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Abstract: Currently, practically no modeling study is expected to be carried out without some form
of Sensitivity Analysis (SA). At the same time, there is a large number of various methods and it
is not always easy for practitioners to choose one. The aim of this paper is to briefly review main
classes of SA methods, and to present the results of the practical comparative analysis of applying
them. Six different global SA methods: Sobol, eFAST (extended Fourier Amplitude Sensitivity Test),
Morris, LH-OAT, RSA (Regionalized Sensitivity Analysis), and PAWN are tested on three conceptual
rainfall-runoff models with varying complexity: (GR4J, Hymod, and HBV) applied to the case study
of Bagmati basin (Nepal). The methods are compared with respect to effectiveness, efficiency, and
convergence. A practical framework of selecting and using the SA methods is presented. The result
shows that, first of all, all the six SA methods are effective. Morris and LH-OAT methods are the
most efficient methods in computing SI and ranking. eFAST performs better than Sobol, and thus it
can be seen as its viable alternative for Sobol. PAWN and RSA methods have issues of instability,
which we think are due to the ways Cumulative Distribution Functions (CDFs) are built, and using
Kolmogorov–Smirnov statistics to compute Sensitivity Indices. All the methods require sufficient
number of runs to reach convergence. Difference in efficiency of different methods is an inevitable
consequence of the differences in the underlying principles. For SA of hydrological models, it is
recommended to apply the presented practical framework assuming the use of several methods, and
to explicitly take into account the constraints of effectiveness, efficiency (including convergence), ease
of use, and availability of software.

Keywords: Global Sensitivity Analysis; hydrological model; bootstrapping resample

1. Introduction

Water management makes wide use of hydrological models. Models are uncertain, and it mainly
comes from the error of gathering input data, e.g., rainfall and evapotranspiration, parameters of the
model, and the model structure itself. Nowadays, the interests to Uncertainty Analysis (UA) methods
and procedures have grown considerably. The study of the UA will not only improve the credibility of
the model itself, but will also be conductive to decision making under uncertainty.

UA can be defined differently—see e.g., [1–5], but in general it gives a qualitative or quantitative
assessment of the uncertainty in the model results. The results are typically expressed as a graph
showing the spread and ensemble of values or a distribution, as probabilistic flood maps, etc.
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Due to the complexity and non-linear nature of hydrological models, it is hard to use analytical
methods to study the uncertainty of hydrological models. Therefore, non-intrusive, sampling-based
methods are commonly used, generally referred to as Monte Carlo Simulation (MCS), which can be
seen as the simulation of a system that encloses stochastic or uncertain components. It can be easily
implemented and is model independent and dimension independent.

The Monte Carlo method can be expressed as “the use of random sampling as a tool to produce
observations on which statistical inference can be performed to extract information about a system” [6].
MCS starts firstly with generating n samples of some variables X. These variables can be external
model inputs, initial model conditions, or model parameters. For each such realization, simulation of
the model Y = f (X) is carried out to obtain n sets of output (could be either time series or single value),
which statistics are analysed.

Often, however, yet another concept is employed to analyze the impact of uncertainties on
modelling results, Sensitivity Analysis (SA), which is ideologically close to UA. It can be defined as the
study of “how the uncertainty in the output of a model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input” [4]. (One may notice that this definition is
not comprehensive, since uncertainty not only comes from model inputs but also from parameters,
so for this reason, we will use the term “factor” instead of “model input”.) The main aim here is to
identify the degree with which changes in various factors (manifesting the corresponding uncertainty)
influence a change in model output. SA should be seen as a standard step in any modelling study, and
there is plenty of literature on SA published during the last 40–50 years, but still various updates and
improvements of SA techniques are proposed regularly (see e.g., [7–9]).

SA is often implemented before model parameterization (calibration). On one hand, for conceptual
rainfall-runoff models, the parameters cannot be gathered from field measurement and implementing,
and SA can help to find out the most influential parameters to reduce the cost of calibration time. On the
other hand, for distributed hydrological models, whose parameters can be gathered from the field, SA
can help to target the most important parameters, on which more resources can be put to ensure their
higher accuracy. (It should be noted that there is a certain danger and even a methodological flaw in
conducting SA of parameters before model calibration: it is not yet really known what the optimal
parameter vector is, and hence it is possible that sensitivity is investigated considering non-feasible
parameters values. Therefore, it would be advisable to carry out at least some initial calibration before
turning to SA).

The main difference between UA and SA lies in the fact that SA tries to explicitly apportion the
uncertainty of the output to the different factors, and does not aim at studying the uncertainty of model
outputs in detail. Therefore, SA can help to target the sources of the model output uncertainty due
to that in inputs or parameters, whereas UA provides a more general and often more detailed and
rigorous account of model uncertainty, which is, however, computationally more demanding.

Saltelli et al. [4] formulates the three main specific purposes of SA:

• Factor Prioritization (FP): ranking the factor in terms of their relative sensitivity;
• Factor Fixing (FF), or screening: determining the factors are influential or not to the

output uncertainty;
• Factor Mapping (FM): given specific output values or ranges, locating the regions in the factor

space that produces them.
• In this study, we only focus on ranking and screening.

SA is typically categorized into Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis
(GSA). LSA concentrates on the sensitivity of factors at particular points in the factor space, for example,
around the vector of the calibrated parameters. GSA, on the other hand, assesses the sensitivity of the
factor through the whole factor space. By design, LSA is simpler and faster.
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A simplest expression of local sensitivity is the first-order partial derivatives of output to the factors.
Define a model y = f (x), where y is the output of the model; x is factor of the model. The sensitivity of
the factor (S) is defined as:

Si =

∣∣∣∣∣∆yi

∆xi

∣∣∣∣∣ (1)

where i is the i-th factor of the model. (Note that in many studies instead of model output y the model
error is used, e.g., Root Mean Squared Error or Mean Absolute Error.) Higher value of Si indicates
higher sensitivity of the factor. Such measure of sensitivity is often called Sensitivity Index (SI). Figure 1
shows the expression of sensitivity of a model with two parameters (factors).

Water 2019, 11, x FOR PEER REVIEW 3 of 26 

 

where i is the i-th factor of the model. (Note that in many studies instead of model output y the model 
error is used, e.g., Root Mean Squared Error or Mean Absolute Error.) Higher value of Si indicates 
higher sensitivity of the factor. Such measure of sensitivity is often called Sensitivity Index (SI). Figure 
1 shows the expression of sensitivity of a model with two parameters (factors). 

 
Figure 1. Graphical expression of Sensitivity Analysis. 

One may want also to explore sensitivity for more factor vectors, by randomly sampling several 
points in the whole factor space (or its subspace), and obtaining Si for each sample point. After that 
the results can be aggregated (e.g., in simplest case calculating the mean value of these Si), providing 
an estimate of the global sensitivity of the model. 

Such Global Sensitivity Analysis methods can be classified into Generalized Sensitivity Analysis 
method, variance-based methods, GLS (globally aggregated measure of local sensitivities) methods, 
density-based methods, and meta-modelling methods. Different methods are based on different 
theories and principles, and as a result, have different efficiencies. Which method is the best to use is 
always an issue to discuss in the field. There are various studies comparing different SA methods. In 
the study of Tang et al. [10], four SA methods have been analyzed and compared on SAC-SMA model 
(Sacramento Soil Moisture Accounting model) coupled with SNOW-17. The results of the study show 
that the choice of SA methods has great impacts on the parameter sensitivity of the model. 
Pappenberger et al. [11] tested five SA methods on a flood inundation model (HEC-RAS). It is 
demonstrated that different methods result in different ranking of factors, thus solid conclusions 
about the sensitivity of the factors are impossible to draw. Gan et al. [12] have evaluated the 
effectiveness and efficiency of ten widely used SA methods on SAC-SMA model. The result 
demonstrates that qualitative SA methods (which provide heuristic score to intuitively represent the 
relative sensitivity factors) are more efficient than quantitative SA methods (computing the impact 
of the parameter on the total variance of model output), whereas quantitative SA methods are more 
robust and accurate. Song [13], Razavi and Gupta [14], and Pianosi et al. [15] gave very useful 
systematic reviews of SA concepts, methods, and framework, respectively, with suggestions on how 
to choose SA methods. However, these suggestions are only made based on dissimilar studies and 
literature reviews, without a comprehensive comparison of SA methods applied to one case study. 

