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Abstract: The Standardized Precipitation Evapotranspiration Index (SPEI) is widely used for
climatological and hydrological studies, in which the estimation of potential evapotranspiration (PET)
is of great importance. As many different models exist in estimating PET, the question that arises is in
which way the selection of the PET model affects the calculated SPEI and the drought assessment.
This study, on the basis of evaluating drought conditions over the Hexi Inland River Basin in China
with long-term climate data of 18 stations by using SPEI, compared three types and eight kinds
different PET models with respect to their sensitivity to the calculation of SPEI, and to drought events
and drought characteristics. The results showed that the study area experienced a drying trend over
the past 56 years, and the extreme drought events occurred more frequently after 2000 as a whole. All
the investigated PET models were sensitive to the estimation of SPEI and to the drought assessment.
When considering the alternatives of the Thornthwaite model in the calculation of SPEI for drought
identification, the Blaney–Criddle equation among the temperature-based models and the Makkink
equation among the radiation-based models are recommended due to the comparable results in
determining the drought trends, drought events, and drought characteristics.

Keywords: SPEI; potential evapotranspiration; sensitivity; Hexi Inland River Basin

1. Introduction

Drought is one of the major natural disasters in human history, and its catastrophic consequences
are still innumerable even with current highly developed science and technology. Generally speaking,
drought is usually divided into these categories: Meteorological drought, hydrological drought,
agricultural drought, and socio-economic drought [1–3]. Among these types, meteorological drought
is usually the basis for the other three types of droughts. When the meteorological drought persists
for a period of time, other types of droughts occur with corresponding consequences. Therefore,
timely meteorological drought monitoring is essential for early warning and risk management of water
resources and agricultural production [4]. Furthermore, drought assessment is of great importance
for water resource planning and management [5], and it can help governments to develop a more
proactive approach to drought management and planning [6], especially for regions prone to drought.

The trend of aridization has become a global concern [7], especially for drought-prone regions.
The Hexi Inland River Basin is located in the northwest of China. Due to its geographical location,
its climate is typically continentally arid with little precipitation. It is a drought prone region due
to the shortage of water resources. Some of the drought events in its history include the drought
that spanned during 1960–1963 and 1980–1990. The 1995–2000 drought that followed also became
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one of the most notable natural hazardous events the basin had ever encountered. Sandstorms that
result from droughts also cannot be ignored. A large-scale strong sandstorm occurred in May 1993 for
example, causing considerable casualties and economic losses in the basin. The occurrence of heavy
sandstorms increased to more than 20 times in the 1990s from five times in the 1950s [8]. Drought
assessment in the basin can not only provide support for drought mitigation and drought management
and planning, but also is of great importance for local water resource allocation and management to
maintain a favorable ecological environment.

Various drought indices have been used to understand meteorological drought, such as
percent normal or deciles of precipitation [9], Multivariate Standardized Drought Index (MSDI) [10],
Standardized Soil Moisture Index (SSMI) [10], Palmer Drought Severity Index (PDSI) [11], Standardized
Precipitation Index (SPI) [12], and Standardized Precipitation Evapotranspiration Index (SPEI) [13],
etc. The most commonly used meteorological drought index is SPEI which combines the sensitivity
of PDSI to changes in evaporation demand and the multi-temporal nature of the SPI [13]. Although
this index requires only climatological information without assumptions about the characteristics of
the underlying system, it is more useful and has been widely used for climate change studies due its
consideration of information about temperature [14–17]. It also has been proved to be particularly
suitable for detecting, monitoring, and exploring the consequences of global warming on drought
conditions [18–22].

The SPEI is designed to take into account both precipitation and potential evapotranspiration
(PET) data in determining drought [13]. Thus, the derivation of PET data is of great importance in the
estimation of SPEI. Vicente-Serrano et al. [13] originally suggested the use of the simple Thornthwaite
(TH) [23] equation for the estimation of PET, which only requires mean daily temperature and
latitude of the site, whilst the variables affecting PET such as wind speed, surface humidity, and solar
radiation are not accounted for. Many scholars like Donohue et al. [24], Van der Schrier et al. [25],
and Sheffield et al. [26] found that in some cases the PET value cannot be accurately estimated by
using the TH equation, underestimated in arid and semiarid regions, and overestimated in humid
and tropical regions [27,28]. Some scholars suggest that a more sophisticated method to calculate
PET is often preferred in order to make a more complete accounting of drought variability in cases
where more data are available [29,30]. Yuan and Quiring [31] estimated the PET by using three models:
Penman–Monteith equation, the two-source PET equation, and the TH equation in calculating the
Palmer Drought Severity Index and then evaluated how PET affected the drought conditions of the
Great Plains from 1980 to 2012. Zhang et al. [32] also investigated the sensitivity of the above three
models in drought monitoring by using SPEI. Although the issue of using different evapotranspiration
models has been evaluated and suggested in many previous studies of estimating drought index,
there is still much disagreement on the selection of PET models due to various study areas and study
purposes [33–35]. Hence, more research is still needed to enrich the related results, especially on
local scales.

