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Abstract: The aquatic environment and drinking water production are under increasing pressure from
the presence of pharmaceuticals and their transformation products in surface waters. Demographic
developments and climate change result in increasing environmental concentrations, deeming
abatement measures necessary. Here, we report on an extensive case study around the river
Meuse and its tributaries in the south of The Netherlands. For the first time, concentrations in the
tributaries were measured and their apportionment to a drinking water intake downstream were
calculated and measured. Large variations, depending on the river discharge were observed. At low
discharge, total concentrations up to 40µg/L were detected, with individual pharmaceuticals exceeding
thresholds of toxicological concern and ecological water-quality standards. Several abatement options,
like reorganization of wastewater treatment plants (WWTPs), and additional treatment of wastewater
or drinking water were evaluated. Abatement at all WWTPs would result in a good chemical and
ecological status in the rivers as required by the European Union (EU) Water Framework Directive.
Considering long implementation periods and high investment costs, we recommend prioritizing
additional treatment at the WWTPs with a high contribution to the environment. If drinking water
quality is at risk, temporary treatment solutions in drinking water production can be considered.
Pilot plant research proved that ultraviolet (UV) oxidation is a suitable solution for drinking water
and wastewater treatment, the latter preferably in combination with effluent organic matter removal.
In this way >95% of removal of pharmaceuticals and their transformation products can be achieved,
both in drinking water and in wastewater. Application of UV/H2O2, preceded by humic acid removal
by ion exchange, will cost about €0.23/m3 treated water.

Keywords: pharmaceuticals; water quality; water treatment; wastewater treatment; abatement
options

1. Introduction

Organic micropollutants in water have been a topic of interest for some time [1]. They include
industrial compounds, pesticides, personal care products, steroid hormones and pharmaceuticals (both
from human and veterinary consumption). The presence of pharmaceutical compounds in surface
waters was suspected and proven already long ago [2,3]. More recently, it became apparent that many
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different pharmaceutical compounds are found in surface water and groundwater [4]. It is expected
that the environmental numbers and concentrations will increase, because new pharmaceuticals are
being developed and pharmaceutical consumption is increasing due to demographic changes such
as growing and aging populations [5]. Another factor that probably will affect the pharmaceutical
concentration in surface waters, is climate change, which in The Netherlands and Western Europe is
expected to cause longer dry periods—the summer of 2018 was a good example—and thus higher
concentrations of micropollutants in surface waters (less dilution) will occur [6,7].

Most of the pharmaceuticals and their metabolites are excreted from the body via urine and feces
after use. They are transported to wastewater treatment plants (WWTPs), where they are discharged
into the environment. To protect receiving surface waters, these WWTPs apply biological processes
to remove organics, nitrogen and phosphorous from the wastewater, but they are not specifically
designed to remove organic micropollutants, including pharmaceuticals. In practice, the removal of
the organic micropollutants varies between 0% and 100%, with an average total removal of 60%–70%.
As a result, significant pharmaceuticals concentrations are present in WWTP effluent and will end up
in surface waters and, therefore, in sources for drinking water production [8].

As these biologically active compounds are designed to bring about a specific effect in organisms,
there is an increasing understanding that the presence of pharmaceuticals in surface water is
undesired [9–11]. It already has been shown that some of these compounds, like diclofenac, fluoxetine
and hormone disruptors can change the behavior of predators in water and can accumulate through
the food chain [12]. Others reported on fish feminization and reduced reproduction [9].

For drinking water, the risk for human health of individual compounds at low concentrations
is negligible. However, little is known about the effects of long-term exposure to pharmaceutical
mixtures. Furthermore, Dutch drinking water utilities have the policy of distributing impeccable water
quality, which means that from a precautionary principle, pharmaceuticals and other micropollutants
should in principle be absent in drinking water.

Because of the environmental concerns, the EU has developed a watch list that includes
17-beta-estradiol (E2), 17-alpha-ethinylestradiol (EE2), and diclofenac. It is expected that eventually
standards will be set for these compounds [13,14]. The currently proposed revision of the European
Union (EU) Drinking Water Directive [15], contains several new standards for chemical parameters,
including beta-estradiol, and some endocrine disrupters.

Drinking water utilities and authorities for managing surface water quality are, therefore, looking
for adequate solutions for protecting of surface water quality, sources for drinking water and the
production of high-quality drinking water, free of pharmaceuticals and micropollutants. There are three
approaches that can contribute to this: (1) prevent emissions by reducing consumption and removal at
source, (2) removal during wastewater treatment, and (3) removal during drinking water treatment.