With respect to sample-based SA methods, the coverage of the factor space is the key point in 
SA accuracy: with small samples the SA results are imprecise. Also, different sets of sample may give 
dissimilar SA results. In other words, there is also uncertainty in SA (in fact, the same can be said 
about UA). In order to deal with this issue, convergence of the Sensitivity Indices should be studied. 

In spite of many reviews and comparison of SA methods that have been carried out, there are 
not too many studies that investigate the convergence and uncertainty of the SA results. Yang [16] 
assessed the convergence of Sensitivity Indices for five different Global Sensitivity Analysis methods 
using Central Limit Theory (CLT) and bootstrap techniques. In her study, the estimates of mean and 
Confidence Interval (CI) are plotted against increasing base sample size for each method. Once there 

Figure 1. Graphical expression of Sensitivity Analysis.

One may want also to explore sensitivity for more factor vectors, by randomly sampling several
points in the whole factor space (or its subspace), and obtaining Si for each sample point. After that the
results can be aggregated (e.g., in simplest case calculating the mean value of these Si), providing an
estimate of the global sensitivity of the model.

Such Global Sensitivity Analysis methods can be classified into Generalized Sensitivity Analysis
method, variance-based methods, GLS (globally aggregated measure of local sensitivities) methods,
density-based methods, and meta-modelling methods. Different methods are based on different
theories and principles, and as a result, have different efficiencies. Which method is the best to use
is always an issue to discuss in the field. There are various studies comparing different SA methods.
In the study of Tang et al. [10], four SA methods have been analyzed and compared on SAC-SMA
model (Sacramento Soil Moisture Accounting model) coupled with SNOW-17. The results of the
study show that the choice of SA methods has great impacts on the parameter sensitivity of the
model. Pappenberger et al. [11] tested five SA methods on a flood inundation model (HEC-RAS). It is
demonstrated that different methods result in different ranking of factors, thus solid conclusions about
the sensitivity of the factors are impossible to draw. Gan et al. [12] have evaluated the effectiveness
and efficiency of ten widely used SA methods on SAC-SMA model. The result demonstrates that
qualitative SA methods (which provide heuristic score to intuitively represent the relative sensitivity
factors) are more efficient than quantitative SA methods (computing the impact of the parameter on
the total variance of model output), whereas quantitative SA methods are more robust and accurate.
Song [13], Razavi and Gupta [14], and Pianosi et al. [15] gave very useful systematic reviews of SA
concepts, methods, and framework, respectively, with suggestions on how to choose SA methods.
However, these suggestions are only made based on dissimilar studies and literature reviews, without
a comprehensive comparison of SA methods applied to one case study.

With respect to sample-based SA methods, the coverage of the factor space is the key point in SA
accuracy: with small samples the SA results are imprecise. Also, different sets of sample may give
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dissimilar SA results. In other words, there is also uncertainty in SA (in fact, the same can be said about
UA). In order to deal with this issue, convergence of the Sensitivity Indices should be studied.

In spite of many reviews and comparison of SA methods that have been carried out, there are
not too many studies that investigate the convergence and uncertainty of the SA results. Yang [16]
assessed the convergence of Sensitivity Indices for five different Global Sensitivity Analysis methods
using Central Limit Theory (CLT) and bootstrap techniques. In her study, the estimates of mean and
Confidence Interval (CI) are plotted against increasing base sample size for each method. Once there
is no significant fluctuation in the values, the convergence is reached. Sarrazin et al. [17] proposed
a methodology to study the convergence of Sensitivity Indices, ranking, and screening. They have
defined quantitative criteria for the convergence of Sensitivity Indices, ranking, and screening, and
tested the methodology on the three widely-used GSA methods applied to three hydrological models.
Our research adds to these two mentioned studies, with more methods and models.

Another aspect worth attention is the choice of SA method(s). Most of the studies concerning SA
could not draw firm conclusions about how to choose the best SA method (and this is understandable,
since there are many ways to define what is the “best” one). Also, the uncertainties associated with the
procedures of SA are not investigated much.

Objectives of this study are as follows. The first objective of the study is to additionally test
and compare the widely used classic SA methods as well as the SA methods developed recently
(e.g., PAWN, Pianosi and Wagener [9]) in the aspects of efficiency, effectiveness, and convergence.
The second objective is to give suggestions on how to choose SA methods for various hydrological
(or hydraulic models) based on their computational cost, robustness, and easiness of implementation.
The third objective of the study is present a structured sequence of practical steps to implement SA and
UA, which can be also seen as a framework of sensitivity and uncertainty analysis of hydrological
models. The presented framework we use is quite close to the guidelines and frameworks published
earlier (e.g., [4,13,15,18], which conceptually are also close), and our aim here is not to replace but to
complement them, giving special attention to the performance analysis. Clearly, each individual SA
study has its specifics so it is hardly possible to have a unified framework or procedure that would fit
all possible requirements. Each researcher or practitioner would have a choice of various approaches,
principles, and components to combine and follow in SA, depending on the require depth of analysis
and available resources.

The structure of the paper is as follows. Section 2 gives a detailed introduction and description of
Global Sensitivity Analysis methods. Section 3 presents the methodology and case study of this study
to evaluate GSA methods. The results of the study are shown in Section 4 and followed by discussions
in Section 5. Finally, conclusions are drawn in Section 6.

2. Global Sensitivity Analysis Methods

This section is in no way a detailed presentation of the methods, but rather a brief introduction to
the techniques compared in this study, and to some issues of their implementation. For comprehensive
reviews, please refer to Song et al. [13], and Pianosi et al. [15], and for a relatively recent interesting
insight into the SA problem, to Razavi and Gupta [7,8,14].

2.1. Classification of Global Sensitivity Analysis (GSA) Methods

2.1.1. Generalized (Regionalized) Sensitivity Analysis, and Other Density-Based Methods

Generalized Sensitivity Analysis method (also referred to as Regionalized SA) has gained
popularity in environmental and water-related research in the end of 1970s, especially after the papers
by Spear and Hornberger [19,20] and, to some extent Whitehead and Young [21], and it is also worth
checking the earlier work by Spear [22]. This approach was positioned as a Monte Carlo framework
used for “probabilistic calibration” which aimed at finding regions in parameter space leading sets
of “behavioral” (good) and “non-behavioral” (bad) models (which point at the regions of critical
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uncertainty), rather than aiming at finding one “best” model. Simulation results are split into these
two groups based on their performance (e.g., model error), the Cumulative Distribution Function
(CDF) of each factor is generated for each group, and their difference is analyzed. Typically, the
Kolmogorov–Smirnov statistic [23] is used to compute the discrepancy between these CDFs. GSA
allows for identifying the regions of the model parameter space in which parameters have the significant
effect on the model behaviour. One can see also that GSA, being based on the Mote Carlo framework
and using statistical analysis of outputs, can be also seen as a representative of UA.

