiple periods take on a triangular distribution simulation as
in the following steps: (I) use super-SBM DEA to obtain the efficiency score of each DMU; (II) repeat
the following processes (i) and (ii) for the designated times; (i) use the data generation process to
generate a set of input and output data; (ii) obtain the super efficiency score of each DMU for the
resample 1000 times and record it; and (III) calculate the confidence interval (97.5, 90, 80, 75, 60, 50, 40,
25, 20, 10, 2.5%) of each DMU.

The inputs or outputs of DMU n in the past t−1 period and current t period are respectively
ωt−1

n and ωt
n (t = 1, 2, . . . , T) and (n =1, 2, . . . , N). The upside variation rate αt

n and downside variation
rate βt

n in period t are in the following equation:

αt
n

(
or βt

n

)
=
ωt−1

n −ωt
n

ωt
n

(6)



Water 2019, 11, 1069 6 of 15

The upside and downside distributions are
{
αt

n

}
and

{
βt

n

}
for all DMUs. From the distribution data,

their median values are respectively αt
M and βt

M. These values show the downside error rate (DER)
and upside error rate (UER) of inputs and outputs in period t. Previous literature review has rarely
applied resampling DEA approach to the assessment of water resources’ use performance, Mehrotra
and Sharma applied to assess the performance of multiple variables in a changing climate, proposed
changes in the dependence attributes are ascertained by resampling of the historical ranks into what
these might resemble in the future, and the approach is not limited in terms of the number of variables,
grid points in space, and the time scale considered [32]. We execute the same process between all pairs
of inputs, outputs and input versus output in resampling, inappropriate samples with unbalanced
inputs and outputs are excluded from resampling in the resampling super-SBM DEA of this research.
This approach uses historical data to determine downside and upside error rates, and utilizes optimal
weights of multiple periods historical data to evaluate efficiency. The variables of input and output
are subject to change for several reasons, e.g., measurement errors, hysteretic factors, arbitrariness
and so on in DEA approach. Therefore, DEA efficiency scores need to be examined by considering
these factors. Resampling approach based on these variations is necessary for gauging the confidence
interval of DEA scores. We also set downside error rate percentage (DER%) and upside error rate
percentage (UER%) to find out the reasons for the poor efficiency across periods in all data of input and
output in this research, this is a very important contribution. These results provide valuable reference
of China’ provincial levels in formulating policies for future water resources’ use. This approach is
suitable to research the performance of energy, environment and water resources’ use that may be
affected by different periods.

This research utilizes Wilcoxon test to explore the relationship between input and output data on
water resources’ use efficiency. Wilcoxon test is a nonparametric test that can determine whether two
dependent samples were having the same distribution. We set data as K1,i and k2,ii = 1, 2, . . . , n), two
hypotheses are H0: difference between the pairs follows a symmetric distribution around zero, and H1:
difference between the pairs does not follow a symmetric distribution around zero. We calculate sign
function as sgn(k2,i − k1,i) and zi as follow equation,

zi =
∣∣∣k2,i − k1,i

∣∣∣ (i = 1, 2, . . . , n) (7)

Let Nr is number of
∣∣∣k2,i − k1,i

∣∣∣ = 0 (i = 1, 2, . . . , n), Ri denote the rank, starting with the smallest
as 1, the test statisticω is calculated by Equation (8).

ω =

Nr∑
i=1

[sgn(k2,i − k1,i) ×Ri] (8)

δω =

√
Nr(Nr + 1)(2Nr + 1)

24
(9)

Z =
ω
δω

(10)

Z = If |Z| > Zcritical, then reject hypotheses H0, and then utilizes p-value to explain whether it is
significant, symbol “ * ” as slightly significant and p < 0.05, “ ** ” as significant and p < 0.01, “ *** ” as
very significant and p < 0.001.