The objectives of this paper are firstly to evaluate the drought conditions in the Hexi Inland River
Basin in China with SPEI, employing the TH equation for PET calculation, and then examining the
sensitivities of different PET models to SPEI and to drought assessments. The study period spanned
from 1960 to 2015. The study tried to find in which way the selection of PET model affected the
calculated SPEI and the drought assessments. In particular, as many as three types and eight kinds of
PET models were employed, including four temperature-based models, Thornthwaite, Blaney–Criddle,
Hamon and Szász, two radiation-based models of Makkink and Priestley–Taylor, and two combination
models of Penman and Penman–Monteith for comparative analysis.
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2. Study Area and Methods

2.1. Study Area and Data Description

The Hexi Inland River Basin (HIRB) is located in the northwest of China, covering an area of
approximately 27.11× 104 km2, within the range of 37◦17’–42◦48’ N and 93◦23’–104◦12’ E. It has a typical
continental arid climate with an annual mean precipitation of 248 mm, gradually decreasing from east
to west. The annual mean temperature over the basin is 5.8 ◦C, increasing from the mountainous to
the plain, with strong evaporation that amounts to 1095 mm on average. Both the temperature and
the evaporation show great differences between day and night. The whole basin is divided into three
major river basins: the Shiyang River Basin (SYRB), Heihe River Basin (HRB), and Shule River Basin
(SLRB) from east to west.

There are 23 national meteorological stations over the study area in total, with some of the stations
missing data. Whilst considering the data integrity and data quality, 18 stations within a 56-year
period (from 1960 to 2015) were selected, in which five of them (Wushaoling (WSL), Yongchang (YC),
Wuwei (WW), Alashanyouqi (ALSYQ), Minqin (MQ)) are located in SYRB. Nine (Tuole (TL), Yeniugou
(YNG), Qilian (QL), Shandan (SD), Zhangye (ZY), Jiuquan (JQ), Gaotai (GT), Dingxin (DX), Ejinaqi
(EJNQ)) are located in HRB, and four (Mazongshan (MZS), Yumenzhen (YMZ), Anxi (AX), Dunhuang
(DH)) in SLRB. The locations of the meteorological stations are shown in Figure 1. The daily observed
datasets consisting of temperature, precipitation, relative humidity, wind speed, and sunshine hours
are freely available from the China Meteorological Data Network (https://data.cma.cn/). The detailed
information of the selected stations is shown in Table 1. Figure 2 shows the time-series of 12-month
areal annual precipitation (in blue) and the annual mean temperature (in red) over the HIRB for the last
56 years. The areal precipitation and temperature were calculated by using arithmetic average method.
According to Figure 2, there have been comparatively small fluctuations without clear trends in areal
annual precipitation, while substantial climate warming presented with the areal annual temperature
increased by 1.51 ◦C from 1960 to 2015. The precipitation and temperature patterns over the study area
play important roles in the occurrence of droughts.
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Figure 1. The locations of the meteorological stations in the Hexi Inland River Basin in China.
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Table 1. Climate and geographical characteristics of the stations used in the study during 1960–2015.

