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Abstract: Water pump control, prevalent in various industrial plants, such as wastewater treatment
and steam generator facilities, plays a significant role in maintaining economic efficiency and stable
plant operation. Due to its slow dynamics, strong nonlinearity, and various disturbances, it is also
widely studied as a typical benchmark problem in process control. The current control strategies can
be categorized into two aspects: one branch resorts to model-based design and the other to data-driven
design. To merge the merits and overcome the deficiencies of each paradigm, this paper proposes a
hybrid data-driven and model-assisted control strategy, namely modified active disturbance rejection
control (MADRC). The model information regarding water dynamics is incorporated into an extended
state observer (ESO), which is used to estimate and mitigate the limitations of slow dynamics, strong
nonlinearity, and various disturbances by analyzing the real-time data. The tuning formula is given
in terms of the desired closed-loop performance. It is shown that MADRC is able to produce a
satisfactory control performance while maintaining a low sensitivity to the measurement noise
under general parametric setting conditions. The simulation results verify the clear superiority of
MADRC over the proportional-integral (PI) controller and the conventional ADRC, and the results
also evidence its noise reduction effects. The experimental results agree well with the simulation
results based on a water tank setup. The proposed MADRC approach is able to improve the control
performance while reducing the actuator fluctuation. The results presented in this paper offer a
promising methodology for the water control loops widely used in the water industry.

Keywords: water pump control; MADRC; noise reduction

1. Introduction

Water pump control, which is widely used in various chemical industries [1–3], such as in
regenerative heaters [4] and drum boilers [5], petrochemical processes [6], open channels [7], surge
tanks of hydropower stations [8], and steam generators [9–12], plays a significant role in maintaining
economic efficiency and stable plant operation. For instance, in thermal power plants, the drum boiler
water level is a key parameter in monitoring boiler operational conditions, which indirectly reflects
the balance between the steam load and water supply. An appropriate pump control design is able
to maintain the water level and thus guarantee the safe operation of the boiler [13]. Furthermore,
for nuclear steam supply systems, one of the most important control strategies of such a system is
steam generator water level regulation to preserve the level around programmed setpoint, because the

Water 2019, 11, 1066; doi:10.3390/w11051066 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-6447-5767
https://orcid.org/0000-0002-6779-2511
https://orcid.org/0000-0001-8960-8773
http://dx.doi.org/10.3390/w11051066
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/11/5/1066?type=check_update&version=2


Water 2019, 11, 1066 2 of 25

reduction of the water level jeopardizes the heat removal from the reactor, and increasing the level will
cause the humidity of the generated steam to rise, causing severe erosion of the turbine blades [11].

However, water control is challenging due to slow dynamics, strong nonlinearity, and various
disturbances. There are many proposed control strategies in the literature to design water level
control systems (see e.g., [14–16]). Among the most widely used techniques are simple fixed gain
proportional-integral (PI) controllers. A model-free control has also been proposed to address the
multivariable nonlinear finite-dimension and important unknown disturbances and to ensure that the
water level reaches the setpoint [7]. Additionally, a new global water level control of horizontal steam
generator was designed using the quantitative feedback theory [9]. A gain scheduled fractional-order
proportional-integral-derivative (PID) control system has also been used to control steam generator
levels over an entire operating range [11]. Moreover, an adaptive estimator-based dynamic sliding
mode control method was developed to address the level control problem [10].

It is regrettable that none of the above controllers combine model information with real-time
input and output data, such that disturbances affecting these models cannot be compensated by
real-time data. In addition, it is well known that noise has a negative impact on the executing agencies
in industrial processes, but the noise generated by fluctuations in water level has not drawn much
attention in the above literature. Therefore, this paper introduces a new controller with the above two
problems taken into account. The proposed controller can compensate for disturbances in real time so
as to control the water level accurately and suppress the influence of noise in the system.

The current process control strategies can be categorized in two aspects. One branch utilizes
model-based control design, in which much effort is put into developing a class of accurate models
under different operation conditions. Then, the controller is designed by taking into consideration the
detailed dynamics, nonlinearity, and uncertainty information. To overcome the robustness deficiency
of the model-based design, the other branch chooses to avoid the tough modeling work and adopts a
data-driven method, such as active disturbance rejection control (ADRC) [17]. Under this data-driven
paradigm, the unknown dynamics, nonlinearity, and uncertainty are treated as a lumped disturbance
term that can be estimated and mitigated by analyzing real-time data. A combination of two data-driven
techniques—the virtual reference feedback tuning and model-free control—was proposed to serve
as a control system [18]. A novel multi-agent-based data-driven distributed adaptive cooperative
control method was also investigated for multi-direction queuing strength balance with changeable
cycles in urban traffic signal timing [19]. Two new control structures referred to as second-order,
data-driven active disturbance rejection control combined with proportional-derivative Takagi-Sugeno
fuzzy control are proposed, which consists of a second-order, data-driven active disturbance rejection
control and a proportional-derivative Takagi-Sugeno fuzzy logic controller [20].

Although robust, this new method may suffer from strong sensitivity to the measurement noise,
which is harmful for the actuator. Relatively large inertia and strong measurement noise are often
encountered in industrial water pump control processes that challenge the precision and stability of
industrial water pump control, especially in terms of the following aspects:

1. For a large inertia of the system, it is difficult for the conventional proportional–integral–derivative
(PID) controller to achieve good control performance. Specifically, for the reference tracking
control, the conventional PID control suffers from integral saturation, which leads to large
overshoot and even sustained oscillation.

2. The measurement noise will directly influence the output control variable in the closed-loop
control. In particular, the high-frequency noise caused by the low resolution of the measurement
device in the industrial process will cause large fluctuation to the control variables, which may
cause irreversible damage and shorten the life span of the actuator under serious conditions.