The first option would be the most elegant solution to prevent pharmaceuticals from entering the
wastewater and the environment. However, people cannot be denied the use of medication. It would
already have a large impact if the public and especially physicians would realize that pharmaceuticals
are not harmless, and that in some cases it may be better to prescribe an alternative pharmaceutical
or lower dose, to protect the environment [16,17]. This, however, will not result in the absence of
pharmaceuticals and their metabolites in wastewater, and additional treatment in WWTP and/or
drinking water treatment may become inevitable in future. Currently activated carbon adsorption
or oxidation by ozone are considered as the current industry standard for this purpose, but these
technologies come with high costs. Nanofiltration or reversed osmosis is not favored, as it is difficult
to discharge the concentrates. Advanced oxidation processes (AOPs) do not have this disadvantage.
The application of AOPs in wastewater treatment has been studied by several authors. In The
Netherlands, where bromide concentrations on the average are about 120 µg/L in the Rhine and about
70 µg/L in the Meuse, where they enter the country [18], this would result in a significant increase
in the bromate content of surface water. This is an unwanted side effect, as bromate is considered
carcinogenic. Varanasi, Coscarelli et al. (2018) [19] studied ultraviolet (UV)/H2O2, UV/free chlorine
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and UV/persulfate processes (UV/PS) for the removal of trace organic compounds, and concluded that
their efficiency is greatly affected by the presence of background dissolved organic matter (DOM).
The performance of UV/H2O2 and UV/free chlorine processes is mainly affected by DOM containing
more aliphatic components, whereas the performance of UV/PS mainly depends on the presence of
aromatic compounds.

According to Nihemaiti et al. (2018) [20] UV/peroxydislufate (UV/PDS) processes are more
effective than UV/H2O2 processes for the removal of trace organic compounds in pure water. However,
electron-rich compounds in effluent organic matter (EfOM) will cause high competition in UV/PDS
processes. Thus, the efficiency of UV/PDS strongly depended on the variation of the composition and
concentration of DOM and nitrite. In general, higher UV fluences and oxidant doses were required to
overcome the impact of the water matrix. Application of UV/H2O2 does not result in the formation of
byproducts from H2O2, but in case of UV/PDS processes, the effect of the resulting sulfate concentration
on salinity should be considered. Application of different AOPs for the treatment of municipal
wastewater has also been evaluated by other authors [21–23]. In general UV/free chlorine processes
show a better performance than UV/H2O2 processes, although UV/chlorine processes show a higher
compound selectivity. The same conclusion was drawn by Guo et al. [24], who found that UV/chlorine
processes are less affected by the water and wastewater matrices than UV/H2O2 processes (which
are superior in pure water, if compounds are more sensitive towards hydroxyl radicals). However,
in The Netherlands chlorine-based processes are not preferred because of the possible formation of
chlorine containing byproducts. According to Miklos et al. [21], the efficiency of UV/H2O2 processes
in wastewater treatment strongly depends on the nitrite concentration, and the matrix composition
should be monitored for effective application of UV/H2O2 processes.

This paper presents a case study in the province of Limburg in The Netherlands, comprising
the river Meuse and several tributaries, upstream from the drinking water production plant ‘Heel’,
which uses the river water as a source. The study area comprises several wastewater treatment plants,
with direct influence on the water quality of the intake of the drinking water plant. The origin and
fate of pharmaceuticals and metabolites in the study area are assessed, as well as different abatement
options for water-quality control. Data for this study were acquired from a broader national wastewater
effluent survey and two pilot plant investigations. The novelty of the study is in its integrated character
and bridging between drinking water production and source control. In The Netherlands, drinking
water production and surface water management are traditionally separated and independent sectors.

The goal of this integrated study was to develop and compare practical and cost-effective solutions
for tackling pharmaceuticals in the drinking water produced at Heel and the surface water quality in
the study area and at the raw water intake. The criteria for evaluation are water quality, environmental
benefits, required time for realization and costs.

2. Materials and Methods

2.1. General Approach and Data Used in This Study

The central point of the study was the drinking water production from surface water from the
river Meuse at the treatment plant in Heel. The focus of this study is on the presence of pharmaceuticals
and metabolites in the river water, and the direct influence of WWTP emissions in the upstream
catchment area on the intake for the drinking water production. As abatement options, the application
of advanced oxidation processes for drinking water or wastewater treatment were evaluated.

The evaluations and assessments done in this paper are based on the results of three underlying
studies in collaboration with the drinking water company “Waterleiding Maatschappij Limburg”,
the water board “Waterschap Limburg”, responsible for the surface water quality in the area, and the
wastewater treatment operator “Waterschapsbedrijf Limburg”. In addition, data from a national
survey of effluent quality were used. Sampling and data collection took place in different time
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periods. Therefore, some differences in investigated contaminants occur in the different phases of this
integrated study.

The approach followed in this study comprises of the following steps:

1. Assessment of concentrations of pharmaceuticals and metabolites in several wastewater treatment
effluents throughout The Netherlands to provide contextual or reference data for comparison
with the effluents in the study area.

