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Abstract: A key issue in assessing the spatial distribution of flood risk is considering risk information
derived from multiple flood sources (river flooding, drainage inundation, etc.) that may affect the
risk assessment area. This study proposes a method for assessing spatial flood risk that includes
flooding and inundation in small-basin areas through multivariate design rainfall. The concept of
critical rainfall duration, determined by the time of concentration of flooding, is used to represent
the characteristics of flooding from different sources. A copula method is adopted to capture the
correlation of rainfall amounts in different critical rainfall durations to reflect the correlation of
potential flooding from multiple flood sources. Rainfalls for different return periods are designed
based on the copula multivariate analysis. Using the design rainfalls as input, flood risk is assessed
following the rainfall–runoff–inundation–loss estimation procedure. A case study of the Otsu River
Basin, Osaka Prefecture, Japan, was conducted to demonstrate the feasibility and advantages of this
method. Compared to conventional rainfall design, this method considers the response characteristics
of multiple flood sources, and solves the problem of flood risk assessment from multiple flood
sources. It can be applied to generate a precise flood risk assessment to support integrated flood
risk management.

Keywords: spatial flood risk assessment; flooding and inundation; design rainfall; critical rainfall
duration; copula

1. Introduction

Spatial flood risk refers to the spatial distribution of flood risk across a risk assessment area.
Since disaster risk is usually represented by a probability distribution of negative consequence [1],
spatial flood risk refers to the spatial distribution of the probability distribution of loss. Therefore,
for each unit of a flood risk assessment area, a risk curve that describes the exceedance probability
distribution of loss should be estimated. Such spatial flood risk information is essential for various
flood risk countermeasures, including risk controls: for example, improving safety and reliability
of infrastructures [2] or risk financing: sharing risk using insurance or cat-bonds [3]. A flood risk
assessment area can be affected by multiple flood sources: flooding from a main river, flooding from
small rivers, inundation caused by heavy rainfall and drainage failure, even coastal flooding caused by
storm surges, etc. A challenge in spatial flood risk assessment is to consider risk from such multiple
flood sources.

From the perspective of “hazards of place” [4], flood risk from multiple sources can be viewed as
a multi-hazard risk problem [5,6]. Although urban inundation, river flooding, coastal flooding, etc. are
all grouped under flood hazard, their characteristics are not the same. For example, river flooding is
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related to dyke breaks, water overtopping the banks, and rainfall of the whole river basin. Assessing
river flooding risk requires considering the problem in light of the spatial scale of the river basin
and temporal scale of hours to days [7,8]. Because inundation is determined by drainage failure,
urban topography, and intensive rainfall within the city, assessing urban inundation risk focuses on
the spatial scale of a city and temporal scale of minutes to hours [9,10]. Such different considerations
on temporal and spatial scale usually leads to the independent assessment of flood risk from multiple
sources in practice. Flood risk needs to consider multiple flood sources, however, not just the sum of
the risk examinations of each source. This is important because flood risks from multiple sources may
be highly related; thus, they should be assessed in an integrated way.

The general framework for flood risk assessment, which includes the estimation of hazard,
exposure, and vulnerability, has been well established by previous studies [11–14]. These studies have
followed a procedure that includes the following: (1) the statistical analysis of rainfall or hydrological
data, generating rainfall or flood events of a given frequency for simulating hazard information;
(2) the estimation of exposure and vulnerability to evaluate the consequences of each rainfall or
flood event; and (3) the integration of all scenarios to estimate the flood risk curve. Researchers
continuously improve each step of the procedure by adopting new data from climate change projects
and recent advances in technology [15], using high performance flood and inundation simulation
models [16], focusing on the uncertainty of risk assessment [17], considering exposure and vulnerability
change due to social development [18], and optimizing the risk assessment procedures for ungauged
areas [19]. However, little attention has been paid to “multiple flood sources and their correlation” in
the framework of flood risk assessment.

Therefore, to address the problem of flood risk from multiple sources, some specific steps are
proposed. First, the flood risk assessment area’s response characteristics to hazards from different
flood sources are identified. Then, their relationship is analyzed using multivariate statistical methods.
Finally, this relationship is integrated into a simulation of multiple flood processes, which is followed
by spatial flood risk assessment, since design rainfalls are often used for flood risk assessment in
many areas. By applying this idea to design rainfall, we focus on the problem of how to integrate the
assessment of flood risk from flooding and urban inundation, which has attracted much attention in
Japan and other similar countries. Since many cities in Japan are located at the foot of mountains,
flooding and inundation are closely related. Rainfall and runoff from mountain regions contribute to
river flooding, while rainfall in the city contributes to urban inundation. However, both processes
may affect urban areas independently or simultaneously. Capturing such joint effects is necessary for
accurate spatial flood risk assessment.