In order to solve the second problem mentioned above, a low-pass filter is usually added at
the output terminal to reduce the fluctuation of output control variables and protect the actuators.
However, it is well known that the introduction this filter will attenuate the control variables and thus
weaken the controller performance.
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Simple yet effective, the PID controller has flourished in industry in recent years [21]. However, the
ever-increasing demands on accuracy, robustness, and efficiency, coupled with the inherent limitations
of the PID, have driven engineers to seek better control methods elsewhere. In recent years, the
ADRC as a promising new control design framework has emerged as a viable alternative. It offers a
timely, if not conventional, solution to practical problems [22]. The essence of the ADRC is an effective
control strategy for dealing with unknown disturbances and uncertainties. Its robustness property
to changes in dynamics and external disturbances has been repeatedly demonstrated in practical
applications [23,24].

In the ADRC application, the influence of the model uncertainty and the external unknown
disturbances is observed by the extended state observer (ESO) based on the input-output data of the
system. The control is then given to compensate for these disturbances, thereby greatly reducing the
effect of the disturbance. From the frequency domain point of view, such a control method is far ahead
of the general “error-based” controller in terms of phase, namely, the control function is ahead of the
ordinary PID control, thereby having a better control effect.

The flourishing achievements in both academia and industry applications of the ADRC, for
instance, in motion control [25,26] and process control [27,28], can be attributed to its simple structure,
ease of tuning, and excellent control performance [29].

A combined structure of the feedforward and the ADRC is proposed in [30] to address the
difficulties in controlling the non-minimum phase (NMP) systems. Inspired by this, along with the
characteristics of practical controlled systems, the information on the system model is added to the ESO,
resulting in an improved ESO for the ADRC. Compared with the conventional ADRC, the modified
ADRC (MADRC) proposed in this paper features as the following itemized points:

• The estimation accuracy is improved by incorporating the model information;
• The control performance is improved in terms of both set-point tracking and disturbance rejection;
• The control action is experimentally demonstrated to be less sensitive to the measurement noise.

In this paper, on the basis of theoretical deduction, we will verify two remarkable performances
of the proposed MADRC compared with ADRC and PID through experiments: (1) excellent set-point
tracking ability and (2) noise suppression ability. It is worth noting that in this paper, we first deduce a
theoretical noise reduction condition for the controller and then verify it in simulation experiments
and practical experiments. The remainder of the paper is organized as follows: Section 2 presents the
structure of the modified ESO and the MADRC. The noise problem in the close-loop is formulated
in Section 3, and the noise suppression ability of the MADRC is analyzed. The controller design
and simulation experiment are given in Section 4. A comparative study is carried out by hardware
experiment in Section 5, and the conclusions are reached in Section 6.

2. Structure of Modified ADRC

In this section, we will gradually introduce the structure of MADRC in theory. For the sake of
universality and verifiability, the controller structure and noise reduction conditions mentioned in this
paper are not specific to any system or object.

2.1. Fundamentals of ADRC

Recognizing the fact that most of the industrial processes are represented by second-order systems,
the objective of this paper is also to design controllers for second-order systems. The structure of the
second-order ADRC is shown in Figure 1, where r is the reference input; y denotes the system output;
u0 is the control variable of controller; s is the Laplacian operator; kp, kd, and b0 are the controller
parameters; b is a gain parameter; G(s) represents controlled object; u is control variable for G(s); and z1,
z2, and z3 are the estimation of system state variables.
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Consider G(s) as a second-order system with single-input u and single-output y,

..
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(
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y(t), w(t)

)
+ bu(t) (1)

where w is the external disturbance, b is a gain parameter, and f denotes an unknown combination of
the system states and disturbances. By extending the ‘total disturbance’ f as an additional state, the
system (1) can be represented as an augmented state-space model.
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An extended state observer (ESO) is designed for system (2) accordingly as follows:

.
z = Az + Bu + β(y− z1)

ŷ = cTz
(4)

where, z = [z1, z2, z3]T aims at tracking x, and β = [β1, β2, β3]T is the observer gain. The observability
and controllability of the extended plant (3) as well as the convergence of ESO (4) are analyzed in [30].

For simplicity of tuning, referring to the bandwidth parameterization method [31], the observer
gain can be obtained by setting the characteristic equation of (4) as φ(s) = (s + ωo)3, where ωo is the
desired observer bandwidth. Accordingly, the characteristic equation of (4) is

φ(s) = s3 + β1s2 + β2s + β3 = (s +ωo)
3 (5)

from which the observer gain is calculated as
β1 = 3ωo

β2 = 3ω2
o

β3 = ω3
o

(6)

The convergence of ESO was proved in [32]. By compensating the estimated total disturbance z3

in real time as
u =

u0 − z3

b
(7)
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the original system (1) can be reduced to

..
y = f + bu = f + u0 − z3 ≈ u0 (8)

which is the enforced plant with the disturbance estimate, approximated as cascaded integrators. Then,
the controller for the enforced plant (8) can be determined simply as a state feedback law, as follows:

u0 = kp(r− z1) − kdz2 (9)

where r is the reference output. The tracking error of the control law is proved to be bounded in [32],
provided that the derivative of f is bounded. The observer gain β and feedback gain kp and kd can be
easily tuned based on the bandwidth parameterization method in [33].