2. Assessment of loads and concentrations of pharmaceuticals in the river Meuse and tributaries
upstream of the drinking water intake of treatment plant Heel. This includes the apportionment
of the contribution of pharmaceuticals of the different wastewater treatment plants in the study
area to the drinking water intake.

3. Evaluating different abatement options for pharmaceuticals and metabolites in the study area,
including options for drinking water treatment and wastewater treatment. The focus is on the
application of advanced oxidation processes.

4. Finally, a vision for short term and longer-term solutions is presented.

The sections below describe the study area, the national sampling campaign, and the pilot plant
studies for drinking water treatment and wastewater treatment with AOP.

2.2. Study Area and Sampling Points

The area studied in this paper is the river basin of the river Meuse, upstream from the water intake
of the drinking water production plant Heel. The Meuse rises at the French Plateau de Langres and
flows through Belgium, after which it enters The Netherlands at the town of Eijsden. The river basin
upstream of the intake of water production plant Heel (WPH) counts about six million inhabitants,
of which 5.3 million are in Belgium and France. For this research and drinking water production,
the following tributaries are of importance: The Jeker (95% flowing through Belgium), the Geul (50%
flowing through Belgium), the Geleenbeek (100% Netherlands), and the Slijbeek (partly Belgium).

An inventory was made of pharmaceuticals in surface water and in the effluent of several
wastewater treatment plants (WWTPs) [25]. In winter 2011 samples were taken in 4 consecutive weeks
at 6 different locations in the river Meuse and its tributaries in the southern part of Limburg and
in a canal parallel to the Meuse (the “Lateraal Kanaal”). Sample locations (See Figure 1b) were 1O
Eijsden (near the Belgian-Dutch border), 2O the river Jeker in Maastricht, near the place where it enters
the Meuse, 3O the river Geul near Meerssen, 4O the Geleenbeek near Oud Roosteren, 5O the Slijbeek,
near the place where it enters the Lateraal Kanaal, and 6O at the intake of the drinking water production
site Heel, which uses surface water from the Lateraal Kanaal as a source. The samples were single
grab samples taken from bridges. The first two samples were taken at the end of a very long dry
period (6 months) with a very low discharge flow in the Meuse. After the second sampling, rainfall
commenced, the discharge flow increased. The third and fourth samples were, therefore, taken during
a higher river discharge. See Supplementary Information for details Figures S1–S7 for details of the
sampling points and the hydrograph.

2.3. National Sampling Campaign

In the national sampling campaign, effluent samples were taken at the WWTPs of Garmerwolde
(A), Utrecht (B), Rotterdam (C), Eindhoven (D), Panheel (E) and Roermond (F) (see Figure 1a). Samples
were single samples collected with an automatic sample collector over 24 h and proportional to the
effluent flow rate, under dry weather conditions. In the WWTP effluent total organic carbon (TOC),
dissolved organic carbon (DOC), and UV-Transmittance (UV-T254) at 254 nm were measured at the KWR
laboratory. Composition of effluent organic matter (EfOM) was analyzed by DOC-Labor Dr. Huber
(Eisenbahnstr. 6, 76229 Karlsruhe, Germany), applying an LC-OCD method [26]. The pharmaceuticals
studied were selected based on consumption, occurrence in the environment, physico-chemical
properties, the availability of standards and analytical methods [27]. Concentrations of pharmaceuticals
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and metabolites in surface water and WWTP effluents were measured according to the ultra-high
performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method described
previously Wols et al. [28].

Water 2019, 11, x FOR PEER REVIEW  5 of 17 

 

measured according to the ultra-high performance liquid chromatography–tandem mass 
spectrometry (UPLC-MS/MS) method described previously Wols et al. [28]. 

 
Figure 1. (a): Wastewater treatment plants (WWTPs) in The Netherlands (red dots) and WWTPs 
sampled for effluent characterization (green-red dots, indicated A to F); (b): Sample locations in 
surface water bodies (blue dots, indicated 1 to 6) in the southern part of the province of Limburg. 

2.4. Wastewater Treatment Pilot Plant Panheel 

To study the effect of additional treatment, experiments were carried out in a pilot set-up at 
WWTP Panheel, in which a mixture of more than 40 pharmaceuticals was dosed to the effluent to be 
able to study the removal efficiency of the additional treatment. The compounds were selected based 
on their presence in WWTP effluents and surface waters. The pilot plant comprised of a multi-layer 
filter (proprietary filter material; PureBlue Water, Kapellebrug, The Netherlands) to remove 
suspended solids and particles, an anion exchange (IEX) unit containing Lewatit S6368A resin 
(Lanxess, Brussels, Belgium) to remove humic acids, and a UV reactor (Type M3 by PureBlue Water; 
Kapellebrug, The Netherlands), which, after addition of H2O2 to the solution, was operated at a dose 
of 150 or 300 mJ/cm2 for a UV/H2O2 process. The UV reactor was equipped with a low-pressure 
Amalgam lamp of 90 W. A largely over-dimensioned granular activated carbon (GAC) filtration unit 
filled with Norit GAC (type PK 1-3; Cabott Norit Netherlands, Amersfoort, The Netherlands) was 
used to prevent any discharge of added pharmaceuticals to the surface water. Further details on the 
pilot set-up can be found in Hofman-Caris et al. [29]. 