No. Basin Station Longitude Latitude Elevation (mm) Annual
Precipitation (mm)

Annual Mean
Temperature (◦C)

1

Shiyang River Basin
(SYRB)

Wushaoling (WSL) 102.52 37.12 3045.1 403.5 1.28
2 Yongchang (YC) 101.56 38.13 1976.9 199.6 5.14
3 Wuwei (WW) 102.40 37.55 1531.5 166.0 8.26
4 Alashanyouqi (ALSYQ) 101.41 39.13 1510.1 117.8 8.88
5 Minqin (MQ) 103.05 38.38 1367.5 114.1 8.45

6

Heihe River Basin
(HRB)

Tuole (TL) 98.25 38.48 3367.0 298.0 −2.54
7 Yeniugou (YNG) 99.36 38.26 3320.0 417.5 −2.84
8 Qilian (QL) 100.15 38.11 2787.4 409.3 1.13
9 Shandan (SD) 101.05 38.48 1764.6 200.6 6.55
10 Zhangye (ZY) 100.17 39.05 1482.7 127.8 7.48
11 Jiuquan(JQ) 98.29 39.46 1477.2 86.3 7.56
12 Gaotai (GT) 99.50 39.22 1332.2 107.8 7.93
13 Dingxin (DX) 99.31 40.18 1177.4 55.2 8.47
14 Erjinaqi (EJNQ) 101.04 41.57 940.5 35.2 9.01

15
Shule River Basin

(SLRB)

Mazongshan (MZS) 97.02 41.48 1770.4 72.8 4.46
16 Yumenzhen (YMZ) 97.02 40.16 1526.0 65.9 7.24
17 Anxi (AX) 95.47 40.32 1170.9 47.0 9.03
18 Dunhuang (DH) 94.41 40.09 1139.0 38.9 9.70
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2.2. SPEI and Drought Characteristics

The SPEI is a simple multi-scalar drought index that combines temperature and precipitation
data. It is based on the original SPI calculation procedure. Firstly, use the TH [23] equation to
calculate the monthly potential evapotranspiration (PET) (mm); then calculate the difference between
the precipitation (P) and PET for the month i using the formula Di = Pi − PETi. Lastly, choose the
Log-logistic distribution to model Di values, and the resulting cumulative probabilities are transformed
into a standardized variable [13]. Detailed descriptions of the SPEI calculation can be found in the
references of Vicente–Serrano et al. [13], Beguería et al. [30], and Um et al. [36]. In this study, we
analyzed the SPEI series at a 12-month scale, which represented the accumulated water deficits of
12 months and reflected the inter-annual variation of drought.

The drought was divided into five levels according to the estimated SPEI values based on National
Meteorological Drought Rating Standard [37], which is shown in Table 2. When the SPEI values showed
less than or equal to −0.5, it was regarded as a drought event. Three characteristics, drought duration,
drought severity, and drought peak, were defined and derived from a drought event according to
the Run theory [38]. Drought duration means the total duration of a drought event. According to
the regional drought identification results, if the study area continues from the i time period to the
i + T period, the drought event lasts for T. Drought severity means the weighted sum of the drought
intensity areas of each drought assessment unit at each time interval in a drought duration. Drought
peak means the minimum SPEI value of a drought event, which is the extreme value of a negative
run [38].

Table 2. Standardized Precipitation Evapotranspiration Index (SPEI) drought classification for
drought events.

Level Type SPEI

1 None >−0.5
2 Light drought (−1, −0.5]
3 Moderate drought (−1.5, −1]
4 Severe drought (−2, −1.5]
5 Extreme drought ≤−2

2.3. Calculations of PET

The SPEI only considers P and PET when determining droughts. Therefore, the derivation of
PET data is very important in the estimation of SPEI. Models for PET estimations can be grouped
into such categories as temperature-based, radiation-based, combination, mass-transfer, etc. [39]. The
temperature-based method refers to those where only temperature is required as the input variable in
the estimation of PET, including Thornthwaite [23], Blaney–Criddle [40], Hargreaves and Samani [41],
Kharrufa [42], Hamon [43], and Szász [44] models. Radiation-based models based on the energy balance
includes Makkink [45], Hargreaves [46], Abtew [47], and Priestley and Taylor [48]. Combination model
considers the influence of aerodynamics and requires more input parameters and a more complicated
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calculation process. It includes the commonly used Penman [49] and Penman–Monteith [29] models.
The mass-transfer model based on Dalton’s evaporation law takes the influence of wind, temperature,
humidity, and other meteorological factors on evaporation into account [39].

In general, the selection of appropriate PET models in a given study depends on research
purposes, as well as the availability of climatic input data and the local climate conditions. In this
study, three types, eight kinds of evapotranspiration models were selected for comparative analysis,
namely the temperature-based Thornthwaite (TH), Blaney–Criddle (BC), Hamon and Szász, the
radiation-based Makkink, and Priestley–Taylor (PT), as well as the combination models of Penman
and Penman–Monteith (PM). A detailed description of each model is summarized in Table 3.