2.2. Treating the Problem of Uncertainties as That of Disturbance

This part is introduced as the basis for the modification of the ESO in the next section. Consider a
second-order system, as follows:

G(s) =
b

s2 + a2s + a1
(10)

and an uncertain system in frequency domain, as follows:

Y(s) = G′(s)(U(s) + D(s)) = G(s)(1 + ∆(s))(U(s) + D(s)) (11)

where G(s) is the nominal model (10), G′(s) is the real plant, ∆(s) is the modelling uncertainty, Y(s) is
the system output and D(s) is the signal uncertainty, i.e., unknown disturbance. Rewrite (11) as

Y(s) = G(s)(U(s) + D′(s)) (12)

where D′(s) = ∆(s)U(s) + ∆(s)D(s) + D(s) denotes a new ‘total disturbance’ consisting of both modelling
and signal uncertainties. Note that the multiplicative uncertainty ∆(s) is used in (12) to make the total
disturbance applied via the same channel as the control input.

2.3. The Modified ESO

The ESO can be designed anywhere between almost model-free (with f completely unknown)
and fully model-based (with f fully described mathematically), because any or all knowledge of f can
be incorporated into the augmented model to improve performance [30]. In this paper, the observable
canonical model is chosen for the ESO design of the second-order system (10), as follows:

.
z1 = z2 + β1(y− z1)

.
z2 = −a1z1 − a2z2 + bu + z3 + β2(y− z1)

.
z3 = β3(y− z1)

(13)

where, z1 and z2 are the estimation for y and y′, respectively, and z3 is the estimate of the ‘total
disturbance’ consisting of both modelling and signal uncertainties. It differs from the cascaded
integrators in that the model information is incorporated into the canonical model, as indicated in a1

and a2.
Again, referring to the bandwidth parameterization method [33] for the original ESO, the

characteristic equation of (13) is determined as φ(s) = (s + ωo)3, where ωo is the desired observer
bandwidth. Accordingly, the characteristic equation of (13) is

φ(s) = s3 + (a2 + β1)s2 + (a2β1 + β2 + a1)s + β3 = (s +ωo)
3 (14)
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from which the observer gain is calculated as follows:
β1 = 3ωo − a2

β2 = 3ω2
o − 3a2ωo − a1 + a2

2
β3 = ω3

o

(15)

By compensating the estimated ‘total disturbance’ in the control action,

u =
1
b
(u0 − (z3 − a1z1 − a2z2)) (16)

the observable canonical model (11) becomes
.
z1 = z2 + β1(y− z1)
.
z2 = u0 + β2(y− z1)
.
z3 = β3(y− z1)

(17)

which implies that the enhanced plant may behave like the canonical form, as follows:

Y(s) = G(s)(u + d′) ≈ G(s)u0 (18)

where d′ is the total disturbance.
Until now, the modification of the disturbance rejection part is done and the enhanced plant (18)

needs a suitable controller, to which we turn next.

2.4. The Modified ADRC

It follows from (18) that the enhanced plant may behave like the nominal model. Thus, now
it is possible to replace the original model (10) with the enhanced plant and then employ the
Proportional-derivative (PD) control law in the ADRC to achieve a minimum settling time, subject to a
prescribed undershoot constraint.

On the basis of state feedback law (9), the canonical form (18) can be converted into the
state-space format: { .

x1 = x2
.
x2 = u0 = kp(r− x1) − kdx2

(19)

Similarly, for simplicity of tuning, referring to the bandwidth parameterization method [33] for
PD control law, the characteristic equation of (19) is determined as ϕ(s) = (s + ωc)2, where ωc is the
desired controller bandwidth. Accordingly, the closed-loop transfer function can be derived as follows:

Gcy(s) =
y(s)
r(s)

=
ω2

c

(s +ωc)
2 (20)

and the controller gain is calculated as follows:{
kp = ω2

c
kd = 2ωc

(21)

Comparing formula (20) with the standard model of classical second-order systems,

Φ =
ω2

n

s2 + 2ζωns +ω2
n

(22)
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where ζ is damping factor and ωn denotes natural frequency, a quantitative relationship between
derivative gain kd and ζ can be deduced as follows:

ζ =
kd

2ωn
(23)

It can be considered that ζ increases with increasing kd, namely, increasing the kd weakens the
overshoot of the system in accordance with the classical control theory.

Accordingly, combined with the modified ESO above, we have improved structure of the ADRC
to that of the MADRC. The MADRC still conforms to the type of disturbance-rejection and controller
pair, as shown in Figure 2.
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second-order system.

So far, the derivation and description of the MADRC structure has been completed. In the next
section, we will derive the noise reduction conditions of MADRC based on this section.

3. The Noise Reduction Performance of MADRC

As mentioned above, strong fluctuation of control variables is caused by measurement noise.
However, introducing the filter will attenuate the control variables, thus weakening the control strength.
On this basis, this paper will show that the MADRC has depressing capacity to some extent.

3.1. Problem Formulation

Figures 3 and 4 show the ADRC structure in the presence of measurement noise at the measurement
end, where y denotes the real output and y′ is the measurement. As we can see from figures, there
are two inputs in the whole closed-loop systems: reference r and noise n. The factors affecting
the control variables u are r and n. Besides, it is revealed in [34,35] that the ADRC is actually of
two-degrees-of-freedom structure; therefore, we converted the above structure to the structure shown
in Figure 5. For simplicity and generality, we define the transfer function from y to u as Gy(s) and the
transfer function from r to u as Gr(s).
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where  
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Converting the ADRC equations to the frequency domain using the Laplace transform, the control
variable is

u(s) = Gr(s)r−Gy(s)(y + n) (24)

As Figure 5 shows, the transfer function from n to u is equivalent to the transfer function from y to
u. The comparison in noise reduction performance will be given by discussing the polynomials of
Gy(s) between ADRC and MADRC.

3.2. Derivation of Transfer Function for ADRC

Based on the introduction of Section 3.1, this section will derive the transfer function from y to
u for ADRC. Same as the controller described above, for the sake of universality and verifiability,
the noise reduction conditions deduced later are not specific to any system or object. For clarity and
simplicity, we will introduce the derivation process step by step.