One of the drawbacks of RSA is that the results are influenced by the selection of different
thresholds, which undermines its objectivity. To resolve this problem, Wagener et al. [24] presented an
extension of this method. The parameter sets are grouped into ten groups instead of two, based on the
model performance. They are sorted from best to worst, in which the first group produces the best
10% results (e.g., the results with least 10% model error), the second group produces the best 10–20%
results, and so on. Empirical CDFs of the parameters are also plotted for each group, if the curves
are concentrated or overlapped, the parameters are not sensitive, and vice versa. The quantification
of SI can be achieved by computing Kolomogorov–Smirnov statistic, which is the maximum vertical
distance between two eCDFs (empirical CDF). For detailed description and implementation of the
method, please refer to Jakeman et al. [24] and Wagener et al. [25].

RSA belongs to a wider group of methods which explore PDFs or CDFs of the output. Sensitivity
is measured by the comparison of unconditional PDF derived from purely random samples and
conditional PDF derived when prescribing one factor. Entropy-based sensitivity measures [26–28] and
the δ-sensitivity measure [29,30] are implementations of this concept.

The production of empirical PDFs is a crucial step in most of the density-based methods. However,
the derivation of empirical PDFs is either too simple, so that the results may not be accurate, or may
be computationally too complex to implement (for reasons of such complexity, see [9,28]). Recently,
Pianosi and Wagener [9] proposed a novel method called PAWN that partly overcomes this difficulty.
The key idea of PAWN method is to compare the unconditional CDF of output with conditional
CDFs of output which prescribe one parameter at a fixed value (the conditioning value), while others
vary randomly.

2.1.2. Variance-Based Methods

The density-based methods aim at analyzing the output distributions, but often it is enough to
concentrate on some moments only, e.g., on variance. Variance-based methods are today perhaps the
most popular approaches for SA. The underlying assumption of variance-based methods is that the
sensitivity can be measured by the contribution of the factor’s variance (the contribution of the factor
itself, or interactions with two or more factors) to the variance of the output. The biggest advantage
of a variance-based method is that it can compute the main effect and higher-order effect of factors
respectively, and make it distinguishable which factors have high influence on the output on their own,
and which factors have high interaction with others.

It is normally unrealistic to analytically compute the Sensitivity Index because of the complexity
of hydrological models. Instead, Sobol proposed an efficient sample-based approach to compute first
and total-order Sensitivity Indices—called the Sobol method—which is perhaps the most popular
variance-based SA method [31]. A detailed description of the method and its implementation can be
also found in Saltelli et al. [4].

Though the result of the Sobol method is robust, often considered as benchmark run for study, it
is computationally expensive, requiring a large number of base samples. Another popular approach
to numerically compute variance-based Sensitivity Indices is the Fourier Amplitude Sensitivity Test
(FAST), presented by Cukier et al. [32]. The key idea of FAST is applying the ergodic theorem to
transform the n-dimension integral to one-dimension integral. Saltelli and Bolado [33] provide a detailed
description of principles and procedures for implementation of the method. One of the drawbacks of
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the FAST method is that it can only compute the main effect. However, an improved version of FAST,
which is extended FAST (eFAST) [34], can compute first and total order Sensitivity Indices.

2.1.3. Globally Aggregated Measure of Local Sensitivities (GLS) Method

As mentioned in Section 1, the globally aggregated measure of local sensitivities methods use
average value of SA measures (e.g., first-order derivative) at each local sample points in the factor
space as Sensitivity Index for each factor.

Morris [35] proposed an approach which he referred to as Elementary Effects Test (EET) to
compute the sensitivity. It is also called Morris Screening method. Its modification was proposed
by Campolongo et al. [36]. Its principle concept is to use the mean and standard deviations of the
gradients of each sample as the measure of the overall effect and interaction effect of each factor across
the p level factor space. Morris Screening is a simple but effective method, widely used for screening in
hydrological modelling. A more detailed description of the method can be found in Saltelli et al. [4].

Since sampling is time-consuming, it is reasonable to use economical techniques for it, and e.g., van
Griensven et al. [37] employed Latin Hypercube Sampling, followed by assessments of the local error
derivatives at each point “one at a time” (OAT), which they named LH-OAT method. The Sensitivity
Index of each factor is obtained by averaging the derivatives of all perturbed samples.

All GLS methods conceptually are quite simple and their reported implementations typically
do not require large number of runs. However, Razavi and Gupta [14] have pointed out that they
may suffer from scale issue, that is, the selection of the step size may influence the results due to the
complexity of response surface of the model.

2.2. Use of Meta-Modelling to Reduce Running Times of Global Sensitivity Analysis (GSA) Methods

Sampling used in SA requires considerable computational time, for complex models prohibitively
long. The basic idea of meta-modelling is to substitute the original model (and hence its response
function linking factors and model output) with a simpler function or a model. This substitution is
typically done by using statistical or machine (statistical) learning techniques, and employing methods
of the so-called experimental design for generating data by the model runs to be used for training
the meta-model. SA is carried out using the meta-model, and for this, the variance-based method is
mostly used.

Techniques used for this purpose include Radial-basis function network (RBF) [38], multivariate
adaptive regression splines (MARS) [39], support vector machine (SVM) [40], Gaussian processes
(GP) [41] and treed Gaussian processes (TGP) [42]. The advantage of meta-modelling is that by
simplification of the original complex model, the overall running time is considerably decreased; the
trade-off is a possible loss of accuracy.

3. Methodology and Experimental Set-Up

3.1. Methodology for Evaluating SA Methods

3.1.1. The Three Evaluation Criteria

Different SA methods have different concepts and principles behind them, and, accordingly, the
Sensitivity Indices may have different meanings and metrics. However, it would be logical to try to
follow the general principles behind any method for a model (method) evaluation, i.e., effectiveness
and efficiency. The evaluation of SA methods’ effectiveness is aimed at finding out whether the relative
Sensitivity Indices, ranking, and screening of parameters make sense and can be used in SA. Efficiency
of SA methods is assessed by how fast (in terms of computational time) they provide the result: the
lesser number of model runs is required, the more efficient the method is. Therefore, the evaluation of
SA methods efficiency is to figure out the minimum number of runs required for each SA method to
get satisfactory results—and it is not always clear and explicitly defined what “satisfactory” actually
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means. Due to the fact that sampling is employed, there is always uncertainty in the SA results, and in
the values of the Sensitivity Indices calculated depend on the sample size. In order to take into account
the uncertain nature of SA results, the convergence of the SA results should be studied, and this forms
the last aspect of the evaluation of SA methods. It is worth noting that the concepts of efficiency and
convergence are closely related, because more efficient SA methods require fewer model runs and
hence converge faster. The (subtle) difference is in the following: efficiency aims at assessing how fast
the (reliable) SA results become available, while analysis of convergence goes further, to quantification
of uncertainty of SA results (its distribution, or at least the width of the confidence interval).

3.1.2. Evaluation of Effectiveness

The result of SA is not an absolute one and nobody can say what the “correct answer” is. Unlike
assessing the accuracy of a hydrological model, which can be compared with the observation values,
for sensitivity there are no “observations” to be compared with. To start somewhere, we will initially
randomly sample a large number (say, 10,000) parameter (factor) vectors and run the model for
each of them. The RMSE (Root Mean Square Error) of the model output will be plotted against
parameter values as a scatter plot which will provide a rough image of the sensitivity of each parameter.
The preliminary assessment of the sensitivities of each parameter will be treated as a reference. Then
all considered SA methods will be run, and their results will be compared with the reference to assess
their performance. Effectiveness will be evaluated on the three aspects: Sensitivity Indices values,
ranking, and screening.

We realize that constructing a reference this way provides quite a rough estimation of sensitivity,
and this is an inevitable limitation. Therefore, the results of all the methods will be taken into account,
compared, and analyzed to see the differences and similarities between them and not only with
the reference.