3. Data Analysis and Discussion

This research uses the resampling super-SBM DEA approach to evaluate water resources’ use
efficiency. The inputs and outputs are economics, water resources’ supply & demand and negative
environmental emission variables in the period 2013–2017. DEA is widely used to evaluate water
use efficiency with across multiple periods [14,17,20–22], the main purpose is exploring the impact of
across period, the data is still not available in 2018, so we use the data from 2013–2017 as the analytical
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data. The annual statistical data come from China’s National Bureau of Statistics [33]. The inputs are
population number (PN), supply water (SW), per capita water consumption (PCWC), and governance
wastewater investment (GWI). The outputs are total water resources (TWR), gross domestic product
(GDP), wastewater discharge (WD), chemical oxygen demand (COD), and other major pollutants
(OMP). These data of input and output are defined as follows.

PN (unit, 10,000 people): Total people in the current period at China’s provincial level; the values
shown are mid-year estimates.

SW (unit, billion m3): Total amount of water supply in the current period.
PCWC (unit, m3): Per capita water consumption in the current period.
GWI (unit, million CN¥): Total governance wastewater investment in the current period.
GDP (unit, billion CN¥): The monetary value of all finished goods and services produced within

a country’s borders in the current year.
TWR (unit, billion m3): Total water resources in the current period.
WD (unit, million tons): Total amount of wastewater discharge in the current period.
COD (unit, 10,000 tons): The chemical oxygen demand at China’s provincial level in the current period.
OMP (unit, 10,000 tons): The total amounts of other major pollutants in the current period,

covering the emissions of ammonia nitrogen, nitrogen, and phosphorus.
The descriptive statistics of the inputs and outputs are shown separately in Table 2. The average values

of PN and GDP exhibit a growing trend year by year for 2013–2017. The environmental variables of WD,
COD, and OMP decreased from 2015–2107, WD decreased from 2372 to 2257 million tons, COD decreased
from 72 to 33 (10,000 tons), and OMP also decreased from 24 to 12 (10,000 tons); the wastewater treatment
costs (GWI) do not increase, implying that China efforts to reduce water pollution problems are remarkable
in 2015–2017. The water resources’ supply and demand of SW, PCWC, and TWR are unstable in 2013–2017,
indicating that there should be a more effective strategy to maintain a stable supply of water resources.
These statistics represent the changes of all DMUs in different periods, and can analyze the trend of the
differences between the data of multiple periods. Although the trend of each DMU may be inconsistent,
the statistics data also cannot be explained and analyzed one by one, but the input and output data of each
period will produce the result of the difference in efficiency with DEA approach for all DMUs, and we will
analyze the impact of input and output based on the results of efficiency performance in this study, so as to
put forward the reference of strategy logic in all DMUs.

This research uses the resampling super-SBM DEA approach to assess the efficiency of use of water
resources at China’s provincial level in 2013–2017. The results are shown in Table 3. The efficiencies
of resampling DEA are in 97.5% and 2.5% confidence intervals for all DMUs. We define a variable
called the confidence interval error (I-Dev), where I-Dev of each DMU is equal to the (average value of
efficiency – efficiency of resampling DEA). It shows the order of efficiency value deviation through
resampling 1000 times and also presents the stable order of inputs and outputs in each DMU. I-Dev
is a statistically sensitive, smaller value that shows the smaller difference between the efficiency of
the confidence interval and the actual efficiency. It also indicated that the input and output data are
relatively stable across multiple periods. If I-Dev is relatively larger, these DMUs must adjust or control
input and output data in future. Tibet has the best water resources’ use efficiency in 2013–2017, but its
I-Dev (0.1089) is larger, meaning that some significant changes in input and output lead to relatively
high sensitivity, and so it must maintain a stable water resource management policy to keep its good
water resources’ use efficiency. The best I-Dev is Shanghai, but the confidence interval change is too
large; its 97.5% confidence interval is 1.0341, and its 2.5% confidence interval is 0.0726, illustraing
its water resources management policy is unstable and must improve. I-Dev is the problem of the
stability of the input and output data of each DMU after resampling 1000 times, so the I-Dev value
is independent of the efficiency by resampling super-SBM DEA approach. DEA efficiency can find
differences in water resources’ use performance of all DMUs in 2013–2017. The places with relatively
good water resources’ use efficiency are Beijing, Tianjin, Chongqing, Jiangsu, Zhejiang, Sichuan,
Guangdong, Yunnan, Shandong, Henan, Qinghai, and Tibetl whose efficiency values are greater
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than 1, most of these DMUS also have relatively high GDP, indicating that economic development is
closely related to water resources’ use efficiency. Relatively poor water resources’ use efficiency are
Anhui, Jiangxi, Hubei, Guangxi, Hebei, Shanxi, Shaanxi, Gansu, Ningxia, Inner Mongolia, Liaoning,
Jilin, Heilongjiang, and Xinjiang, whose efficiency values are less than 0.5. These DMUs must be
more proactive in developing stable water resource management policies and effectively control
environmental pollutants in order to improve water resources’ use efficiency.