(1) Structural transformation for ESO:
As defined in (4), the conventional ESO structure is

.
z1 = z2 + β1(y− z1)
.
z2 = z3 + bu + β2(y− z1)
.
z3 = β3(y− z1)

⇒


.
z1 = −β1z1 + z2 + β1y
.
z2 = −β2z1 + z3 + bu + β2y
.
z3 = −β3z1 + β3y

(25)

represented in matrix format,
.
z = Az + Bu (26)

where

.
z =


.
z1
.
z2
.
z3

 A =


−β1 1 0
−β2 0 1
−β3 0 0

 z =


z1

z2

z3

 B =


0 β1

b β2

0 β3

 u =

[
u
y

]
(27)

(2) Laplace transformation for ESO, as follows:
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The observer gain β are calculated from (6), as follows:
β1 = 3ωo

β2 = 3ω2
o

β3 = ω3
o

(28)

and the estimates z1, z2, and z3 are then deduced using the Laplace transform of (25) to yield
z1 = bs

d1
u +

(3ωo)s2+(3ω2
o )s+ω

3
o

d1
y

z2 =
bs2+(3bωo)s

d1
u +

(3ω2
o )s2+ω3

os
d1

y

z3 =
ω3

os2

d1
y− bω3

o
d1

u

(29)

where
d1 = s3 + (3ωo)s2 + (3ω2

o)s +ω3
o (30)

(3) Transfer function acquisition, as follows:
According to the control variable u expressed in (7) and (9),

u =
1
b

(
kp(r− z1) − kdz2 − z3

)
(31)

where the controller gain kp and kd are calculated from (20), as follows:{
kp = ω2

c
kd = 2ωc

(32)

Meanwhile, from (20), u is deduced, as follows:

u = Gr1(s)r−Gy1(s)(y + n) =
n1

d2
r−

n2

d2
(y + n) (33)

where Gr1(s) and Gy1(s) stand for transfer functions for ADRC with respective polynomials. Furthermore,
Gy1(s) can be simplified as

Gy1(s) =
N1s2 +

(
3ω2

cω
2
o + 2ωcω3

o

)
s +ω2

cω
3
o

d2
(34)

The detailed expression of the polynomials N1, n1, n2, d1, and d2 in the transfer functions are given
in Appendix A.

3.3. Derivation of Transfer Function for MADRC

The derivation of transfer function for MADRC is generally similar to that of ADRC; this section
gives a brief description in order to avoid repetition and redundancy.

(1) Structural transformation and Laplace transformation for ESO, as follows:
Similarly, the modified ESO structure (13) is

.
z1 = z2 + β1(y− z1)
.
z2 = −a1z1 − a2z2 + bu + z3 + β2(y− z1)
.
z3 = β3(y− z1)

⇒


.
z1 = −β1z1 + z2 + β1y
.
z2 = (−a1 − β2)z1 − a2z2 + z3 + bu + β2y
.
z3 = −β3z1 + β3y

(35)
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The observer gain β are calculated from (15), as follows:
β1 = 3ωo − a2

β2 = 3ω2
o − 3a2ωo − a1 + a2

2
β3 = ω3

o

(36)

The estimates z1, z2, and z3 are then deduced using the Laplace transform of (35) to yield:
z1 =

(3ωo−a2)s2+(3ω2
o−a1)s+ω3

o
d3

y + bs
d3

u

z2 = n3
d3

y + bs2+(3bωo−a2b)s
d3

u

z3 =
ω3

os2+(a2ω
3
o )s+a1ω

3
o

d3
y− bω3

o
d3

u

(37)

(2) Transfer function acquisition, as follows:
The control variable u is expressed in (9) and (16), as follows:

u =
1
b

(
kp(r− z1) − kdz2 − (z3 − a1z1 − a2z2)

)
(38)

which is deduced as follows:

u = Gr2(s)r−Gy2(s)(y + n) =
n4

d4
r−

n5

d4
(y + n) (39)

where Gr2(s) and Gy2(s) stand for transfer functions for MADRC. Furthermore, Gy2(s) can be simplified as

Gy2(s) =
N2s2 + n6

d4
(40)

The detailed expression of the polynomials N2, n3, n4, n5, n6, d3, and d4 of the transfer functions
are given in Appendix A.

3.4. Analysis of Noise Reduction Conditions

Before the analysis and proof on noise reduction performance, we have to clarify the following
aspects:

1. The noise discussed in this paper is usually the high-frequency noise in industrial applications,
namely, ω is set to infinite;

2. We consider the second-order system as a stable system, namely, a1 > 0, a2 > 0;
3. The subject discussed in this paper is based on the condition that the observer and the controller

bandwidths of the two types of ADRC (ωo and ωc) are equal.
4. According to explicit point 1, when discussing the gain of the two kinds of ADRC with

high-frequency noise, on the basis of the corresponding relation between frequency domain and
complex domain G(jω) = G(s)|s = jω, it becomes clear that the discussion focuses on the higher
order terms of the transfer function, namely, the N1 and N2 in Formula (34) and (40).

5. Assuming that the MADRC has the capability of noise reduction, N2 must be less than N1, that is
to say, the inequality N = N1 −N2 ≥ 0 should be proved.