2.5. Drinking Water Treatment Pilot Plant Heel 

The experiments at drinking water treatment plant Heel were carried out in a pilot set-up as 
described by Hofman-Caris et al. [27]. The flow through the reactor was 1–2.5 m3/h. The UV reactor 
(type D200, Van Remmen UV-Techniek, Wijhe, The Netherlands) was optimized for advanced 
oxidation reactions according to [30]. It had been equipped with one LP UV lamp (Heraeus NNI 125-
84-XL, Hanau, Germany) and two baffles to improve the flow conditions. Here too the mixture of 
over 40 pharmaceuticals and a H2O2 solution were added to the influent of the UV reactor. Again, a 
largely over-dimensioned granular activated carbon (GAC) filtration unit was used to prevent any 
discharge of added pharmaceuticals to the environment. 
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2.4. Wastewater Treatment Pilot Plant Panheel

To study the effect of additional treatment, experiments were carried out in a pilot set-up at
WWTP Panheel, in which a mixture of more than 40 pharmaceuticals was dosed to the effluent to be
able to study the removal efficiency of the additional treatment. The compounds were selected based
on their presence in WWTP effluents and surface waters. The pilot plant comprised of a multi-layer
filter (proprietary filter material; PureBlue Water, Kapellebrug, The Netherlands) to remove suspended
solids and particles, an anion exchange (IEX) unit containing Lewatit S6368A resin (Lanxess, Brussels,
Belgium) to remove humic acids, and a UV reactor (Type M3 by PureBlue Water; Kapellebrug,
The Netherlands), which, after addition of H2O2 to the solution, was operated at a dose of 150 or
300 mJ/cm2 for a UV/H2O2 process. The UV reactor was equipped with a low-pressure Amalgam lamp
of 90 W. A largely over-dimensioned granular activated carbon (GAC) filtration unit filled with Norit
GAC (type PK 1-3; Cabott Norit Netherlands, Amersfoort, The Netherlands) was used to prevent any
discharge of added pharmaceuticals to the surface water. Further details on the pilot set-up can be
found in Hofman-Caris et al. [29].

2.5. Drinking Water Treatment Pilot Plant Heel

The experiments at drinking water treatment plant Heel were carried out in a pilot set-up as
described by Hofman-Caris et al. [27]. The flow through the reactor was 1–2.5 m3/h. The UV reactor
(type D200, Van Remmen UV-Techniek, Wijhe, The Netherlands) was optimized for advanced oxidation
reactions according to [30]. It had been equipped with one LP UV lamp (Heraeus NNI 125-84-XL,
Hanau, Germany) and two baffles to improve the flow conditions. Here too the mixture of over 40
pharmaceuticals and a H2O2 solution were added to the influent of the UV reactor. Again, a largely
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over-dimensioned granular activated carbon (GAC) filtration unit was used to prevent any discharge
of added pharmaceuticals to the environment.

3. Results

3.1. Analysis of Wastewater Treatment Plant (WWTP) Effluents

The presence of pharmaceuticals in various WWTP effluents throughout The Netherlands is
shown in Figure 2.

Water 2019, 11, x FOR PEER REVIEW  6 of 17 

 

3. Results 

3.1. Analysis of Wastewater Treatment Plant (WWTP) Effluents 

The presence of pharmaceuticals in various WWTP effluents throughout The Netherlands is 
shown in Figure 2. 

 

Figure 2. Concentrations of pharmaceuticals (left two graphs) and metabolites (right graph) in WWTP 
effluents in The Netherlands. The concentrations of metformin and its metabolite guanylurea are 
present in significantly higher concentrations, and therefore shown separately in the lower right 
graph. 