Table 2. Descriptive statistics of input and output data in 2013–2017.

Year Statistics
Inputs Outputs

PN SW PCWC GWI GDP TWR WD COD OMP

2013

Average 4371 199 536 409 20,463 902 2243 76 24
Maximum 10,644 588 2615 1506 62475 4416 8625 185 79
Minimum 312 24 165 5.72 816 11 50 2.58 0.94

StDev 2786 149 454 393 15,710 944 1844 50 19

2014

Average 4395 197 525 372 22,076 880 2310 74 24
Maximum 10,724 591 2551 1751 67,810 4416 9051 178 79
Minimum 318 24 161 0.90 921 10 54 2.79 1.01

StDev 2798 149 444 376 16,988 949 1905 48 18

2015

Average 4422 197 521 382 23,315 902 2372 72 24
Maximum 10,849 577 2478 1649 72,813 3853 9115 176 91
Minimum 324 26 168 8.93 1026 9.2 59 2.88 1.14

StDev 2817 148 431 416 18,219 922 1956 47 20

2016

Average 4451 195 509 349 25,164 1047 2294 34 12
Maximum 10,999 577 2377 1585 80,855 4642 9383 96 37
Minimum 331 26 175 0.15 1151 9.6 61 2.74 0.8

StDev 2843 146 412 381 20,103 1055 1942 23 8.28

2017

Average 4479 195 504 246 27,327 928 2257 33 12
Maximum 11,169 591 2281 1056 89,705 4750 8820 100 37
Minimum 337 26 176 2.80 1311 11 72 2.5 0.78

StDev 2867 146 598 285 23,187 1017 1851 23 8.34

Source: Authors’ collection.

Principal component regression (PCR) is commonly applied in forecasting to decompose
space–time fields, which by reducing both dimensionality and multicollinearity of a set of
variables [34,35]. This approach aims to acquire the correction coefficient and eigenvectors of
PCR in all inputs and outputs as listed in Tables 4 and 5. We find the key variables of the impacts of
inputs and outputs on water resources’ use efficiency and find that the main key variables are the
environmental variables WD, COD, and OMP. The economic and environmental variables of GDP, WD,
COD, and OMP have a significantly positive correlation with other variables, and their slope values
are also relatively large. The largest eigenvector of PCR is WD (0.94), and its proportion is very high up
to 54.23%, it indicates that most DMUs in China must work to reduce WD in the future. Eigenvectors
and proportion of PN, GDP, COD and OMP are relatively large, these results may cause negative I-Dev
DMUs, accounting for 23 or 74.19% in Table 3. These results show that undesirable emissions have a
significant impact on water resources’ use efficiency. Therefore, water resource management strategies
must be used to reduce undesired emissions in China in the future.
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Table 3. Results of water resources’ use efficiency in China with resampling data envelopment
analysis (DEA).