Table 3. Summary of evapotranspiration models applied in the study.

Type Name Equation Input Data

Temperature-based

Thornthwaite (TH)

ET0 = k
(

10T∑12
i=1(

T
5 )

1.51

)a

T: monthly mean temperature
a: estimated by an I-related

third-orderpolynomial
k: empirical coefficient with value of 16

T

Blaney–Criddle
(BC)

ET0 = kp(0.46Tmean + 8.13)
Tmean: mean daily temperature

p: mean daily percentage of annual
daytime hours

k: empirical coefficient with values
between 0.5 and 1.2, the initial value is 0.85

Tmean

Hamon

ET0 =
2.1H2

t es

(Tmean+273.2)
Tmean: mean daily temperature

Ht: average number of daylight hours
per day

es: saturation vapor pressure

Tmean
Ht
es

Szász

ET0 = 0.0053(Tmean + 21)21−
RH 2

3 (0.0519u2 + 0.905)
Tmean: mean daily temperature

RH: mean daily relative humidity
u2: mean daily wind speed at 2 m height

Tmean
RH
u2

Radiation-based

Makkink

ET0 = α ∆Rn
(∆+γ)λ −β

Rn: net daily radiation to the evaporating
surface

∆: the slope of the vapor pressure curve at
air temperature

γ: the psychrometric constant
λ: the latent heat of vaporization

α,β : empirical coefficients,
α = 0.61, β = 0.12

Rn

Priestley–Taylor
(PT)

ET0 = αPT(
∆Rn

(∆+γ)λ )

Rn: the net daily radiation at the
evaporating surface

∆: the slope of the vapor pressure curve at
air temperature

γ: the psychrometric constant
λ: the latent heat of vaporization

αPT: the Priestley–Taylor constant with
value of 1.26

Rn
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Table 3. Cont.

Type Name Equation Input Data

Combination

Penman

ET0 = ∆Rn
(∆+γ)λ +

γEa
∆+γ

Rn: the net daily radiation to the
evaporating surface

Ea: a function of the average daily wind
speed, saturation vapor pressure, and

average vapor pressure
∆: the slope of the vapor pressure curve at

air temperature
γ: the psychrometric constant

λ: the latent heat of vaporization

Rn
Ea

Penman–Monteith
(PM)

ET0 =
0.408∆(Rn−G)+γ 900

T+273 U2(ea−ed)

∆+γ(1+0.34U2)

Rn: net radiation
T: monthly mean temperature

U2: wind speed
∆: slope of the vapor pressure curve

G: soil heat flux
ea − ed: vapor pressure deficit
γ: psychometric constant

Rn
U2
T
ea
ed

3. Results and Analysis

3.1. Drought Assessment over the Study Area

3.1.1. Drought Events

The drought conditions were determined according to the criteria mentioned in Section 2.2, that
when the SPEI value for a particular time period fell less than or equal to −0.5, it was regarded as
a drought event. Due to limited space, taking YC station as an example, Figure 3 shows the SPEI
series obtained by the TH equation. Four dotted lines from top to bottom in the figure represent the
thresholds of four drought levels: Light, moderate, severe, and extreme droughts, respectively. Table 4
summarizes the total number of drought events and the number of drought events after 2000, together
with the number of severe and extreme drought levels for all stations.

From Figure 3 and Table 4, we can see that 37 drought events occurred during the period of
1960–2015 for YC station, and 32% (12 of 37) of them occurred after 2000. As to the different drought
levels, more numbers of severe and extreme drought events occurred after 2000 (Figure 3), specifically
50% (6 of 12) severe and 71% (5 of 7) extreme events occurred after 2000 (Table 4).

Across all stations of the study area, the drought event numbers ranged from 13 to 37 from 1960 to
2015, and 11 stations (61%) experienced more than 40% drought events after 2000. As to the different
levels, 14 stations (78%) experienced more than 50% severe and extreme drought events during the
period of 1960 to 2015. In particular, 10 stations experienced no extreme droughts before 2000, and all
extreme droughts occurred after 2000, which means that the extreme drought events occurred more
frequently after 2000 for most stations as a whole.

From Table 4, it also can be concluded that 15 of 18 (83%) stations experienced drought events
for every 3 years on average as a whole (≥18.7 drought events during the 56 years), and 12 of 18
(67%) stations experienced drought events for every 2 years (≥28 drought events during the 56 years),
and YC station experienced the most frequent drought events with the occurrence of every 1.5 years
on average.