For the point 5,

N = a3
2 − 2a2

2ωc − 3a2
2ωo + a2ω2

c + 6a2ωcωo + 3a2ω2
o

−2a1a2 + 2a1ωc + 3a1ωo

= a1 f1 + a2 f2 (a1 > 0, a2 > 0)
(41)
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where
f1 = −2a2 + 2ωc + 3ωo (42)

f2 = (a2 −ωc)
2 + 3ω2

o + 6ωcωo − 3a2ωo (43)

Since both a1 and a2 are positive, only f 1 and f 2 need to be discussed.
Note that f 1 > 0 as long as the following condition is satisfied:

ωo ≥ ωc ≥
2
5

a2 (44)

Similarly, f 2 > 0, as long as the following condition is satisfied:

ωo ≥ ωc ≥
1
3

a2 (45)

Combining condition (44) and condition (45), we get the following:

ωo ≥ ωc ≥
2
5

a2 (46)

That is to say, as long as the condition ωo ≥ ωc ≥ 0.4a2 is satisfied, the MADRC has a better noise
reduction ability compared to the ADRC. For simplicity and generality, the condition is called the noise
reduction condition hereinafter.

3.5. Reflections on the Condition

As shown in (46), the simplicity of the condition is beyond one’s expectation. Moreover, this is a
very conservative or even stricter condition obtained by mathematical deduction. In other words, in
practical control applications, this condition is extremely easy to meet:

(a) In general, the observer bandwidth ωo must be greater than the controller bandwidth ωc, that is,
the observer frequency must be greater than the controller operating frequency. Even in most
ADRC applications, ωo is ten times or even larger than ωc;

(b) On the other hand, the ADRC closed-loop characteristic polynomial is as follows:

s2 + 2ωcs +ω2
c = 0 (47)

and the open-loop characteristic polynomial of the plant is as follows:

s2 + a2s + a1 = 0 (48)

Obviously, since the closed-loop control response must be faster than the open-loop, namely, ωc

≥ 0.5a2. Even in the actual control, the closed-loop response is required to be much faster than the
open-loop response: ωc � 0.5a2.

To sum up, the strict condition obtained under the rigorous mathematical derivation is extremely
easy to be satisfied in most control applications, and the margin of satisfaction is quite large.

This section completed the derivation of noise reduction condition of MADRC, and obtained a
“strict noise reduction condition” that can be easily met in application. Through the theoretical parts
of the Sections 2 and 3, we have a preliminary understanding of the structure and noise reduction
ability of MADRC. The next section will verify control quality of MADRC and noise reduction ability
compared with ADRC through simulations and experiments.
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4. Controller Design and Simulation

4.1. Model-Based System Identification

As introduced in the previous section, the water tank systems in industrial applications usually
have large inertia. To this end, we have developed an experimental platform consisting of three water
tanks whose structural diagram is shown in Figure 6. In order to emulate the large inertia, we have
made full use of the inertia of the tank by making water flow through three water tanks in cascade.

Water 2019, 11, x FOR PEER REVIEW 12 of 25 

To sum up, the strict condition obtained under the rigorous mathematical derivation is 
extremely easy to be satisfied in most control applications, and the margin of satisfaction is quite 
large. 

This section completed the derivation of noise reduction condition of MADRC, and obtained a 
“strict noise reduction condition” that can be easily met in application. Through the theoretical parts 
of the Section 2 and Section 3, we have a preliminary understanding of the structure and noise 
reduction ability of MADRC. The next section will verify control quality of MADRC and noise 
reduction ability compared with ADRC through simulations and experiments. 

4. Controller Design and Simulation 

4.1. Model-Based System Identification 

As introduced in the previous section, the water tank systems in industrial applications usually 
have large inertia. To this end, we have developed an experimental platform consisting of three water 
tanks whose structural diagram is shown in Figure 6. In order to emulate the large inertia, we have 
made full use of the inertia of the tank by making water flow through three water tanks in cascade. 

The upper computer receives the signal of the communicator through the data bus. The 
communicator receives the signal of the pressure transducer and outputs the control signal to the 
frequency converter to adjust the rotational speed of the pump. The steady-state range of the 
controlled water level is obtained by testing at an operating point. Thus, the step-input experiment 
and the control experiment are carried out in the steady-state range. For simplicity and generality, 
the voltage signal received by the inverter is used as a control variable in the following description. 

 
Figure 6. Structural diagram of the water tanks platform. 

The form of transfer function of the platform is denoted as  

( )( )
( )

Y sG s
U s

=  (49) 

As mentioned above, U is the voltage signal received by the inverter and Y is the water level of 
the controlled plant. Figure 7 depicts the open-loop water level step response in the steady-state 
range, based on which the following transfer function was identified by using MATLAB System 
Identification Tool Box: 

Figure 6. Structural diagram of the water tanks platform.

The upper computer receives the signal of the communicator through the data bus. The
communicator receives the signal of the pressure transducer and outputs the control signal to the
frequency converter to adjust the rotational speed of the pump. The steady-state range of the controlled
water level is obtained by testing at an operating point. Thus, the step-input experiment and the
control experiment are carried out in the steady-state range. For simplicity and generality, the voltage
signal received by the inverter is used as a control variable in the following description.

The form of transfer function of the platform is denoted as

G(s) =
Y(s)
U(s)

(49)

As mentioned above, U is the voltage signal received by the inverter and Y is the water level of
the controlled plant. Figure 7 depicts the open-loop water level step response in the steady-state range,
based on which the following transfer function was identified by using MATLAB System Identification
Tool Box:

G =
30.34

(1 + 780.75s)(1 + 219.33s)
(50)
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Figure 8 shows the fitting of the experimental data with the identified model. According to the
degree of fitting shown in the figure, it can be concluded that the identified transfer function represents
the system very well. In addition, by comparing (10) and formula (50), it can be obtained that b =

1.77176 × 10−4, a1 = 5.8397 × 10−6, and a2 = 5.8401 × 10−3.
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4.2. PI Controller Parameters Tuning

As empirical setting, the proportional-integral (PI) controller without differentiation is adequate
to control the second-order system in industrial processes. Accordingly, we applied PI controller to the
experiments. The form of PI controller is denoted as

Gc(s) = Kp +
Ki
s

(51)

In order to design an engineering friendly controller for the system, we tuned the parameters
based on the following method: SIMC-PID tuning rules widely used in industry, here SIMC means
“Simple Internal Model Control” [36]. According to the identified result, the PI parameters are tuned as

Kp = 0.070715, Ki = 0.00008719 (52)

The PI control performance has fast response with good robustness, namely, fast transient period
and reasonable overshoot, which will be further exhibited in Section 4.4.