DMU DEA 97.50% 90% 80% 75% 50% 25% 20% 10% 2.50% Average Rank I-Dev

Beijing 1.17 1.53 1.42 1.31 1.28 1.17 1.09 1.08 1.07 1.06 1.20 4 −0.033
Shanghai 1.00 1.03 1.02 1.02 1.01 1.00 0.14 0.12 0.09 0.07 0.67 15 0.334

Tianjin 1.21 1.38 1.30 1.25 1.24 1.22 1.21 1.21 1.21 1.20 1.24 3 −0.025
Chongqing 1.02 1.25 1.16 1.10 1.08 1.02 1.00 0.79 0.73 0.66 0.99 11 0.033

Jiangsu 1.05 1.07 1.06 1.06 1.05 1.05 1.04 1.03 1.03 1.02 1.04 10 0.003
Zhejiang 1.01 1.03 1.03 1.02 1.02 1.01 0.79 0.76 0.71 0.66 0.93 13 0.074

Anhui 0.31 0.41 0.38 0.35 0.35 0.31 0.28 0.28 0.26 0.25 0.32 24 −0.006
Jiangxi 0.32 0.41 0.38 0.36 0.35 0.32 0.30 0.29 0.28 0.27 0.33 23 −0.007
Hubei 0.49 0.71 0.62 0.57 0.55 0.49 0.45 0.44 0.42 0.39 0.51 18 −0.024
Hunan 0.62 1.03 1.01 0.82 0.74 0.63 0.56 0.55 0.51 0.47 0.69 14 −0.063
Sichuan 1.05 1.11 1.09 1.08 1.07 1.05 1.04 1.03 1.02 1.01 1.06 9 −0.004
Fujian 0.61 1.01 1.00 0.75 0.71 0.62 0.55 0.54 0.50 0.46 0.66 16 −0.046

Guangdong 1.09 1.13 1.12 1.11 1.11 1.10 1.09 1.09 1.08 1.07 1.10 6 −0.005
Guangxi 0.43 0.66 0.56 0.51 0.49 0.43 0.38 0.37 0.33 0.31 0.44 20 −0.016
Yunnan 1.09 1.12 1.11 1.10 1.10 1.08 1.07 1.07 1.06 1.04 1.08 7 0.003
Guizhou 0.57 1.00 1.00 1.00 0.66 0.57 0.53 0.52 0.50 0.47 0.66 17 −0.086

Hebei 0.33 0.51 0.43 0.38 0.37 0.33 0.30 0.30 0.28 0.26 0.35 22 −0.015
Shandong 1.11 1.13 1.12 1.12 1.12 1.11 1.10 1.10 1.10 1.09 1.11 5 0.001

Henan 1.03 1.07 1.06 1.05 1.05 1.03 1.01 1.00 0.65 0.58 0.97 12 0.060
Shanxi 0.41 0.47 0.44 0.43 0.42 0.41 0.39 0.39 0.37 0.36 0.42 21 −0.010

Shaanxi 0.47 1.00 0.52 0.50 0.50 0.47 0.46 0.45 0.44 0.43 0.49 19 −0.021
Gansu 0.21 0.39 0.27 0.25 0.24 0.22 0.21 0.20 0.19 0.18 0.24 27 −0.030

Ningxia 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.011 0.01 31 −0.003
Qinghai 1.24 1.27 1.26 1.26 1.26 1.25 1.24 1.24 1.24 1.23 1.25 2 −0.005
Hainan 1.08 1.16 1.13 1.11 1.10 1.08 1.04 1.04 1.03 1.01 1.08 8 0.002

Inner Mongolia 0.16 0.29 0.20 0.18 0.18 0.17 0.15 0.15 0.14 0.14 0.18 29 −0.020
Liaoning 0.28 0.37 0.33 0.31 0.30 0.28 0.27 0.26 0.25 0.24 0.29 26 −0.013

Jilin 0.30 0.37 0.34 0.33 0.32 0.30 0.29 0.28 0.27 0.26 0.31 25 −0.004
Heilongjiang 0.19 0.21 0.20 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.19 28 −0.001

Xinjiang 0.14 0.16 0.15 0.14 0.14 0.14 0.13 0.13 0.12 0.12 0.14 30 −0.001
Tibet 2.63 3.85 3.39 3.11 2.98 2.64 2.40 2.35 2.24 2.09 2.74 1 −0.109

Source: Authors’ collection.