In order to assess the changes of drought events over time, trend analysis of the drought event
series was performed by using the widely used non-parametric Mann–Kendall (MK) test [50]. The
second row in Table 5 shows the statistic Z values from the MK test for all stations. It indicates that, 16
of 18 stations experienced decreasing trends, and such trends were significant for 15 of them at 0.05
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significance level. It means that most stations across the basin experienced significant drying trends
over the past several years.Water 2019, 11, x FOR PEER REVIEW 8 of 18 
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bottom represent the thresholds of four drought levels: Light, moderate, severe, and extreme
droughts, respectively.

Table 4. The drought events numbers for all stations in HIRB.

Station
Number of Drought Events

Total Severe Extreme

WSL 36 (14, 39%) 11 (7, 64%) 1 (1, 100%)
YC 37 (12, 32%) 12 (6, 50%) 7 (5, 71%)

WW 28 (14, 50%) 12 (10, 83%) 4 (4, 100%)
ALSYQ 29 (13, 45%) 13 (8, 62%) 3 (2, 67%)

MQ 31 (13, 42%) 13 (10, 77%) 4 (2, 50%)
TL 32 (12, 38%) 10 (0, 0%) 2 (0, 0%)

YNG 28 (9, 32%) 9 (3, 33%) 3 (1, 33%)
QL 31 (10, 32%) 15 (8, 53%) 2 (2, 100%)
SD 33 (10, 30%) 13 (6, 46%) 3 (2, 67%)
ZY 21 (10, 48%) 14 (12, 86%) 1 (1, 100%)
JQ 35 (16, 46%) 12 (8, 67%) 4 (2, 50%)
GT 22 (12, 55%) 17 (16, 94%) 4 (4, 100%)
DX 18 (9, 50%) 13 (11, 85%) 2 (2, 100%)

EJNQ 13 (5, 38%) 12 (12, 100%) 0 (0, 0%)
MZS 16 (8, 50%) 11 (10, 91%) 1 (1, 100%)
YMZ 34 (16, 47%) 15 (10, 67%) 3 (3, 100%)
AX 24 (15, 63%) 10 (10, 100%) 5 (5, 100%)
DH 30 (15, 50%) 16 (15, 94%) 4 (4, 100%)

Note: Numbers in the bracket mean the number and the percentage of drought events occurred after 2000.

Table 5. Z-statistic values of trend analysis by using the MK test (1960–2015).

Station
PET Models

TH BC Hamon Szász Makkink PT Penman PM

WSL 5.33 * −0.18 4.30 * 5.33 * 5.18 * 6.00 * 6.97 * 5.59 *
YC −4.20 * −4.69 * −2.98 * −5.46 * −2.67 * −0.59 1.14 −3.84 *

WW −8.23 * −6.69 * −3.85 * −7.13 * −2.92 * −1.18 −1.79 −3.18 *
ALSYQ −5.53 * −2.93 * −3.80 * 0.40 −3.20 * 1.10 0.09 3.56 *

MQ −4.44 * −6.53 * −4.15 * −4.69 * −3.86 * −7.82 * −0.20 −0.11
TL 1.27 0.15 1.14 0.24 2.33 * 2.11 * 4.12 * 0.95

YNG −1.48 −2.95 * −1.96 * 0.64 −2.45 * −2.46 * 0.02 −0.49
QL −2.36 * −3.84 * −0.66 −3.41 * −2.25 * −2.55 * −1.83 1.06
SD −3.12 * −3.40 * 0.69 −1.61 −0.63 −0.23 −0.41 2.02 *
ZY −5.89 * −3.58 * 1.17 −11.04 * 0.86 −0.16 2.31 * −7.58 *
JQ −1.44 −2.49 * −3.48 * −3.97 * −3.50 * −0.83 3.46 * 2.47 *
GT −6.32 * −4.75 * 0.20 −9.08 * 0.90 2.27 * 1.93 −1.65
DX −6.08 * −4.64 * −3.66 * −6.38 * −2.97 * −1.74 0.72 −0.71
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Table 5. Cont.