From these data it can be concluded that there are large differences in the presence of certain 
pharmaceuticals in the effluent of various WWTPs. These differences can have several causes: e.g., 
sampling conditions, and diurnal and seasonal patterns can affect the observed concentrations. 
Removal efficiencies may vary too. Some compounds, like sotalol, were found in relatively high 
concentrations in the effluent of Utrecht, Roermond and Panheel (1.5–2.0 μg/L), whereas 
concentrations were smaller in Eindhoven, Garmerwolde and Rotterdam (0.5–0.8 μg/L). In contrast, 
diclofenac (0.24–0.41 μg/L) and venlafaxine (0.27–0.51 μg/L) had similar concentrations in all WWTP 
effluents analyzed. Tramadol, gemfibrozil, and carbamazepine were found in relatively high 
concentrations in the Panheel effluent, whereas in Utrecht a high concentration of diatrizoic acid was 
observed. In general, the effluents contained 14–28 μg/L of total pharmaceuticals and metabolites 
included in the analytical procedure, the average total pharmaceuticals concentration being about 16 
μg/L. In the Panheel effluent the average concentration, however, was about 28 μg/L, which is 
relatively high. This is probably caused by the relatively high contribution of a nursing home, which 
sends its wastewater to this rather small WWTP. Such factors may also affect the presence of 
individual pharmaceuticals in the effluent, which confirms earlier findings of the ZORG project in 
The Netherlands [31]. 

The data also indicate that some pharmaceuticals can easily be removed by the WWTP (like 
paracetamol, sulfadiazine, cyclophosphamide, norfluoxetine, lincomycin, phenazone, 

Figure 2. Concentrations of pharmaceuticals (left two graphs) and metabolites (right graph) in WWTP
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From these data it can be concluded that there are large differences in the presence of certain
pharmaceuticals in the effluent of various WWTPs. These differences can have several causes: e.g.,
sampling conditions, and diurnal and seasonal patterns can affect the observed concentrations. Removal
efficiencies may vary too. Some compounds, like sotalol, were found in relatively high concentrations
in the effluent of Utrecht, Roermond and Panheel (1.5–2.0 µg/L), whereas concentrations were smaller
in Eindhoven, Garmerwolde and Rotterdam (0.5–0.8 µg/L). In contrast, diclofenac (0.24–0.41 µg/L) and
venlafaxine (0.27–0.51 µg/L) had similar concentrations in all WWTP effluents analyzed. Tramadol,
gemfibrozil, and carbamazepine were found in relatively high concentrations in the Panheel effluent,
whereas in Utrecht a high concentration of diatrizoic acid was observed. In general, the effluents
contained 14–28 µg/L of total pharmaceuticals and metabolites included in the analytical procedure,
the average total pharmaceuticals concentration being about 16 µg/L. In the Panheel effluent the average
concentration, however, was about 28 µg/L, which is relatively high. This is probably caused by the
relatively high contribution of a nursing home, which sends its wastewater to this rather small WWTP.
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Such factors may also affect the presence of individual pharmaceuticals in the effluent, which confirms
earlier findings of the ZORG project in The Netherlands [31].

The data also indicate that some pharmaceuticals can easily be removed by the WWTP
(like paracetamol, sulfadiazine, cyclophosphamide, norfluoxetine, lincomycin, phenazone,
cyclophosphamide, bezafibrate, sulphadiazine, salbutamol, propyphenazone, pentoxyfylline and
metronidazole), whereas others are very difficult to remove (like diatrizoic acid, metoprolol and
diclofenac). Carbamazepine is partly converted, either by the human metabolism or by biodegradation.
Several transformation products of carbamazepine (oxcarbamazepine, carbamazepine-10,11-epoxide,
2-hydroxy carbamazepine, 3-hydroxy carbamazepine, and 10,11-trans-diol carbamazepine) could be
detected. Also, for tramadol and ibuprofen, transformation products can be found. Metformin is
an antidiabetic that is present in high concentrations in wastewater because it is prescribed in high
daily dosages to a large part of the population. In the WWTP metformin is converted by means of
biodegradation into guanylurea, which is very difficult to further degrade in a WWTP. As a result,
the concentrations of metformin and guanylurea are very high: in general, their concentrations
are above 10 µg/L; in Panheel concentrations up to 40 µg/L were observed. Although often
considered relatively harmless, metformin can act as an endocrine disruptor at environmentally
relevant concentrations [32,33].

3.2. Pharmaceutical Loads in Surface Waters

The concentrations found in the WWTPs are a strong indication that WWTP effluent significantly
contributes to the pharmaceutical load in surface waters. This is confirmed by the pharmaceuticals’
concentrations found in the Meuse and its tributaries, as shown in Figure 3. Here the average
concentration of four measurements (two in November, and two in December) is shown. The full data
set can be found in the Supplementary Information (Tables S1–S12).
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The pharmaceuticals load in the Meuse crossing the border between Belgium and The Netherlands
strongly depends on the river discharge, which can vary almost two orders of magnitude. The minimum
discharge at Eijsden is about 10 m3/s, the nominal flow 147 m3/s, whereas the maximum discharge is
about 1400 m3/s (period 2005–2009). In the most extreme situations, the discharge can even be as high
as 3000 m3/s. As the discharge of the Meuse depends on the rainfall in its catchment area, dry periods
with low discharge up to six months may occur. The pharmaceutical load of the Meuse in Eijsden
was calculated from the measured concentrations and the river discharge of 14 m3/s (November 2011)
and of 253 m3/s (December 2011) (See discharge graph in the supplementary information, Figure S7).
This resulted in an average load of 10 kg/day (standard deviation 18%) under low discharge conditions,
and of 106 kg/day (standard deviation 32%) under higher discharge conditions. The load in the
high-flow condition is higher than one would expect based on dilution. This is most probably caused
by a ‘first-flush’ effect. The concentrations were measured at the initial flank of a rapidly increasing
discharge: the flow was already high, but water with high concentrations was pushed forward in the
river, without dilution.