Table 4. Correlation matrix of principal component regression (PCR) in China’s provinces for the
period 2013–2017.

PN SW PCWC GWI GDP TWR WD COD OMP

PN 1
SW 0.58 1

PCWC 0.28 0.52 1
GWI 0.49 0.41 0.03 1
GDP 0.84 0.55 0.23 0.63 1
TWR 0.09 0.18 0.19 0.01 0.03 1
WD 0.89 0.59 0.21 0.62 0.94 0.19 1
COD 0.74 0.56 0.06 0.41 0.56 0.07 0.67 1
OMP 0.76 0.48 0.11 0.41 0.59 0.11 0.66 0.94 1

Source: Authors’ collection.

Table 5. Eigenvectors of PCR in all variables.

PN SW PCWC GWI GDP TWR WD COD OMP

Eigenvector 0.93 0.66 0.16 0.66 0.90 0.05 0.94 0.84 0.84
Proportion (%) 17.29 1.00 0.54 1.47 10.16 0.24 54.23 9.52 5.54

Source: Authors’ collection.

This research uses 2013–2014 data to resample 2014 water resources’ use efficiency, the 2013–2015
data to resample 2015, and so on. Table 6 lists the results, which can help us understand the change in
cross-period water resources’ use efficiency. The results show that the best annual water resources’ use
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efficiency is 2015 and the worst is 2017. Some DMUs have relatively unstable efficiency across time
periods, such as Chongqing being significantly worse in 2013 and 2015, Guizhou in 2017, and Inner
Mongolia in 2016–2017, while Fujian is significantly better in 2016, Guangxi in 2015, Hebei in 2015,
Henan in 2017, and Jilin in 2016. These results denote these DMUs must develop more stable water
management strategies and more active environmental monitoring mechanisms.

Table 6. Water resources’ use efficiency during 2013–2017.

DMUs 2013 2014 2015 2016 2017 Average

Beijing 1.06 1.60 1.72 1.07 1.17 1.32
Shanghai 1.03 1.00 1.00 1.00 1.00 1.01

Tianjin 1.32 1.28 1.25 1.33 1.21 1.28
Chongqing 0.64 0.99 0.53 1.00 1.02 0.84

Jiangsu 1.04 1.05 1.05 1.04 1.05 1.05
Zhejiang 1.01 1.02 1.05 1.02 1.01 1.02

Anhui 0.32 0.33 0.35 0.35 0.31 0.33
Jiangxi 0.32 0.38 0.49 0.43 0.32 0.39
Hubei 0.47 0.49 0.57 0.60 0.49 0.52
Hunan 0.38 0.52 0.69 0.65 0.62 0.57
Sichuan 1.11 1.11 1.06 1.04 1.05 1.07
Fujian 0.45 0.49 0.55 0.99 0.61 0.62

Guangdong 1.12 1.08 1.11 1.14 1.09 1.11
Guangxi 0.34 0.36 1.00 0.47 0.43 0.52
Yunnan 1.04 1.00 1.04 1.06 1.09 1.05
Guizhou 1.00 1.06 1.09 1.00 0.57 0.94

Hebei 0.29 0.21 1.03 0.58 0.33 0.49
Shandong 1.11 1.09 1.11 1.11 1.11 1.10

Henan 0.30 0.41 0.46 0.56 1.03 0.55
Shanxi 0.37 0.41 0.39 0.39 0.41 0.40

Shaanxi 0.44 0.47 0.45 0.43 0.47 0.45
Gansu 0.22 0.20 0.32 0.15 0.21 0.22

Ningxia 0.01 0.01 0.01 0.01 0.01 0.01
Qinghai 1.25 1.21 1.21 1.23 1.24 1.23
Hainan 2.17 2.51 1.32 1.00 1.08 1.62