3.1.3. Evaluation of Efficiency

For each method, one benchmark test will be run with a considerable size of the base sample set of
10,000. Different base sample sizes will be set for each SA method, to be compared with the results of
its benchmark run. From the results, the minimum base sample size will be found for each SA method
to ensure the effective results in terms of Sensitivity Indices stability and factors ranking.

3.1.4. Evaluation of Convergence

Convergence of Sensitivity Indices will be analyzed by calculating 95% Confidence Intervals and
mean value for increasing sample sizes. To increase the confidence of estimates, bootstrapping (see
e.g., [43]) will be used as well. The following procedure will be employed (adapted from Yang [16]):

1. Generate N samples of parameters as the base sample set.
2. The N base samples are re-sampled B times with replacement, and for each replica, the Sensitivity

Indices are computed, producing B Sensitivity Indices to construct the distribution of them.

From this sampling distribution, statistics of the Sensitivity Indices distribution (95% Confidence
Interval and mean value) is calculated to quantify uncertainty.

3.2. Case Study

The presented methods have been tested on two case studies: Dapoling–Wangjiaba catchment
in China, and the Bagmati catchment located in central Nepal. Due to data limitations issues, not
all experiments with the first case have been finalized, so it is not reported here, and is left for the
future publications.

The Bagmati catchment covers an area of approximately 3700 km2 (see Figure 2). The altitude of
the region varies from 2913 m in the Kathmandu Valley, to Terai Plain, where it reaches the Ganges
River in India, with an altitude of 57 m. The Bagmati River has an extension of about 195 km, flowing
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from Shivapuri to the Ganges River in the south. In this study, focus is put on the part of the basin that
drains to the Pandheradobhan station, with an area of 2900 km2 and river length of 134 km. Solomatine
and Shrestha [44] have used this case study in their paper on using machine learning for predicting
uncertainty of hydrological models.
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Figure 2. Location of the Bagmati catchment. Triangles denote the rainfall stations and circles denote
the discharge gauging stations.

In this study, daily precipitation and air temperature from Kathmandu, Hariharpurgadhi, and
Daman station and daily discharge in Pandheradobhan station from 1 March 1991 to 31 December
1995 are used. The daily average precipitation was assessed using Theissen polygon method and the
potential evapotranspiration is calculated by the modified Penman method recommended by the Food
and Agriculture Organization—FAO [45]. The hydrograph is shown in Figure 3.
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Figure 3. Hydrograph of the Bagmati Catchment from 1 March 1991 to 31 December 1995.

3.3. Test Model

The SA will be tested on three conceptual rainfall-runoff models: GR4J, Hymod, and HBV, with
increasing complexity and the parameters number.

The modèle du Génie Rural (Agricultural Engineering Model) à 4 paramètres Journalier (4 parameters
Daily, GR4J) was developed by Perrin et al. [46]. It uses daily precipitation and evapotranspiration as input
to simulate the runoff discharge. The model structure assumes that after neutralization of precipitation
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by evapotranspiration, a portion of net rainfall goes to production store, where percolation takes place.
The leakage flow, together with the remaining part of the net rainfall, go to routing store, where they are
split into two parts and routed by two unit hydrographs. After exchanging with groundwater, the total
runoff is generated by adding these two parts. The structure of GR4J model is shown in Figure 4. The four
parameters with their meaning and ranges are shown in Table 1.
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Table 1. Description and ranges of parameters in GR4J model.

Parameter Description Unit Lower Bound Upper Bound

X1
Production store: Storage of rainfall in

the surface of soil mm 1 1500

X2

Groundwater exchange coefficient: a
function of groundwater exchange

which influence routing store
mm −10 5

X3
Routing storage: amount of water can be

stored in soil porous mm 1 500

X4
Time peak: the time when the ordinate

peak of flood hydrograph is created day 0.5 4
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The Hymod model, first introduced by Boyle [47] and presented in Wagener et al. [24], has
been used quite widely for rainfall-runoff modelling because of its simplicity. It consists of a simple
rainfall excess model with two parameters and a routing module with three parameters. In the rainfall
excess model, the soil moisture storage capacity is assumed to be variable, described by a distribution
function. The routing module contains two sets of parallel linear reservoirs. Three identical linear
reservoirs account for the fast runoff component and a single linear reservoir accounts for the slow
runoff component. The structure of Hymod model is shown in Figure 5. The name, meaning, and
ranges of the parameters are shown in Table 2.
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Table 2. Description and ranges of parameters in Hymod model.

Parameter Description Unit Lower Bound Upper Bound

SM Maximum soil moisture mm 0 400
BETA Exponential parameter in soil routing - 0 2
ALFA Partitioning factor - 0 1

RS Slow reservoir outflow coefficient - 0 0.1
RF Fast reservoir outflow coefficient - 0.1 1

The HBV (Hidrologiska Bryåns Vattenbalansaldevning) model is a conceptual rainfall-runoff

model widely used in Europe. It was developed by the Swedish Meteorological and Hydrological
Institute [48] and then promoted by Lindström et al. [49] to become the HBV-96 model. In this study,
a simplified version of the HBV-96 model is used. It consists of the three main modules, which is
characterized as tank respectively, with 13 parameters: four of the parameters are related to snow
accumulation and melt module, four with soil moisture accounting module, and five with river routing
and response module. For river routing and response module, two runoff reservoirs are included.
The upper non-linear reservoir accounts for the quick flow and the lower linear reservoir accounts for
the base flow. Since there is little snowfall in the applied case study, the snow accumulation and melt
module are excluded, so only nine parameters will be analyzed. The structure of HBV-96 model is
shown in Figure 6. The name, meaning, and ranges of the parameters are shown in Table 3.
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Table 3. Description and ranges of parameters in HBV model.

Parameter Description Unit Lower Bound Upper Bound

FC Maximum soil moisture content mm 50 500
LP Limit for potential evapotranspiration - 0.3 1

ALFA Response box parameter - 0 4
BETA Exponential parameter in soil moisture - 1 6

K Recession coefficient for upper tank mm/d 0.05 0.5
K4 Recession coefficient for lower tank mm/d 0.01 0.3

PERC Percolation from upper to lower tank mm/d 0 8
CFLUX Maximum value of capillary flow mm/d 0 1

MAXBAS Transfer function parameter d 1 3

3.4. Experimental Set-Up

The experimental set-up is presented in Table 4. The evaluation is done on six SA methods: Sobol,
eFAST, Morris, LH-OAT, RSA, and PAWN. All software is implemented in MATLAB. For Sobol method,
eFAST. Morris screening, RSA, and LH-OAT, the codes are constructed by the first author. For PAWN
method, the codes from the SAFE toolbox [51] are used. In the present study, we follow a widely
adopted approach when instead of studying the sensitivity of the model directly, the sensitivity of the
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model error (deviation from observations) is analyzed instead. For the model error, we use the Root
Mean Squared Error (ERMSE):

ERMSE =

√√
1
n

n∑
t=1

(
Qt

sim −Qt
obs

)2
(2)

where Qt
sim is the simulated model output at time step t, Qt

obs is the observation value at time step t,
n is the number of time steps. To avoid the influences of model initial states, the first three months
(90 time steps) are excluded when computing ERMSE.

One fact that needs to be pointed out is that base sample size is not equal to the number of model
runs. Base sample size is the number of parameter sets sampled, while the actual number of model
runs is normally larger than it. The number of model runs is determined by number of parameters,
base sample size, and the SA method applied. The range of the parameters for sampling are shown in
tables in Section 3.3, and the uniform distribution is assumed for each parameter.

Due to the characteristics of FAST sampling in eFast method, bootstrapping resample is not
applicable, and evaluation of convergence will not be done for eFAST method. The resample size for
other SA methods for evaluation is 100.
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Table 4. Experimental set-up for evaluation of Sensitivity Analysis (SA) methods.