Figure 3 shows the pharmaceuticals concentrations present in the various tributaries. In the Jeker,
Geleenbeek and Slijbeek concentrations were higher than in the Meuse, due to the high load of WWTP
effluent in these tributaries. WWTP effluent forms a significant part of the total discharge in these
tributaries, as shown in Table 1. The WWTP of Panheel (25,000 PE) discharges to the Slijbeek and
the WWTPs of Susteren (216,500 PE), Hoensbroek (240,000 PE) and Heerlen (65,600 PE) discharge
to the Geleenbeek, resulting in relatively high pharmaceutical concentrations. In the Geleenbeek
and the Slijbeek, the river discharge originated for roughly 40–50% from effluent. The amount of
wastewater in the Jeker could not be quantified because of an unknown but significant contribution
of untreated municipal wastewater from Belgium [34]. It is estimated that the wastewater of about
120,000 Belgian inhabitants is discharged at the Jeker. About one third of this had not or limitedly
been treated (Situation 2011). Instead, a bacterial suspension is added to the river to improve water
quality. Pharmaceutical concentrations in the Jeker appear to be a little lower than in the Geleenbeek
and the Slijbeek.

Metformin is converted to guanylurea by biodegradation during biological wastewater treatment.
The fact that in the Jeker at the time of the measurement a relatively large contribution of untreated
wastewater was found probably accounts for the high contribution of metformin compared with its
metabolite guanylurea. Furthermore, the concentrations of some painkillers and their transformation
products (tramadol, paracetamol, acetaminophen sulphate, and ibuprofen) are higher in the Jeker
than in other surface waters. This may be related to differences in the pharmaceutical use between
The Netherlands and Belgium but can also result from a larger contribution of untreated wastewater,
in which these compounds were not removed. The concentration in the Geul is the lowest, because of
the relatively low contribution of effluent on the river discharge.

Ter Laak et al. [35] combined data on the flow of different rivers and demographics of the
catchments to calculate daily per capita loads of pharmaceuticals and metabolites. Subsequently,
they linked these loads to sales data of pharmaceuticals in the catchment and, considering human
excretion and removal by WWTPs, thus were able to predict actual loads within a factor of three for
most pharmaceuticals. Furthermore, from this study it became clear that there are differences in the
use of pharmaceuticals per capita in The Netherlands and Belgium: the Jeker contains relatively high
concentrations of metformin, diatrizoic acid, venlafaxine, tramadol, paracetamol, niacin, and naproxen.
Also, the study by Ter Laak et al. [35] revealed differences in prescription practice between the two
countries. Furthermore, the river is strongly affected by WWTP effluent and—at the time of the
research—untreated municipal wastewater from Belgium.
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Table 1. Most common pharmaceuticals and metabolites detected in the River Meuse and its tributaries
in The Netherlands, expressed as the average contribution (%) to the total load of pharmaceuticals and
transformation products analyzed.

Meuse Meuse
Geul Geleenbeek Slijbeek Jeker

‘Low’ ‘High’

Discharge (m3/s)
14 1 253 2 2.8 3 2.1 3 0.1 4 1.7 3

Near
minimum

Above
nominal Nominal Nominal Estimated Nominal

Proportion of WWTP effluent
to discharge (%)

No data
available

No data
available 15 38 51

Unknow;
untreated
discharges

Total pharmaceuticals load
(kg/day) 10 106 1.4 4.9 0.1 2.2

guanylurea 25% 12% 40% 60% 68% 20%
metformine 47% 49% 22% 13% 6% 39%

10,11-trans-diol-carbamazepine 2% 2% 3% 4% 5% 2%
metoprolol 0% 0% 3% 3% 3% 0%

sotalol 2% 2% 4% 3% 3% 3%
hydroxy ibuprofen 6% 10% 9% 3% 2% 9%

furosemide 0% 0% 1% 2% 1% 1%
tramadol 2% 2% 2% 2% 1% 4%
atenolol 1% 1% 0% 1% 1% 1%

carbamazepine 1% 1% 1% 1% 2% 1%
diclofenac 1% 1% 2% 1% 0% 1%

Other 26 compounds 13% 19% 13% 7% 8% 19%
1 November 2011; 2 December 2011; 3 Measurements every 15 min, 1-1-2008 to 21-12-2011; 4 Estimated by the Water
Authority ‘Peel en Maasvallei’.