Station
PET Models

TH BC Hamon Szász Makkink PT Penman PM

EJNQ −2.91 * −4.67 * −0.16 −4.70 * −4.71 * 6.05 * −3.70 * −1.98 *
MZS −2.98 * −2.52 * −7.59 * −5.80 * −6.77 * −5.41 * −3.65 * −4.87 *
YMZ −3.82 * −2.67 * 1.44 1.38 3.87 * 2.74 * 3.57 * 2.08 *
AX −4.82 * −3.92 * 0.03 1.27 6.75 * 5.21 * 3.71 * −2.56 *
DH −5.15 * −6.80 * 0.91 0.91 −7.28 * −0.63 3.21 * 1.09

No. 16 17 10 11 12 11 6 10

Note: * means significant at 0.05 significance level. The number in the last line means the number of stations
showing decreasing trends in the SPEI series.

3.1.2. Drought Characteristics

Figures 4 and 5 show the statistics of the three drought characteristics based on the Run theory.
The mean drought severity ranges from −0.79 and −0.96, belonging to light drought level, and are
presented very close to each other for all stations, while great differences are found for the drought
peak varying from −1.99 and −3.68, in which YC station experienced the highest drought peak (in
March 2007), 1.2–1.8 times to other stations (Figure 4). As for the drought duration, we counted the
total duration, as well as the maximum duration of drought events for all stations during the period
of 1960 to 2015 (Figure 5). It ranged from 194 to 260 months for total duration, with an average of
216 months across the basin, in which MZS and MQ stations ranked as the first two with the longest
total drought duration. The maximum drought duration varied greatly across the basin, from 22 to
123 months. It should be noted that EJNQ station, although it experienced the least numbers of drought
events (13 times) with nearly none at the extreme level (Table 4), showed a minimum drought peak
of −1.99 (Figure 4) and had the longest drought duration of up to 123 months (more than 10 years)
(Figure 5), occurring from June 2005 to August 2015. Such long-term drought duration inevitably led
to the deterioration of the ecological environment and social economy.
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In summary, the above results demonstrated that the drought events in the basin occurred every
2–3 years on average, during 1960–2015, with more than 40% of drought events occurring after 2000
for 61% stations. Among all drought events, the extreme drought events occurred more frequently
after 2000 as a whole. By performing the Mann–Kendall trend test on the drought event series, we



Water 2019, 11, 1061 10 of 17

found that the trend of drought was aggravating for the whole basin which coincided with the rise in
temperature. It should be noted that the drought peak and the maximum drought duration presented
great spatial heterogeneity.

3.2. Comparison of PET Models

The annual average PET values calculated from different models for the study area are given in
Table 6. For comparison, we took the PET values from the TH model as the benchmark. The annual
average PET from the benchmark was 581 mm for the basin. Quite substantial differences were found
in PET values from various models. The temperature-based Hamon model always brought less PET
values, an average of 62% lower than that from the benchmark. The other six equations always brought
larger PET values. Among them, temperature-based BC and Szász have the highest overall PET values,
which were twice the benchmark on average. The combination methods of Penman and PM give quite
close PET values for all stations, 1.9 times larger than the benchmark on average across the basin. In
contrast, PET values from the radiation-based Makkink and PT were closest to the benchmark (1.4–1.6
times the benchmark on average).

Table 6. Annual PET values calculated by different models in HIRB (mm).

Station TH BC Hamon Szász Makkink PT Penman PM

WSL 388 890 148 626 681 807 790 804
YC 532 1135 148 987 803 908 1045 1006

WW 628 1276 348 1187 840 950 1041 998
ALSYQ 672 1290 421 1724 886 922 1211 1373

MQ 654 1284 414 1404 872 960 1187 1177
TL 361 777 179 521 705 836 873 780

YNG 351 765 141 435 644 785 853 746
QL 432 961 210 646 743 872 930 870
SD 585 1209 398 1209 823 915 1089 1071
ZY 619 1251 390 1186 859 963 1119 1056
JQ 621 1243 375 1272 845 930 1082 1070
GT 633 1269 407 1187 864 972 1116 1047
DX 671 1290 480 1461 898 965 1257 1233

EJNQ 743 1304 538 1856 898 907 1313 1415
MZS 543 1092 368 1334 826 863 1171 1266
YMZ 618 1221 411 1420 872 931 1203 1240
AX 700 1321 472 1635 891 947 1295 1309
DH 713 1343 587 1550 987 1050 1211 1244