4.3. ADRC Controller Parameters Tuning

According to the theoretical deduction above for ADRC, there is a quantitative relationship
between derivative gain kd and the damping factor ζ as shown in (23). Moreover, in order to compare
the control performance between ADRC and MADRC, we set the ωo and ωc of the two types of ADRC
to be equal to satisfy the unique variable principle.

In this experiment, the value of ωo and ωc are tuned as

ωo = 0.03, ωc = 0.0035 (53)

On this basis, the parameters of ADRC and MADRC are as follows:

(1) ADRC: β1 = 0.09, β2 = 2.7 × 10−3, β3 = 2.7 × 10−5, kp = 1.225 × 10−5, kd = 7 × 10−3;
(2) MADRC: β1 = 0.08416, β2 = 2.2026 × 10−3, β3 = 2.7 × 10−5, kp = 1.225 × 10−5, kd = 7 × 10−3.

Obviously, since the improvement of ADRC mainly focuses on the ESO, the difference of parameters
setting between ADRC and MADRC is mainly concentrated on the observer parameters β1 and β2,
while the controller parameters are identical.

The superiority of MADRC is fully explicated in the following sections.

4.4. Simulation Comparison on Control Effects

To evaluate and compare the robustness against parameter perturbation, PI, ADRC, and MADRC
are simulated based on the identified model. Several sets of step-input experiments of water level
are given to prove the validity of tuned parameters and the control effect of the MADRC compared
with the ADRC and PI controller. The amplitude of control variable is limited within [0, 10], which
considers the working voltage of actuator used in the experiment.

Figure 9 shows the result of reference tracking control. The step-changes in the water-level
reference happened at 0 s, 5003 s, 7009 s, and 9310 s with amplitudes of +235, −35, −50, and +70,
respectively. Compared with the PI and ADRC controller, the MADRC controller yields shorter
transient period and smaller overshoot. It is generally known that such control performance is the
goal of industrial control processes. From this point of view, the simulation results validate one of the
capabilities of the MADRC mentioned above.
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4.5. Noise Reduction Simulation Comparison

To compare and verify the capability of noise reduction, the ADRC and MADRC are simulated
based on the identified model. High-frequency white noise is introduced into the close-loop to explore
the influence of noise on the control variable. As mentioned above, the identified model is (50)

G(s) =
30.34

(1 + 780.75s)(1 + 219.33s)
(54)

namely, the system parameter a2 = 5.84 × 10−3 in the second-order system (10). We adopted the same
controller parameters of ADRC and MADRC, i.e., ωo = 0.03 and ωc = 0.0035, which satisfy the noise
reduction condition ωo ≥ ωc ≥ 0.4a2.

Figures 10 and 11 show the result of noise-reduction simulation experiments. Figure 10 shows
the output values of the two ADRC step experiments in the presence of noise, and highlights the
fluctuation of output values after introducing white noise.
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Figure 11 shows the fluctuation of control variables of the two ADRC relative to their noise-free
conditions. Since the settings of the horizontal and vertical coordinates of the two figures are the same,
it can be seen intuitively that the fluctuation of output control variable is much smaller in the MADRC
than in the ADRC. This preliminarily verifies the idea proposed in this paper, that is, the MADRC has
a better noise reduction ability compared with the ADRC under the same noise interference and the
same bandwidth settings.
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In order to demonstrate the noise reduction ability of the MADRC quantitatively, we introduced
the integral absolute error (IAE) to evaluate the fluctuations of control variable, which is defined as

IAE =

∫ T

0

∣∣∣y− r
∣∣∣dt (55)

In this experiment, y denotes the control variable under noise and r denotes noise-free reference.
Obviously, the smaller the IAE, the smaller the fluctuation. Calculation results of the two ADRC are as
follows:

1. ADRC:
IAEADRC = 449.9305 (56)

2. MADRC:
IAEMADRC = 223.0452 (57)

By comparing (56) and (57), IAEMADRC < IAEADRC, and we can draw the same conclusion that
MADRC indeed has a better noise reduction ability.

So far, the validity and feasibility of the proposed MADRC have been demonstrated by simulation
experiments with the identified model. Therefore, the prerequisite for the hardware experiment is
readily met. The water pump control experiment in hardware will be carried out in the next section.

5. Experimental Results

5.1. Experimental Setup

The picture of water pump control experimental platform is shown in Figure 12, where some
critical equipments are labeled. To avoid distraction, some irrelevant components in the experiment,
such as lift of pump, pipe diameter, relays, and opening of each valve, are not detailed in the figure,
but they are indispensable for the experiment.
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The experimental scheme is to change the rotational speed of the pump by adjusting the input
control signal of the variable frequency pump, so as to adjust the flow of water, and then adjust the
water level of the tank. It needs to be emphasized that the factors affecting the water level of the tank
are not only the inlet water volume but also its own water level, because the increase of the water level
will lead to the increase of the output water yield.
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The host computer controls the system, and the control algorithm is realized by building control
module structures and tuning parameters. The communication between the platform and the host
computer is via MODBUS module.