3.3. Abatement Options to Protect Surface Water Quality and Drinking Water Production

The estimated contribution of the Meuse and its tributaries to the concentration of pharmaceuticals
and metabolites in the intake of drinking water production site Heel is shown in Figure 4. The darker
shaded bars for November and December are based on loads predicted from the actual measurement
in these months. The lighter bars are based on load predictions for extreme low, median and extreme
high discharge. As expected, the river Meuse has the largest contribution to the intake, especially in
median- and high-discharge situations. At extreme high flow it is also observed that the concentrations
will be low due to dilution. However, during low flow, which can take up to 6 months in dry years,
the direct contributions of the tributaries to the drinking water intake are large, up to almost 50%.
Treatment measures on the WWTPs along the tributaries can effectively reduce the pharmaceutical
compounds in the intake for drinking water production.

As it is expected that the pharmaceutical loads and concentrations will increase in the future,
several abatement options were studied to control surface water quality and/or prevent concentrations
that are too high in drinking water.

Table 2 gives an overview of the possibilities, their expected effects and the estimated operational
costs. The options will be described in more detail below. The first abatement option in Table 2 is
reducing the emission of pharmaceuticals at the source. This is not easy to realize. People need
pharmaceuticals because of health problems, and it is not ethical to abstain pharmaceuticals only
because of environmental reasons. In many cases, alternative pharmaceuticals will probably show
comparable behavior in the environment, as the activity of a compound is strongly related to its
chemical structure, which, as a result, will show strong resemblances. In some cases, physicians can
prescribe different pharmaceuticals (like naproxen instead of diclofenac) or minimize doses.
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Table 2. Potential abatement options to improve quality of surface waters and the source water for
drinking water treatment at the production site Heel.

Abatement Option Effect on
Drinking Water

Effect on
Surface Water

Total Additional
Costs 1 Advantages Disadvantages

Prevent and reduce
pharmaceutical emission at

source (toilets)
Effective Effective unknown Protects aquatic

environment
Difficult to realize;
long-term effects

Different layout of water
system; diverting WWTP

effluent downstream of the
drinking water intake

Effective Not effective low Quick solution Emergency measure

Extension of
individual WWTPs

Not effective
unless realized

on multiple
locations

Effective for
small surface

waters
8–15 M€/year

Local
improvement of

surface water
quality

Only effective for
drinking water on
long-term and at

large-scale application

Extension of WWTPs on
a large, international scale Effective Effective 8–15 M€/year in

The Netherlands

Strong
improvement of

surface water
quality

Long-term realization

Extension drinking water
treatment Effective Not effective 4–8 M€/year Short-term

realization
No improvement of

surface water quality
1 Costs are calculated based on the cost standard and related calculator, developed by the Dutch water sector.
See www.kostenstandaard.nl.

The second option is to divert effluent by realizing a different layout of the water system, combining
some WWTPs, or relocating them downstream of the drinking water intake. This may be effective for
the quality improvement of the local intake water of the drinking water production, but for the total
aquatic environment, it is not effective, as the same load of pharmaceuticals and metabolites eventually
will end up in the surface water. Moreover, there will be no change for drinking water intakes further
downstream. For the situation in Heel this could be an option that is easy to realize, because WWTP
Panheel discharges via the Slijbeek into the Lateraal Kanaal, a few hundred meters upstream of the
raw water intake of WPH.

The third option, extension of individual WWTPs with additional treatment steps, will be very
effective for the local aquatic environment [36]. Some pilot experiments were carried out at WWTP
Panheel [29]. It was shown that the effectiveness of advanced oxidation, e.g., based on UV/H2O2