Method Measure Sampling Method Required Number of
Runs

Parameters within
the Method Benchmark Run Number of Base Samples for Evaluation

Sobol Sobol total-order index LHS (k + 2) × N - N = 10,000 N = 100/200/300/500/1000/2000/3000/5000

eFAST FAST total-order index
Fourier Amplitude

Sensitivity Test
(FAST) sampling

K × N Ms = 4
Ncs = 1 N = 10,000 N = 100/200/300/500/1000/2000/3000/5000

Morris Modified mean of Effect
Elementary Morris one at a time (k + 1) × N p = 32

∆ = 0.5161 N = 10000 N = 100/200/300/500/1000/2000/3000/5000

LH-OAT Effect S LHS (k + 1) × N ∆ = 0.05 N = 10000 N = 100/200/300/500/1000/2000/3000/5000
RSA Mean of KS statistics LHS N - N = k × 10000 N = 100/200/300/500/1000/2000/3000/5000

PAWN Max of KS statistics LHS Nu + k × n × Nc -
Nu =500

n =40
Nc = 250

[Nu, n, Nc] =
[30,10,10]/[50,10,20]/[100,15,20]/[100,20,25]/

[200,25,40]/[200,25,80]/[200,30,100]/[500,50,100]

Notes: k is the number of parameters; N is the base sample size, Ms is the number of higher harmonics to be considered; Ncs is the number of search curves; Nu is the number of samples for
constructing unconditional CDFs; n is the number of conditioning values for each parameter, Nc is the number of samples for constructing conditional Cumulative Distribution Functions
(CDFs). By the “benchmark run” we understand an experiment (the run), long enough to ensure convergence and an accurate estimate of sensitivity. For the detailed explanation of the
parameters within each method please refer to the literature referred in Section 2.
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4. Results

4.1. Preliminary Assessment of Sensitivity

The model was run 10,000 times; the scatter plots of the ERMSE against parameters for the three
models are shown in Figures 7–9. From the scatter plot, the relative sensitivity of the parameter can be
seen from the randomness of its distribution (i.e., proximity to the uniform distribution). The more
randomly the RMSEs are distributed, the less sensitive the parameter is.
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In the GR4J model (Figure 7) X4 is shown to be the most influential parameter, followed by X3 and
X2, while X1 seems to be of little influence. X4 is the time when the ordinate peak of flood hydrograph
is created, which actually determines the shape of the hydrograph, so it is no surprise it appears to the
most influential parameter in the model. X1 is the storage of rainfall in the soil surface, which does not
affect the routing process too much, thus it is the least sensitive parameter.

In Hymod model (Figure 8), ALFA, RS, and RF have high influence on RMSE. SM and BETA,
however, seem to be non-influential. This is understandable, because ALFA, RS, and RF control the
fast and slow pathway in flow-routing module which is more important in determining flows, while
SM and BETA only account for soil moisture routine which is less important.

In Figure 9, it can be seen that in HBV model, MAXBAS is obviously the most influential parameter;
FC, ALFA, BETA, and PERC also show a certain degree of sensitivity; LP, K, K4, and CFLUX are
non-influential. The reason is that MAXBAS is the (routing) transfer function parameter which controls
the shape of the hydrograph.

4.2. Effectiveness

Figure 10 shows the results of benchmark runs of each method for three models, and one may see
the following:

1. all the methods identify the same set of sensitive parameters (X3 and X4 for GR4J, ALFA, RS, and
RF for Hymod, MAXBAS for HBV);

2. for less influential or non-influential parameters, different methods show relatively large
discrepancy in results;

3. the results of Sobol and eFAST are close, and it is also so for Morris and LH-OAT, RSA and PAWN,
which indicates that the methods of the same category have similar results. This is due to the
reason that both Sobol and FAST are variance-based methods, they all calculate the contribution
of the variance to the output. Both Morris and LH-OAT compute the first-order partial derivatives
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of the output. Similarly, RSA and PAWN use empirical CDFs and KS statistics to quantify the
sensitivity. These groups of methods share the same principle;

4. comparatively, the results of RSA and PAWN are always quite different from other methods. There
may be two reasons: firstly, the generation of empirical CDFs may be inaccurate; secondly, the
use of KS statistics to compute Sensitivity Index in both methods may also bring inaccuracy into
the results (sensitivity to sampling) because KS statistics takes into account only the maximum
difference between CDFs;

5. ranking of parameters for the three models by different SA methods has many differences, but
they are quite close in identifying sensitive and insensitive parameters, which means they are
effective in screening.

In general, it can be said that all six methods are effective in computing SI. The results of RSA and
(to a smaller extent) PAWN are to be treated with care because they use the (sensitive) KS statistics based
only on the maximum difference in CDFs between the behavioral and non-behavioral models’ sets.
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4.3. Efficiency

Figure 11 demonstrates the results of six SA methods for the three models for different number of
runs. The minimum number of runs needed to get stable ranking of the parameters can be found in
Table 5. As can be seen, among all the methods, Morris and LH-OAT converge quickly and are very
stable across all numbers of run: they can get reliable SI and ranking at a very small number of runs
(100 base sample for each model for both methods). eFAST is also quite stable, and it can get reliable
results after approximately 300 base sample size. Comparing eFAST with Sobol method, it can be
concluded that eFAST is more stable and more reliable (note also that at some point Sobol method
results even in negative SI). RSA and PAWN are not very efficient, for the reason already stated in
the previous section. RSA performs better than PAWN, especially for GR4J and Hymod model, for it
can get stable SI at early runs. For PAWN method, the minimum number of runs to obtain reliable
results is larger than for the other methods, and the reason is that it needs sufficiently large number of
samples to create smooth eCDFs. Besides this, the sample size of the conditioning values will affect
the conditional eCDFs. It also needs sufficient number of samples of conditioning values to cover the
factor space well: this results in high computational cost since for each conditioning value k*Nc runs
of the model are needed.

For all methods, it can be seen that with the increase of the model complexity and number of
parameters, the results of SA become less stable. Especially for HBV model, except MAXBAS, all other
parameters seem to be of similar sensitivity, therefore there is a considerable fluctuation in results. This
can also be seen in GR4J and Hymod in which parameters have similar sensitivity (X1 and X3 for GR4J,
SM, and BETA for Hymod).

4.4. Convergence

Figure 12 presents the estimates of the mean and the 95% Confidence Interval of all SA methods
for three models with different number of runs. Overall, with increasing number of runs, the width
of CI become narrower and have less and less variation. There are still differences in the width of
CI and speed of convergence between the methods. It can be seen that Morris, LH-OAT, and RSA
converge well already at early runs, and the width of CI are quite narrow across all runs. PAWN
method converges comparatively slower and the width of CI is also wider. Sobol method is slowest,
especially at small number of runs. The upper and lower bound of SI significantly exceed the range 0
to 1, which is quite unacceptable.

For all methods, similar conclusions as in efficiency can be drawn that with the increase of the
model complexity and number of parameters, the uncertainty of SA also goes up. This increase of
uncertainty also results in unstable results when the sensitivities of the parameters are close as shown
in results of efficiency.

From the results shown above, it is proven that all six methods are effective in calculating
Sensitivity Indices, screening, and ranking. Their efficiencies, however, differ. The minimum number
of runs for computing Sensitivity Indices, ranking, and reaching convergence with each method are
presented in Table 5.