Average 581 1162 358 1202 830 916 1099 1095

Figure 6 shows the intra-annual distribution of PET values. Similar seasonal variations in
PET values are found from different models for most parts of the study area; uneven intra-annual
distributions with initially increasing and then decreasing from January to December with an occurring
maximum value in July. Compared with the benchmark TH model, five of the other models (BC,
Szász, PT, Penman, and PM) presented higher values no matter the month and season as a whole, in
which Szász gave the highest values during the middle of the year (from April to September) for most
stations. Makkink presented similar values with the benchmark during the summer season (June, July,
and August) and higher values during the other seasons. Hamon gave much lower PET values during
the period of April to September. Comparatively, the intra-annual distribution curves from Penman
and PM overlap the most. It should be noted that PET values derived from the benchmark equation
were near to zero during the winter season (January, February, and December), which was mainly due
to the fact that when the temperature was below 0 ◦C, the PET calculated by TH was equal to zero.
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Figure 6. Intra-annual distribution of PET values from eight models.

3.3. Effects of Different PET Models to SPEI

3.3.1. SPEI Differences from Various PET Models

For clarity, the PET model is written as the subscript of SPEI. For instance, the SPEI values
obtained from the TH model is written as SPEITH. Differences between SPEITH and the SPEI from other
alternative PET models are firstly examined, and Figure 7 shows such differences with YC station as an
example. It can be seen that the difference between SPEITH and SPEIBC presents the smallest within
the range of 1 unit, and the difference between SPEITH and SPEISzász presents the second smallest,
indicating that SPEIBC, SPEISzász are very close to SPEITH. These almost identical patterns are found in
the plots of TH–Hamon, TH–Makkink, and TH–PT, having nearly two remarkable positive differences
(from 1964 to 1982 and from 1991 to 1999), and two remarkable negative differences (from 1982 to
1991 and after 1999), and about 93% of the differences are within 1 unit. The patterns for plots of
TH–Penman and TH–PM are similar for most of the years. SPEIPenman is close to SPEIPM, while both
of them differ greatly from SPEITH with larger difference ranges.Water 2019, 11, x FOR PEER REVIEW 12 of 18 
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For other stations, similar conclusions can be drawn that SPEIBC, SPEISzász are similar to SPEITH,
with nearly similar patterns found in the plots of TH–Makkink, TH–PT, and TH–Hamon. Furthermore,
the differences between SPEITH and SPEIPenman (or SPEIPM) are relatively large. It can also be concluded
that the SPEITH identified more climate drying trends than other SPEI series since the differences
between them always change from positive values to negative values over time as a whole.

3.3.2. SPEI Correlation Analysis

SPEI values from different PET models were also compared by using the Pearson correlation
coefficient. Figure 8 shows the correlation coefficients of the eight SPEI series for all stations. It indicates
that SPEITH and SPEIBC are the most correlated with correlation coefficients greater than 0.93 (at 17 of
18 stations). The highest correlations between them demonstrate that these equations produce quite
comparable SPEI values for drought assessment.
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Comparing the correlation coefficients for each station, we found that SPEIBC, SPEISzász, and
SPEIHamon ranks the first three as the most correlated with SPEITH for 18 stations, followed by SPEIPT

and SPEIMakkink. The poorest correlations are observed between SPEITH and SPEIPM, and a similar
weak correlation for SPEITH and SPEIPenman can be seen. Overall, SPEITH are most correlated with
the SPEI derived from the temperature-based PET model, followed by those from the radiation-based
model. The SPEI from the comprehensive-based models have poorest correlations with SPEITH.

3.3.3. Drought Events

Through previous analysis, we know that there are some differences in SPEI values derived
from different PET models. Figure 9 shows the number of drought events and number of severe and
extreme drought events for all stations. On average, the BC model produced more drought event
numbers, followed by the Makkink, Penman, and PT models. Hamon and TH produced close drought
event numbers, while Szász and PM produced less drought event numbers comparatively. As for
the severe and extreme drought events, different results are found. BC, as well as the PT models still
overestimated the drought event numbers, while Makkink and Penman produced close numbers with
TH, while Szász, PM, and Hamon tended to underestimate the drought event numbers.