5.2. Experimental Results

Based on the previous simulation work in Section 4, we applied the well-tuned controller
parameters to control the water level of the experimental platform. In order to verify the quantitative
relationship between kd and ζ and take Ts into account, kd is set in discrete steps. The other parameters
and the structure of the controllers are the same as mentioned in the simulation experiment. In
order to fully reflect the effect of the controller, the experiments were set up with multiple groups of
positive/negative steps in different amplitudes. Figures 13 and 14 represent the water level tracking
performance of ADRC and MADRC controllers, respectively.
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Similarly, in order to demonstrate the control effect more quantitatively, we introduced some
evaluation indices, such as integral absolute error per time, IAET, overshoot O, and transient time Ts

with 2% error band.
The definition of IAET is

IAET =

∫ T
0

∣∣∣y− r
∣∣∣dt

T
(58)

where y and r denote the actual water level and set point, respectively.
The overshoot is defined as

O =
(ymax − yt=∞)

yt=∞
× 100% (59)

where ymax denotes maximum output value and yt = ∞ is the stable value.
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The definition of transient time is the time required for the response curve to reach and stay within
a range of certain percentage (usually 2% or 5%) of the final value [34]. The error band is the range
between the ±2%/±5% amplitude around the reference value.

Each of the three evaluation indices focuses on different aspects. The transient time Ts is a
comprehensive index reflecting the response speed and damping degree of the system. Simply
speaking, it can be considered as the minimum time required to complete the specified control function.
The overshoot is the most commonly used control index to partially depict the robustness of a controller.
In some specific industrial processes, the overshoot is strictly restricted to nearly zero; IAET is an
auxiliary evaluation index in this paper. It represents the real-time error between the actual output
value and the reference value, which is used to indicate the accuracy of the control performance.
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Table 1. Evaluation indices.

Index

Controller
Step 1: +30
(0–30 mm)

Step 2: +30
(30–60 mm)

Step 3: −30
(60–30 mm)

Step 4: +55
(30–85 mm)

Step 5: −60
(85–25 mm)

ADRC MADRC ADRC MADRC ADRC MADRC ADRC MADRC ADRC MADRC

Ts (Error Band: 2%) 2181.4 s 2052 s 2094.8 s 1359 s 2157.8 s 968 s 2332.4 s 1506.8 s 2140.6 s 1364 s
Overshoot (O) 10.17% 9.07% 7.33% 4.03% 6.67% 0.80% 3.96% 1.18% 5.95% 2.48%

IAET 5.8258 9.872 6.5226 8.3018 7.1263 9.6148 13.2314 13.323 11.6147 11.1421
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5.3. Result Analysis

According to the values in Table 1, it is obvious that Ts and overshoot is smaller in MADRC than
in ADRC in each step experiment, which reflects the excellent control performance of the MADRC
compared with the ADRC in terms of water pump control. As for IAET, the IAET of the ADRC is less
than that of the MADRC in smaller steps and almost equal in larger steps. Reasons for this can be the
overshoot of the ADRC is similar to that of the MADRC when the step is small, but the rising speed
of the ADRC controlled signal is faster than that of the MADRC, thus leading to smaller real-time
error. During large steps, although the ADRC is more powerful than the MADRC, the overshoot of
the ADRC is also larger than that of the MADRC, so the IAET of the ADRC and the MADRC become
almost the same.

The comparison of control performance in the above analysis can be observed in the figures.
Overall, the MADRC has an excellent control performance compared to the ADRC in terms of water
pump control, showing great potential in its application to water pump control in industrial processes.

Noise reduction analysis is achieved mainly through the comparison of the ADRC and MADRC
control variables, namely, the output signal of the pump speed. Since the two sets of experiments
have the same step amplitudes, it is feasible to compare the control variables. Figure 15 shows the
comparison of control variables.
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Valuable insights can be obtained from the experimental results: when we have to deal with some
objects with the attributes of slow dynamics, strong nonlinearity, and various disturbances, MADRC is
indeed a trustworthy choice, which can effectively deal with various uncertainties. Meanwhile, its
noise reduction performance is advantageous to various executing agencies in industry, especially
mechanical equipment. All in all, MADRC has excellent application prospects in the field of industrial
process control.
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It clearly depicted in Figure 15 that when control variable undergoes a large numerical change,
severe fluctuation will occur. However, according to the corresponding circled plots, it is obvious
that the fluctuation of control variable is smaller for the MADRC than for the ADRC. Moreover, on
the basis of model information and controller parameters, the parameters satisfy the noise reduction
conditions mentioned in this paper: ωo ≥ ωc ≥ 0.4a2. This shows that the MADRC indeed has a better
noise reduction capability compared with the ADRC under the same noise reduction condition. As
in the simulation experiments, the feasibility of the noise reduction condition is also demonstrated,
which is quite useful in industrial applications for its friendliness to actuators.

6. Conclusions

This paper verifies the promising application of the modified model-assisted ADRC control
methodology on a practical water pump control system by analysis, simulation, and well-designed
hardware experiment. This paper focuses on the tracking performance and noise reduction capability
of the MADRC. The superiority of the MADRC in these two aspects has been verified by simulation
and practical hardware experiment.

On the one hand, the MADRC has better control performance, especially in the reference tracking
with large step changes. It can be clearly seen from the simulation results in Figure 9 and the actual
experimental results in Table 1 that MADRC is superior to ADRC and PID in both overshoot and
transient time. Specifically, in the case of a smaller overshoot, it also has faster transient time, which is
essential for the control process under specific requirements.

On the other hand, the MADRC has better noise reduction capability compared to the ADRC
under the same noise reduction condition. Furthermore, the strict condition derived under the rigorous
mathematical analysis is extremely easy to satisfy in the most practical control processes, and the
satisfactory margin is quite large. The control variables with weakened fluctuation after noise reduction
will benefit the actuator and prolong its life, which is especially critical for systems with complex
installation procedure.

To sum up, the proposed MADRC method is able to achieve a better control performance and
better noise reduction capability by sacrificing some structure conciseness and ease of use.