In general, it takes many more runs to reach convergence, but many less runs are sufficient to
obtain reliable ranking of the parameters. The Sobol method requires a large number of runs to be stable
and reach convergence, which is very inefficient. Same as the variance-based method, eFAST method
is much more efficient and stable. It is a good alternative for Sobol method with high efficiency. Morris
and LH-OAT are also quite efficient and can provide results of ranking after relatively small number of
runs. Also, the uncertainties of the values of Sensitivity Indices are not so high, and especially they are
good at ranking and screening. The density-based methods, however, need sufficient number of runs
to produce reliable eCDFs, and thus the efficiency is not so high. Furthermore, using KS statistics to
compute Sensitivity Indices may be problematic for some types of distributions. Comparing RSA with
PAWN, one can see that RSA performs better, especially for ranking, however, due to its design, it
provides less detailed analysis of sensitivity.
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Table 5. Minimum number of runs for computing Sensitivity Indices, ranking and reaching convergence
for different Sensitivity Analysis (SA) method.

Method
Minimum Number of Run for GR4J Minimum Number of Run for Hymod Minimum Number of Run for HBV

Sensitivity
Index (SI) Rank Conver-Gence SI Rank Conver-Gence SI Rank Conve-Gence

Sobol 15,000 6000 60,000 35,000 2100 70,000 11,000 22,000 110,000
eFAST 1188 388 - 2485 485 - 8937 8937 -
Morris 1000 500 10,000 1200 600 18,000 5000 2000 20,000

LH-OAT 1000 500 10,000 1200 600 18,000 5000 5000 20,000
RSA 4000 400 8000 2500 500 15,000 10,000 10,000 30,000

PAWN 12,200 8200 40,500 15,200 10,200 50,500 18,200 9200 100,500Water 2019, 11, x FOR PEER REVIEW 19 of 26 
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5. Discussion and Recommendations

5.1. Different Methods Are Based on Different Concepts

From the results above, we can see that different methods show different performances in
computing SI, ranking, and convergence. One of the reasons is that there are different theories,
concepts, and principles behind each method, and methods of the same category (sharing similar
principles) show similar results. Comparing their performance within each category, it can be seen
that GLS methods have the highest efficiency and fastest convergence speed. Variance-based and
density-based methods perform less well. GLS methods use first-moments to compute SI, and the
principles they use are relatively simple. Therefore, the propagation of the uncertainty in the SA is
also simpler and more direct. Variance-based methods, however, with much more complex principles,
result in higher uncertainty in SA. On the other hand, density-based methods may suffer from the
necessity to produce reliable and accurate eCDFs, and the fact that they use K-S statistics to compute
SI. As a result, they are highly unstable and uncertain. RSA performs better than PAWN, owing to its
relative idea (dividing the factor vectors into only two or several sets).

Although variance-based methods seem to be less efficient in computational cost, they use
more sophisticated mathematical and statistical apparatus and quantify sensitivity most accurately.
Comparatively, GLS methods use only the first derivatives to compute SI, which is of course carries less
information (and we can say, less accurate). Density-based methods are moment-independent, they
do not need complex equations or computation to get SI, but their strength in quantifying sensitivity
is problematic, as stated earlier. Generally speaking, the efficiency and depth of quantification are
in inverse relationship. To obtain greater degree of quantification, it takes more model runs, and
aiming to reach higher efficiency will lead to inevitable sacrifices in accuracy and reliability of the
results. The method that best balances these two aspects seems to be the eFAST method. It uses
variance to quantify the sensitivities, and at the same time, requires much smaller number of runs than
Sobol method.

Another aspect to be mentioned is the easiness of the methods’ implementation and their
integration with (hydrological) models. If the method is too difficult to implement and integrate with
the already existing and operational models, its use may be quite limited. This is especially true for
distributed models, when sampling may be required at every grid cell, so it is not realistic to use too
complex sampling methods, such as in eFAST. In these situations, methods with very simple principles
like RSA and LH-OAT are more suitable.

Density-based methods seem attractive due to their simplicity, but they have two problems. On
the one hand, the reliability of eCDF produced is questionable. On the other hand, the use of the
Kolomogorov–Smirnov statistic to compute the Sensitivity Indices, unstable by design, may lead to
slow convergence. However, they have two advantages: first, they are moment independent methods,
which do not need complicated computational process; second, the results of SA can be expressed in
graphs which provide yet another instrument for analysis. One of the ideas that can be explored is to
quantify the results not by K-S statistics, which is the maximum difference between the two eCDFs, but
to consider an integral difference (the area between two CDFs).

5.2. Recommendations for Choosing Sensitivity Analysis (SA) Methods

Based on the experiments and considerations presented above, we can formulate the following
recommendations for choosing SA method(s):

• For simple conceptual hydrological models (not requiring much time for running them multiple
times), variance-based methods as Sobol and eFAST are recommended, because they have a strong
theoretical background and provide more insight into sensitivity.

• For more complex hydrological or hydraulic models that need considerable time to run, GLS
methods can be used, since they are more efficient.
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• For distributed models, methods with simple concepts and sampling techniques are more suitable,
such as RSA and LH-OAT.

• For very complex models, e.g., 2D (or even 3D) models, like flood inundation models, or high
resolution groundwater models of large aquifers, the Local SA instead of Global SA can be
used [52], or LSA at a selected limited number of points in the factor (sub)space, for a reduced
number of factors.

• In situations when only relative sensitivity of the factors is needed, rather than the exact value of
SI, it is advisable to aim only at determining ranking or screening of SA, which needs significantly
less time than the calculation of global SI.

• If time allows, it is recommended, however, to employ several different SA methods rather than
using only one method.

5.3. Practical Framework, with the Focus on Performance Analysis

It is always useful to structure the employed sequence of steps of SA, and it is done by presenting
the diagram on Figure 13. The steps in this framework are quite standard for most of SA studies, in are
not very different from the framework for SA published earlier, but with the focus on the analysis of
effectiveness, efficiency, and convergence of the used method(s), and a link to UA. We consider both
SA and UA to be important and connected phases of model analysis, both focusing on certain aspects
of model uncertainty, so it is reasonable to bring them together under one framework.

This framework assumes the model is already calibrated (as is also done in many applications of
SA), however, it is also applicable to uncalibrated models for choosing a (limited) set of the (sensitive)
parameters to calibrate which can improve the efficiency of calibration process.

In case there it is possible to employ several methods, we can suggest selecting one method
from each category: variance-based methods, methods aggregating the local sensitivity measures,
and density-based ones; the overall judgement about sensitivity will then be better informed. If time
does not allow for a large number of runs, Local Sensitivity Analysis method can also be used for the
calibrated or observed values of the factors.

It is also recommended to first start with a small number of sample size, and then gradually
increasing the sample size until the Sensitivity Indices or ranking converges or stabilizes. (This seems
to be trivial, but analysis of literature shows that is not always followed, and of course it becomes
important for complex models.) The stopping criteria may vary and can be also subjective, depending
on the requirement of accuracy or computational limitations; there is a balance between the accuracy
of the results and the efficiency to obtain these results.

5.4. Limitations

There are at least the following limitations of this work, which may lead also to the future
research efforts:

1. The models used in this study are only conceptual rainfall-runoff models with similar structures,
so the results may be different for other types of models.

2. Evaluations of SA methods are still qualitative, so to evaluate each aspect of SA methods some
more rigorous quantitative standard should be set. For example, when evaluating convergence, a
threshold of the CI width should be defined for reaching convergence. Quantitative assessment
will strengthen the conclusions of the comparisons.

3. Only one performance metric (RMSE) is used in this study. Parameters that is not sensitive to
RMSE may affect other metrics. Various performance metrics which capture different features of
model behavior should be used in the future study.
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6. Conclusions

SA and UA are important steps for better understanding and evaluation of hydrological models.
For complex hydrological models, sample-based SA methods are often used. In this study, six different
Global Sensitivity Analysis methods: Sobol, FAST, Morris, LH-OAT, RSA, and PAWN are tested on
the three conceptual rainfall-runoff models: GR4J, Hymod, and HBV, with increasing complexity and
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the number of parameters. The methods are compared according to the three criteria: effectiveness,
efficiency, and convergence.