Inner Mongolia 1.00 1.00 0.99 0.27 0.16 0.69
Liaoning 1.00 0.38 0.43 0.39 0.28 0.50

Jilin 0.43 0.47 0.27 1.20 0.30 0.53
Heilongjiang 0.21 0.23 0.14 0.21 0.19 0.20

Xinjiang 0.16 0.14 0.14 0.15 0.14 0.14
Tibet 1.49 1.61 2.02 2.96 2.63 2.14
Mean 0.75 0.78 0.80 0.80 0.73 0.77

Source: Authors’ collection.

The resampling DEA approach is different from other DEA methods in that it can get important
information of the upside error rate (UER) and downside error rate (DER). We set UER% (or DER%)
equal to [(DMU’s number of UER or DER) / 31] ×100%. These results help us understand the deviation
trend of all variables that have undergone 1000 times of resampling, as shown in Table 7. WD increases
significantly from 19.35% to 61.29% over 2014–2017. From the various analysis results, we found that
the most critical issue of water resources’ use efficiency was how to reduce undesired emissions. This is
the most important reference indicator when governments formulate water resource management
strategies in China.
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Table 7. Downside error rate percentage (DER%) and upside error rate (UER%) of all variables with
resampling DEA in 2014–2017.

Variable Classification 2014 2015 2016 2017

PN
DER% 96.77 91.80 89.25 86.99
UER% 3.23 8.20 10.75 13.01

SW
DER% 35.48 45.16 39.78 43.55
UER% 64.52 54.84 60.22 56.45

PCWC
DER% 25.81 35.48 27.96 34.68
UER% 74.19 64.52 72.04 65.32

GWI
DER% 35.48 48.39 39.78 31.45
UER% 64.52 51.61 60.22 68.55

GDP
DER% 100 98.39 96.77 94.35
UER% 0 1.61 3.23 5.65

TWR
DER% 48.39 51.61 72.83 55.65
UER% 51.61 48.39 27.17 44.35

WD
DER% 19.35 20.97 56.99 61.29
UER% 80.65 79.03 43.01 38.71

COD
DER% 90.32 95.16 100 94.35
UER% 6.68 4.84 0 5.65

OMP
DER% 35.48 70.97 92.47 84.68
UER% 64.52 29.03 7.53 15.32

Source: Authors’ collection.

This research divides China into seven regions: Municipality, North China (North), Northeast
China (Northeast), East China (East), South Central China (South Central), Southwest China (Southwest),
and Northwest China (Northwest), with the name of the DMUs in the regions shown in Table 8.
The results of regional differences in water resources’ use efficiency are in Table 9. The best average
value of water resources’ use efficiency is Southwest, as its efficiency values are increasing year by year
in 2013–2017. In order, the best is Municipality, South Central, East, Northwest, and Northeast, with
North as the worst. The most obvious change of North is in 2015–2017, where its efficiency values are
respectively 0.23, 0.58, and 0.17. This region is relatively poor, and it must have more effective water
resources’ use strategies to balance economic development and environmental protection.

Table 8. The regional division information of various provinces in China.

Region Name

Municipality Beijing, Shanghai, Tianjin, Chongqing
North Hebei, Shanxi, Inner Mongolia

Northeast Liaoning, Jilin, Heilongjiang
East Jiangsu, Zhejiang, Anhui, Jiangxi, Fujian, Shandong

South Central Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan
Southwest Sichuan, Guizhou, Yunnan, Tibet
Northwest Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang

Source: Authors’ collection.
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Table 9. Regional difference of water resources’ use efficiency in China.

Region 2013 2014 2015 2016 2017 Average

Municipality 1.04 1.29 1.26 1.11 1.08 1.16
North 0.26 0.21 0.53 0.32 0.19 0.30

Northeast 0.42 0.32 0.23 0.58 0.17 0.34
East 0.74 0.78 0.83 0.81 0.76 0.78

South Central 0.86 1.01 0.91 0.65 0.83 0.85
Southwest 1.10 1.31 1.56 1.56 1.64 1.44
Northwest 0.38 0.38 0.38 0.35 0.39 0.38

Source: Authors’ collection.