To evaluate whether the tendency of drought events occurrence remained consistent from different
SPEI series, trend analysis was performed on the seven SPEI series by using the MK test. Table 5
shows the results of trend analysis for all stations. It can be seen that, although the use of different
equations for calculating SPEI leads to great differences in the magnitude of the trends, SPEIBC kept
quite a consistent decreasing trend with SPEITH for most stations. SPEIMakkink ranked next, keeping
consistent decreasing trends with SPEITH for 14 of 18 stations, SPEISzász and SPEIPT ranked third,
showing decreasing trends as SPEITH for 13 of 18 stations. SPEIPenman deviated most from SPEITH

with many stations presenting opposite increasing trends. According to SPEIPenman, 12 of 18 stations
were detected to experience increasing trends (wetting trends) during the period of 1960 to 2015.
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3.3.4. Drought Characteristics

For a better understanding of the effects of different PET models to drought characteristics, we
compared the drought severity, drought duration, and drought peak derived from the different SPEI
series based on the Run theory, with the results shown in Figure 10. The mean drought severity
extracted from the different SPEI series were basically close to each other at all stations, ranging from
−0.73 to −0.99, and all belonging to the light drought level. As for the drought peak, results from
BC, PT, and PM were in good agreement with TH, all showing the largest drought peak at YC station
although the peak value differed a little (−3.34, −3.50, −2.73, and −3.68 for BC, PT, PM, and TH).
Another point was that most of the drought peak derived from Penman and PM were smaller than
those from other models, indicating that the drought detected from these two equations was not as
serious as those from other models.

As for drought duration, Hamon, Makkink, and Penman produced the closest drought duration
with TH (216 months), comparatively. BC and PT produced a slightly longer drought duration with an
average of more than 218 months across the basin, while Szász and PM usually produced a shorter
drought duration with an average of 207 months. As for maximum drought duration, BC, Makkink, PT,
and Penman gave relatively close results across the basin, ranging from 19–54 months, 23–55 months,
23–55 months, and 20–43 months, respectively, without detecting very long drought duration for all
stations. Szász and PM produced a similar result with the TH model, detecting the longest drought
duration occurring at EJNQ station, 122 and 92 months, respectively, although the duration, especially
from the PM model, did not last as long as TH detected.

We estimated the SPEI from as many as eight PET models and compared the SPEI series from the
perspectives of the difference, the correlation, the number, and trend of drought events and drought
characteristics. As a result, the comparative application of the different PET models in SPEI revealed
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that the drought assessment was sensitive to the selection of the PET model, while the sensitivities
could not be totally grouped in terms of different types of PET models. SPEIBC and SPEISzász were
most close to SPEITH, while SPEIPenman and SPEIPM differed greatly from SPEITH. SPEITH had good
correlations with SPEI derived from the temperature-based PET models, followed by those from
the radiation-based models, partly keeping consistent with the findings of trend analysis. SPEIBC

(temperature-based) showed a strong drying trend as SPEITH, followed by SPEIMakkink (radiation-based),
SPEISzász (temperature-based), and SPEIPT (radiation-based).
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We also tried to seek some alternatives to PET models so as to improve the flexibility of SPEI.
According to our study, among the temperature-based equations, SPEIBC and SPEITH were the most
correlated, with the smallest difference, and keeping a quite consistent decreasing trend for most
stations. Furthermore, BC could give similar results to TH for drought peak and drought severity.
High consistency in these aspects demonstrated that the BC model could be regarded as one alternative
to TH in the estimation of SPEI. As for the radiation-based models, Makkink provided similar results
to TH in drought severity, total drought duration, and severe and extreme drought event numbers.
Meanwhile, SPEIMakkink kept largely consistent decreasing trends with SPEITH. Thus, Makkink was
capable of being regarded as the alternative one among the radiation-based models. Comparatively,
SPEIPenman and SPEIPM deviated most from SPEITH in many aspects.
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4. Conclusions

This paper evaluated drought conditions over the Hexi Inland River Basin by employing the
drought index of SPEI and investigating the effects of different PET models to SPEI and to drought
assessments. In summary, the result confirmed that the extreme drought events occurred more
frequently after 2000 as a whole across the study area and the trend of drought is still aggravating.
The estimation of SPEI and the drought assessment were sensitive to the selection of PET models we
used. The BC equation is suggested as an alternative in estimating PET and the follow-up drought
identifications and assessments among the temperature-based models, and Makkink is recommended
among the radiation-based models. Conversely, both SPEIPenman and SPEIPM are not considered as
alternatives when TH is the benchmark PET equation in calculating SPEI for the study region of our
interest. These findings emphasized the importance of PET model selection in drought assessments
and also improved the flexibility of SPEI in assessing drought conditions, especially over arid and
semiarid regions by providing alternative PET models.
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