The results of each method are not exactly identical, but still similar to each other. All of the
methods are proven to be effective. Methods from the same category show similar results as they
are based on similar principles. The credibility of density-based methods is slightly undermined
for two reasons: first, the reliability of eCDF produced may not be always high; second, the use of
Kolomogorov–Smirnov statistic to compute the Sensitivity Indices lead to slow convergence.

The evaluation of each method’s efficiency demonstrates that GLS methods, such as Morris
and LH-OAT, are very efficient and stable in computing SI and ranking. Sobol method can provide
quantitative results of SA, but it requires a large number of runs to obtain stable results. eFAST is much
more stable and efficient than Sobol, thus it may be seen as a good alternative for the Sobol method.
The efficiency of density-based methods is not so high, but RSA can give reliable results of ranking
with small number of runs.

All the methods need significant number of runs (>8000) to reach convergence. The uncertainty in
the values of Sensitivity Indices is not negligible. One should be careful when interpreting the results
if the number of samples is not sufficiently large.

The difference in efficiency of different methods may be due to the difference in the underlying
principles. Methods based on simple concepts are more efficient and stable. Methods based on the
more complex concept seem to be less stable and efficient, however, their quantification of sensitivity
is more accurate and reliable.

The presented recommendation for choosing SA methods, and the framework for SA and UA
based on effectiveness, efficiency and convergence, as well as ease of integration with the models, add
to other useful SA frameworks (workflows) (e.g., Pianosi et al., 2016 [15]), and may be of assistance for
practitioners assessing reliability of their models.

Future work will be aimed at considering more SA methods (the first candidate being VARS [7,8]),
developing quantitative and more informed measures for their assessment, and testing the results and
recommendations against other types of models and scenarios of their practical use.

One possible avenue that can be explored further is the “multi-model approach”, which is being
successfully used in modelling and especially in machine learning, and which was suggested by one of
reviewers of an earlier version of this paper (T. Wagener) for SA: several methods can be combined
and thus potentially lead to an aggregated and perhaps more stable estimate of sensitivity. At the same
time, combining methods based on different notions of sensitivity would need clear definition what
type of sensitivity is then explored.

In terms of technical improvements, for calibration, SA and UA of computationally complex
models, it would be useful to better aggregate the algorithms using sampling for the mentioned three
stages—to be able to keep the executed model runs in one common database and smartly reuse them
at various stages.

Author Contributions: Conceptualization, A.W. and D.P.S.; methodology and experimental set-up, A.W. and
D.P.S.; software, A.W.; validation, A.W. and D.P.S.; formal analysis, A.W.; investigation, A.W.; resources, D.P.S.;
data curation, A.W.; writing—original draft preparation, A.W.; writing—review and editing, D.P.S.; visualization,
A.W.; supervision, D.P.S.; project administration, D.P.S.; funding acquisition, D.P.S.

Funding: This research was partly funded by the Russian Science Foundation, grant No. 17-77-30006, and
Hydroinformatics research fund of IHE Delft.

Acknowledgments: The authors are grateful to the Dutch Ministry of Infrastructure and Environment for
providing financial support for the first author when she followed the Master programme in Water Science and
Engineering (specialization in Hydroinformatics) at the IHE Delft Institute for Water Education. The initial version
of this manuscript was published as a preprint in HESS Discussions in 2018, and authors acknowledge the useful
comments and suggestions of the referees.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2019, 11, 1062 24 of 26

References

1. Cacuci, D.G.; Ionescu-Bujor, M. A comparative review of sensitivity and uncertainty analysis of large-scale
systems—II: Statistical methods. Nucl. Sci. Eng. 2004, 147, 204–217. [CrossRef]

2. Pappenberger, F.; Beven, K.J. Ignorance is bliss: Or seven reasons not to use uncertainty analysis.
Water Resour. Res. 2006, 42, 1–8. [CrossRef]

3. Tong, C. Refinement strategies for stratified sampling methods. Reliab. Eng. Syst. Saf. 2006, 91, 1257–1265.
[CrossRef]

4. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global
Sensitivity Analysis: The primer; Wiley Online Library: Chichester, UK, 2008; ISBN 978-0-470-05997-5.

5. Bastin, L.; Cornford, D.; Jones, R.; Heuvelink, G.B.M.; Pebesma, E.; Stasch, C.; Nativi, S.; Mazzetti, P.;
Williams, M. Managing uncertainty in integrated environmental modelling: The UncertWeb framework.
Environ. Model. Softw. 2013, 39, 116–134. [CrossRef]

6. Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling; Springer: New York, NY, USA, 2009;
ISBN 978-0-387-78164-8.

7. Razavi, S.; Gupta, H.V. A new framework for comprehensive, robust, and efficient global sensitivity analysis:
1. Theory. Water Resour. Res. 2016, 52, 423–439. [CrossRef]

8. Razavi, S.; Gupta, H.V. A new framework for comprehensive, robust, and efficient global sensitivity analysis:
2. Application. Water Resour. Res. 2016, 52, 440–455. [CrossRef]

9. Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative
distribution functions. Environ. Model. Softw. 2015, 67, 1–11. [CrossRef]

10. Tang, Y.; Reed, P.; Van Werkhoven, K.; Wagener, T. Advancing the identification and evaluation of distributed
rainfall-runoff models using global sensitivity analysis. Water Resour. Res. 2007, 43, 1–14. [CrossRef]

11. Pappenberger, F.; Beven, K.J.; Ratto, M.; Matgen, P. Multi-method global sensitivity analysis of flood
inundation models. Adv. Water Resour. 2008, 31, 1–14. [CrossRef]

12. Gan, Y.; Duan, Q.; Gong, W.; Tong, C.; Sun, Y.; Chu, W.; Ye, A.; Miao, C.; Di, Z. A comprehensive evaluation
of various sensitivity analysis methods: A case study with a hydrological model. Environ. Model. Softw.
2014, 51, 269–285. [CrossRef]

13. Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global sensitivity analysis in hydrological modeling:
Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757.
[CrossRef]

14. Razavi, S.; Gupta, H.V. What do we mean by sensitivity analysis? The need for comprehensive characterization
of “global” sensitivity in Earth and Environmental systems models. Water Resour. Res. 2015, 51, 3070–3092.
[CrossRef]

15. Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis
of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79,
214–232. [CrossRef]

16. Yang, J. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Model. Softw.
2011, 26, 444–457. [CrossRef]

17. Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and
validation. Environ. Model. Softw. 2016, 79, 135–152. [CrossRef]

18. Baroni, G.; Tarantola, S. A General Probabilistic Framework for uncertainty and global sensitivity analysis of
deterministic models: A hydrological case study. Environ. Model. Softw. 2014, 51, 26–34. [CrossRef]

19. Spear, R.C.; Hornberger, G.M. Eutrophication in peel inlet—II. Identification of critical uncertainties via
generalized sensitivity analysis. Water Resour. Res. 1980, 14, 43–49. [CrossRef]

20. Hornberger, G.M.; Spear, R.C. Approach to the preliminary analysis of environmental systems. J. Environ. Mgmt.
1981, 12, 7–18.