www.kostenstandaard.nl
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processes, can very much be improved by first removing the humic acid part of the effluent organic
matter by means of ion exchange. In general, UV/H2O2 processes have a high energy demand,
but removal of the humic acids increased the UV-transmission from 38% to 85% resulting in an 84%
reduced energy demand. Furthermore, most pharmaceuticals were broken down >85% (Figure 5).
Interestingly, a UV dose of 150 mJ/cm2, combined with a H2O2 concentration of 10 mg/L, seems to
be quite effective. This is a much lower dose than commonly applied for advanced oxidation of
contaminants in drinking water (often about 500 mJ/cm2). Hence, the costs of UV/H2O2, preceded by
humic acid removal by ion exchange, will be relatively low at about €0.23/m3 treated water.
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The main disadvantage of this system is the fact that it only results in a very local improvement of
the aquatic environment, and thus only will be effective if it is applied at a large scale, involving many or
all WWTPs. Furthermore, in the actual situation in the study area, the largest load of pharmaceuticals
is present in the Meuse already before it enters The Netherlands. Therefore, only adjusting the
Dutch WWTPs will not be very effective at improving the total surface water quality. Nevertheless,
the contribution of the tributaries can be significant in dry periods as can be seen in Figure 4. These dry
periods are more likely to occur in future and last longer, due to climate change, and these dry periods
result in the highest concentrations and associated risk [7]. To obtain an effective reduction of the load
all, or at least the majority, of WWTPs in the catchment area require additional treatment. Depending
on what needs protection, smart abatement solutions can be developed [37]. This is indicated by the
fourth option in Table 2. In that case the total surface water quality, and thus also the source water
quality for drinking water production would be significantly improved. However, this will involve
considerable investments and solutions have to be found in international cooperation, since the rivers
cross borders.
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The final solution, option five, may be additional treatment at the point of drinking water
production. This has been tested for the situation in Heel, applying advanced oxidation (UV/H2O2) [27].
As the UV-transmission of the intake water already is high (94%) due to the river bank filtration,
this process is very effective, removing >90% of most pharmaceuticals (Figure 6). By optimizing the
reactor geometry, it was shown that even in this case significant improvement of the process efficiency
(a 40% decrease in energy demand) could be obtained. Due the very high UV transmittance of the
influent of the UV reactor, reflection of UV irradiation at the outer reactor wall occurred. As a result,
in the pilot set-up applied, the actual UV dose could not be decreased below 365 mJ/cm2, but obviously,
for practical applications a lower UV dose would have been sufficient, as most pharmaceuticals
were removed to a high degree. Metabolites in general were also removed, although for 3-hydroxy
carbamazepine formation of about 25 µg/L could be observed, probably due to the conversion of
carbamazepine by the Advanced Oxidation Processes).

A drawback of this fifth option is that, although it can significantly improve drinking water quality
in the case of increasing pharmaceutical concentrations, it does not affect surface water quality and
thus the aquatic environment.
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4. Discussion

The above case study in Limburg has indicated that pharmaceuticals and metabolites can be
present in surface water in relatively high concentrations in the study area. The concentrations are
largely influenced by the river discharge flow and are expected to increase in future due to demographic
changes and prolonged dry periods. In these dry periods in particular, concentrations are high in the
tributaries and the raw water intake of the drinking water production. This is an undesired situation
from a precautionary perspective for drinking water quality and aquatic life.

Different abatement options have been considered in this case study ranging from changes in
the water system to the use of additional treatment technology for drinking water and wastewater
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treatment. It was concluded that the best measure would be to remove pharmaceuticals on all WWTPs
in the catchment. This would reduce concentrations of pharmaceuticals in the river system significantly,
creating a good chemical and ecological status, and it would make additional treatment in the drinking
water production superfluous. In this way the system could comply perfectly with the regulations
of the Water Framework Directive. However, the investment costs would be high and international
collaboration is required, probably making this a long-term solution [36,38].

The methodology presented here to identify the origin and fate of pharmaceutical compounds can
be used to identify WWTPs that act as hotspots for pollution. At these hot-spots, additional treatment
technology could be installed with priority to improve the surface water quality in the receiving water
bodies. If during the development of this abatement option the drinking water quality still would be
at risk, temporary additional treatment at the drinking water production point could be considered.
These temporary measures should always be considered in an integrated approach and should not be
used as an excuse for delaying treatment at WWTP hotspots.

The UV/H2O2 technology tested at the two sites in this case study is extremely suitable, either
in combination with anion exchange for EfOM removal as a permanent solution at WWTPs, or as
a temporary solution for drinking water if the water quality is at risk. The technology has a small
footprint, can be built in a modular fashion, and has a high removal efficiency for pharmaceutical
compounds. Furthermore, it can be operated at reasonable cost.

5. Conclusions

This case study has indicated and confirmed that pharmaceuticals and their metabolites are present
throughout the study area, originating from WWTP discharge. It has been shown that significant
contributions from effluents can be observed in smaller tributaries. The WWTP effluent contributes to
a large extent to the discharge and pollutant load. In our study it was observed that the top 10 of the
highest concentrations of pharmaceuticals and metabolites determine 90% of the total load.

To tackle the challenge of pharmaceuticals in the water cycle, we envision a combined approach
with a long-term approach to remove pharmaceutical compounds form WWTP effluent, with priority
on hotspots. If the drinking water quality is at risk, a temporary treatment solution for the drinking
water production with a small-footprint and modular flexible design can be considered. Based on our
pilot plant results, both systems the use of UV oxidation could be a viable solution. On the WWTPs,
this can be combined with EfOM removal to improve efficiency.
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