This paper provides a hybrid data-driven and model-assisted active disturbance rejection
control for precise control of water level in industrial process, and it could even be carried out
in extensive industrial control problems. More importantly, this paper provides an idea of designing
control algorithm: by combining model information with real-time input and output data, better
control effects could be achieved by using both steady state data and dynamic data in the control
process. Moreover, the best disturbance-rejection performance of the MADRC control approach can
contribute to pumped-storage distributed energy-supply systems like combined cooling, heating and
power-generating systems [37] and also to a study on robust optimization of the distributed generating
units [38] in the future.
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Appendix A

Table A1. Polynomials in transfer functions Gr(s) and Gy(s).

Polynomial Expressions of Symbols
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26. Madoński, R.; Herman, P. Survey on methods of increasing the efficiency of extended state disturbance
observers. ISA Trans. 2015, 56, 18–27. [CrossRef]

27. Sun, L.; Hua, Q.; Shen, J.; Xue, Y.; Li, D.; Lee, K.Y. Multi-objective optimization for advanced superheater
steam temperature control in a 300 MW power plant. Appl. Energy 2017, 208, 592–606. [CrossRef]

28. Song, K.; Hao, T.; Xie, H. Disturbance rejection control of air–fuel ratio with transport-delay in engines.
Control Eng. Pract. 2018, 79, 36–49. [CrossRef]

29. Dong, J.; Sun, L.; Li, D.; Lee, K.Y. A Practical Multivariable Control Approach Based on Inverted Decoupling
and Decentralized Active Disturbance Rejection Control. Ind. Eng. Chem. 2016, 55, 2008–2019.

30. Sun, L.; Li, D.; Gao, Z.; Yang, Z.; Zhao, S. Combined feedforward and model-assisted active disturbance
rejection control for non-minimum phase system. ISA Trans. 2016, 64, 24–33. [CrossRef]

31. Sun, L.; Shen, J.; Hua, Q.; Lee, K.Y. Data-driven oxygen excess ratio control for proton exchange membrane
fuel cell. Appl. Energy 2018, 231, 866–875. [CrossRef]

32. Zheng, Q.; Chen, Z.; Gao, Z. A practical approach to disturbance decoupling control. Control Eng. Pract.
2009, 17, 1016–1025. [CrossRef]

33. Gao, Z. Scaling and bandwidth-parameterization based controller tuning. Proc. Am. Control Conf. 2003, 6,
4989–4996.

34. Yang, J.; Li, S.; Yu, X. Sliding-Mode Control for Systems with Mismatched Uncertainties via a Disturbance
Observer. IEEE Trans. Ind. Electron. 2013, 60, 160–169. [CrossRef]

35. Xue, W.; Bai, W.; Yang, S.; Song, K.; Huang, Y.; Xie, H.; Yi, H. ADRC With Adaptive Extended State Observer
and its Application to Air–Fuel Ratio Control in Gasoline Engines. IEEE Trans. Ind. Electron. 2015, 62,
5847–5857. [CrossRef]

36. Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13,
291–309. [CrossRef]

37. Chen, C.; Lin, J.; Pan, L.; Lee, K.Y.; Sun, L. Improving Simultaneous Cooling and Power Load-Following
Capability for MGT-CCP Using Coordinated Predictive Controls. Energies 2019, 12, 1180. [CrossRef]

http://dx.doi.org/10.1016/j.net.2018.09.018
http://dx.doi.org/10.1109/TIE.2008.2011621
http://dx.doi.org/10.3390/en12081548
http://dx.doi.org/10.3390/en12071402
http://dx.doi.org/10.3390/machines5040025
http://dx.doi.org/10.3390/pr3010113
http://dx.doi.org/10.1109/ACCESS.2017.2681697
http://dx.doi.org/10.1109/TCST.2004.824315
http://dx.doi.org/10.1109/TIE.2016.2583412
http://dx.doi.org/10.1016/j.isatra.2014.11.008
http://dx.doi.org/10.1016/j.apenergy.2017.09.095
http://dx.doi.org/10.1016/j.conengprac.2018.06.009
http://dx.doi.org/10.1016/j.isatra.2016.04.020
http://dx.doi.org/10.1016/j.apenergy.2018.09.036
http://dx.doi.org/10.1016/j.conengprac.2009.03.005
http://dx.doi.org/10.1109/TIE.2012.2183841
http://dx.doi.org/10.1109/TIE.2015.2435004
http://dx.doi.org/10.1016/S0959-1524(02)00062-8
http://dx.doi.org/10.3390/en12061180


Water 2019, 11, 1066 25 of 25

38. Peng, C.; Xu, L.; Gong, X.; Sun, H.; Pan, L. Molecular Evolution Based Dynamic Reconfiguration of
Distribution Networks With DGs Considering Three-Phase Balance and Switching Times. IEEE Trans. Ind. Inf.
2019, 15, 1866–1876. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2018.2866301
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure of Modified ADRC 
	Fundamentals of ADRC 
	Treating the Problem of Uncertainties as That of Disturbance 
	The Modified ESO 
	The Modified ADRC 

	The Noise Reduction Performance of MADRC 
	Problem Formulation 
	Derivation of Transfer Function for ADRC 
	Derivation of Transfer Function for MADRC 
	Analysis of Noise Reduction Conditions 
	Reflections on the Condition 

	Controller Design and Simulation 
	Model-Based System Identification 
	PI Controller Parameters Tuning 
	ADRC Controller Parameters Tuning 
	Simulation Comparison on Control Effects 
	Noise Reduction Simulation Comparison 

	Experimental Results 
	Experimental Setup 
	Experimental Results 
	Result Analysis 

	Conclusions 
	
	References