21. Whitehead, P.; Young, P.C. Water quality in river systems: Monte Carlo analysis. Water Resour. Res. 1979, 15,
451–459. [CrossRef]

22. Spear, R.C. The application of Kolmogorov–Rényi statistics to problems of parameter uncertainty in systems
design. Int. J. Control 1970, 11, 771–778. [CrossRef]

23. Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78.
[CrossRef]

http://dx.doi.org/10.13182/04-54CR
http://dx.doi.org/10.1029/2005WR004820
http://dx.doi.org/10.1016/j.ress.2005.11.027
http://dx.doi.org/10.1016/j.envsoft.2012.02.008
http://dx.doi.org/10.1002/2015WR017558
http://dx.doi.org/10.1002/2015WR017559
http://dx.doi.org/10.1016/j.envsoft.2015.01.004
http://dx.doi.org/10.1029/2006WR005813
http://dx.doi.org/10.1016/j.advwatres.2007.04.009
http://dx.doi.org/10.1016/j.envsoft.2013.09.031
http://dx.doi.org/10.1016/j.jhydrol.2015.02.013
http://dx.doi.org/10.1002/2014WR016527
http://dx.doi.org/10.1016/j.envsoft.2016.02.008
http://dx.doi.org/10.1016/j.envsoft.2010.10.007
http://dx.doi.org/10.1016/j.envsoft.2016.02.005
http://dx.doi.org/10.1016/j.envsoft.2013.09.022
http://dx.doi.org/10.1016/0043-1354(80)90040-8
http://dx.doi.org/10.1029/WR015i002p00451
http://dx.doi.org/10.1080/00207177008905958
http://dx.doi.org/10.1080/01621459.1951.10500769


Water 2019, 11, 1062 25 of 26

24. Jakeman, A.J.; Ghassemi, F.; Dietrich, C.R. Calibration and reliability of an aquifer system model using
generalized sensitivity analysis. In Proceedings of the ModelCARE 90, The Hague, The Netherlands, 3–6
September 1990; pp. 43–51.

25. Wagener, T.; Boyle, D.P.; Lees, M.J.; Wheater, H.S.; Gupta, H.V.; Sorooshian, S. A framework for development
and application of hydrological models. Hydrol. Earth Syst. Sci. 2001, 5, 13–26. [CrossRef]

26. Park, C.; Ahn, K. A new approach for measuring uncertainty importance and distributional sensitivity in
probablistic safety assessment. Reliab. Eng. Syst. Saf. 1994, 46, 253–261. [CrossRef]

27. Krykacz-Hausmann, B. Epistemic sensitivity analysis based on the concept of entropy. In Proceedings of
the International Symposium on Sensitivity Analysis of Model Output, Madrid, Spain, 18–20 June 2001;
pp. 31–35.

28. Liu, H.; Sudjianto, A.; Chen, W. Relative entropy based method for probabilistic sensitivity analysis in
engineering design. J. Mech. Des. 2006, 128, 326–336. [CrossRef]

29. Borgonovo, E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 2007, 92, 771–784. [CrossRef]
30. Plischke, E.; Borgonovo, E.; Smith, C.L. Global sensitivity measures from given data. Eur. J. Oper. Res. 2013,

226, 536–550. [CrossRef]
31. Sobol’, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1,

407–414.
32. Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.K. Study of the sensitivity of coupled

reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 1973, 59, 3873–3878. [CrossRef]
33. Saltelli, A.; Bolado, R. An alternative way to compute Fourier amplitude sensitivity test (FAST). Comput. Stat.

Data Anal. 1998, 26, 445–460. [CrossRef]
34. Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis

of model output. Technometrics 1999, 41, 39–56. [CrossRef]
35. Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33,

161–174. [CrossRef]
36. Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models.

Environ. Model. Softw. 2007, 22, 1509–1518. [CrossRef]
37. van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Sirinivasan, R. A global sensitivity

analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [CrossRef]
38. Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks;

Royal Signals and Radar Establishment Malvern: London, UK, 1988.
39. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
40. Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [CrossRef]
41. Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning; Bousquet, O.,

von Luxburg, U., Ratsch, G., Eds.; Springer: Berlin, Germany, 2004; pp. 63–71. ISBN 3-540-23122-6.
42. Gramacy, R.B.; Lee, H.K.H. Bayesian treed Gaussian process models with an application to computer

modeling. J. Am. Stat. Assoc. 2008, 103, 1119–1130. [CrossRef]
43. Efron, B.; Tibshirani, R. Bootstrap methods for standard error, Confidence Intervals, and other measures of

statistical accuracy. Stat. Sci. 1986, 1, 45–77. [CrossRef]
44. Solomatine, D.P.; Shrestha, D.L. A novel method to estimate model uncertainty using machine learning

techniques. Water Resour. Res. 2009, 45. [CrossRef]
45. Allen, R.G. Crop evapotranspiration-Guidelines for computing crop water requirements. Irrig. Drain 1998,

56, 300.
46. Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation.

J. Hydrol. 2003, 279, 275–289. [CrossRef]
47. Boyle, D. Multicriteria Calibration of Hydrological Models. Ph.D. Thesis, Department of Hydrology and

Water Resources, University of Arizona, Tucson, AZ, USA, 2001.
48. Bergström, S. Development and Application of a Conceptual RunoffModel for Scandinavian Catchments; Department

of Water Resources Engineering, Lund Institute of Technology, University of Lund: Norrköping, Sweden, 1976.
49. Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed

HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [CrossRef]
50. The James Hutton Institute. The HBV Model. Available online: http://macaulay.webarchive.hutton.ac.uk/

hydalp/private/demonstrator_v2.0/models/hbv.html#History (accessed on 15 May 2019).

http://dx.doi.org/10.5194/hess-5-13-2001
http://dx.doi.org/10.1016/0951-8320(94)90119-8
http://dx.doi.org/10.1115/1.2159025
http://dx.doi.org/10.1016/j.ress.2006.04.015
http://dx.doi.org/10.1016/j.ejor.2012.11.047
http://dx.doi.org/10.1063/1.1680571
http://dx.doi.org/10.1016/S0167-9473(97)00043-1
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1016/j.envsoft.2006.10.004
http://dx.doi.org/10.1016/j.jhydrol.2005.09.008
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1198/016214508000000689
http://dx.doi.org/10.1214/ss/1177013815
http://dx.doi.org/10.1029/2008WR006839
http://dx.doi.org/10.1016/S0022-1694(03)00225-7
http://dx.doi.org/10.1016/S0022-1694(97)00041-3
http://macaulay.webarchive.hutton.ac.uk/hydalp/private/demonstrator_v2.0/models/hbv.html#History
http://macaulay.webarchive.hutton.ac.uk/hydalp/private/demonstrator_v2.0/models/hbv.html#History


Water 2019, 11, 1062 26 of 26

51. Pianosi, F.; Sarrazin, F.; Wagener, T. A MATLAB toolbox for global sensitivity analysis. Environ. Model. Softw.
2015, 70, 80–85. [CrossRef]

52. Hill, M.C.; Tiedeman, C.R. Effective Calibration of Groundwater Models, with Analysis of Data, Sensitivities,
Prediction, and Uncertainty; John Wiley: New York, NY, USA, 2007.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.envsoft.2015.04.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Global Sensitivity Analysis Methods 
	Classification of Global Sensitivity Analysis (GSA) Methods 
	Generalized (Regionalized) Sensitivity Analysis, and Other Density-Based Methods 
	Variance-Based Methods 
	Globally Aggregated Measure of Local Sensitivities (GLS) Method 

	Use of Meta-Modelling to Reduce Running Times of Global Sensitivity Analysis (GSA) Methods 

	Methodology and Experimental Set-Up 
	Methodology for Evaluating SA Methods 
	The Three Evaluation Criteria 
	Evaluation of Effectiveness 
	Evaluation of Efficiency 
	Evaluation of Convergence 

	Case Study 
	Test Model 
	Experimental Set-Up 

	Results 
	Preliminary Assessment of Sensitivity 
	Effectiveness 
	Efficiency 
	Convergence 

	Discussion and Recommendations 
	Different Methods Are Based on Different Concepts 
	Recommendations for Choosing Sensitivity Analysis (SA) Methods 
	Practical Framework, with the Focus on Performance Analysis 
	Limitations 

	Conclusions 
	References