This research comprehensively explores the relationship between input and output variables on
water resources’ use efficiency. As a result, we utilized the Wilcoxon test to check the variables of input
and output. The results are in Table 10. The higher a classification indicates a larger than average
value, except for others; these results show a significant difference in PN and WD, whose p-value <

0.01**, and prove hypothesis (H0) to establish for the difference between the pairs, it indicates that
Higher PN shows better water resources’ use efficiency, and Higher WD shows poor efficiency in
China within 2013–2017. PN is difficult to have a specific improvement strategy, but reducing WD
must be monitored and controlled with a more active environmental strategy now and in the future;
there are very significant differences in PCWC, GDP, COD, and OMP with p-value < 0.001***, and
prove hypothesis (H0) to establish the difference between the pairs. Higher PCWC, COD and OMP
show poor efficiency; and Higher GDP shows better efficiency, indicating that there is a big impact
between economic growth and environmental issues in China over 2013–2017. Therefore, future water
resource management policies must reduce the impact of environmental degradation on the basis of
stable economic growth in China.

Table 10. The Wilcoxon test on all test items.

Test Items Classification Mean Score p-Value

PN
Higher 0.58

0.0092**Others 0.43

SW
Higher 0.45

0.1781Others 0.53

PCWC
Higher 0.28

0.0006***Others 0.57

GWI
Higher 0.45

0.1875Others 0.51

GDP
Higher 0.68

< 0.0001***Others 0.37

TWR
Higher 0.56

0.1092Others 0.46

WD
Higher 0.43

0.008**Others 0.63

COD
Higher 0.43

< 0.0001***Others 0.95

OMP
Higher 0.39

< 0.0001***Others 0.86

* p<0.05, ** p<0.01, *** p<0.001. Source: Authors’ collection.
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4. Conclusions and Policy Implications

Water resources’ use efficiency is related to economic development, water resources’ supply &
demand, and environmental problems. This research comprehensively considers these factors and
uses resampling super non-oriented slack-based measure (SBM) data envelopment analysis (DEA)
to evaluate water resources’ use efficiency in China over 2013–2017. The actual water resources’
use efficiency from resampling super DEA are in the 97.5% and 2.5 % confidence intervals for all
decision-making units (DMUs). The environmental variables of wastewater discharge (WD), chemical
oxygen demand (COD), and other major pollutants (OMP) are the most critical factors affecting water
resources’ use efficiency. The local governments must therefore work to reduce the emissions of
pollutants in China. The regional impact of water resources’ use efficiency is very distinct in China
- the best is Southwest, followed by Municipality, South Central, East, Northwest, and Northeast,
and the worst is North. North, Northeast, and Northwest are obviously relatively poor, and hence
they must have more effective water resources’ use strategies to balance economic development and
environmental protection.

In summary, we recommend the national government in China adjust their future water
resources’ use policy to reduce undesired emissions. At the provincial level, these governments
must simultaneously balance economic development, water resource utilization, and environmental
protection in order to increase water resources’ use efficiency in the future. Those that have to pay
greater attention to this are Ningxia, Xinjiang, Inner Mongolia, Heilongjiang, Gansu, Liaoning, Jilin,
Anhui, Jiangxi, Hebei, Shanxi, Guangxi, Shanghai, Hubei, Guizhou, and Fujian.
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Abbreviations

Abbreviation Full text

DEA data envelopment analysis
PN population number
SW supply of water
PCWC per capita water consumption
TWR total water resources
GDP gross domestic product
GWI governance wastewater investment
WD wastewater discharge
COD chemical oxygen demand
OMP other major pollutants
DMU decision making unit
SBM slacks-based measure
DER downside error rate
UER upside error rate
I-DEV the confidence interval error
PCR Principal component regression
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