When the basin area is small, meteorological conditions are usually similar within the basin and
the spatial heterogeneity of rainfall can be ignored. Hence, spatially identically distributed design
rainfall (hereafter, design rainfall) can be used for flood risk assessment. To assess spatial flood
risk and include flooding and inundation, while considering design rainfall, the concept of critical
rainfall duration determined by the time of concentration of flooding is introduced to represent the
characteristics of flooding from different sources. Then, a copula method is adopted to capture the
correlation between rainfall amounts for different critical rainfall durations and design rainfall with
regard to different return periods. Taking design rainfall events as input, hazard information can be
simulated by an integrated rainfall–runoff–inundation model. Flood risk in terms of economic loss is
assessed by combining hazard, exposure, and vulnerability information.

2. Methodology

2.1. Design Rainfall and Flood Risk from Multiple Sources

Design rainfall is a synthetic rainfall amount and temporal pattern associated with a return
period. Various methods for generating design rainfall for the purpose of river management or
drainage planning can be found in the literature [20–27]. Design rainfall is also widely used for
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flood risk assessment, especially in areas without reliable hydrological time series. Design rainfall
is naturally connected to flood risk assessment because it serves as an input for flood simulation.
However, conventional rainfall design methods focus on analyzing rainfall data but rarely consider
the requirements of flood risk assessment. For example, the procedure of conventional design
rainfall-based flood and inundation risk assessment is shown in Figure 1. In this procedure,
intensity-duration-frequency (IDF) analysis plays an important role. The rainfall used for flood
risk assessment is designed from IDF curves. However, river flooding risk assessment may require
consideration of longer duration design rainfall, whereas inundation risk assessment requires shorter
duration design rainfall. Conventional IDF-based design rainfall may fail to catch such an important
relationship and cause inaccuracy if river flooding and inundation risk are being assessed in combination.
When assessing spatial flood risk, design rainfall should be able to directly or indirectly reveal the
characteristics and relationship of flooding and inundation from multiple sources for the flood risk
assessment area. It is necessary to rethink the conventional methods and consider the purpose of risk
assessment and local peculiarities [28].
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Figure 1. Conventional design rainfall-based flood and inundation risk assessment procedure.

The response characteristics of a flood risk assessment area to flooding and inundation can be
represented by the time of concentration, which is defined as the time required for rainwater to
propagate from the top of a slope at the most remote portion of the basin to the outlet [29]. For small
basins with a quick response time, it is reasonable to set the time of concentration as the critical rainfall
duration, in which rainfall, including peak rainfall, will form the peak flood volume. As a flood’s
concentration time may be different for different flood sources, the critical rainfall duration may also
be different. The relationship between the response characteristics of flooding and inundation from
different sources can therefore be treated as the correlation between rainfall amounts and different
critical rainfall durations. Many empirical formulas have been proposed to estimate the time of
concentration based on the natural characteristics of a basin (e.g., path length, basin slope, land use),
including the Kraven’s formula, Izzard’s formula, Kodoya and Fukushima’s formula, Loukas and
Quick’s formula, and Michailidi’s formula [21,30]. Predetermining the time of concentration from
different flood sources and using them as critical rainfall durations to analyze rainfall data and
generate rainfall events is likely to be an efficient way to assess spatial flood risk considering multiple
flood sources.
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Figure 2 illustrates the approach: on the left, the light-blue area is the risk assessment area; the pink
areas are runoff areas. The design rainfall is shown above. It can be seen that a location (indicated
by a star) in the risk assessment area will be affected by three flood sources: flooding from small
river A, flooding from large river B, and inundation from the risk assessment area itself. For small
basin A, the time of concentration is two hours, which means that a flood can reach the light-blue
area in two hours from basin A. In basin A, a maximum rainfall within a two-hour period would
most likely cause a flood in the risk assessment area (shown in the red box of the design rainfall).
Likewise, for basin B, a maximum rainfall within a three-hour period would most likely cause a flood
in the risk assessment area (shown in the green box of the design rainfall). For inundation in the
risk assessment area caused directly by rainfall, the time of concentration would probably be very
short. However, because usually only hourly data are available, the concentration time is defined as
one hour. Hence, the probability distribution of a maximum one-hour rainfall reflects the maximum
likelihood of inundation risk in the risk assessment area. The probability distribution of a maximum
two-hour rainfall reflects the maximum likelihood of flooding risk from river A, and the probability
distribution of a maximum three-hour rainfall reflects the maximum likelihood of flooding risk from
river B. To evaluate the flood risk from both river A and river B, as well as the risk of inundation,
the joint distribution of the maximum one-hour, two-hour, and three-hour rainfall events should be
evaluated, and their correlation should be reflected in the rainfall design. The corresponding solution
procedure based on multivariate rainfall design is presented in the right portion of Figure 2.
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solution procedure.

2.2. Copula Method for Rainfall Design

Copulas are functions that join or “couple” multivariate distribution functions to one-dimensional
marginal distribution functions [31]. For a bivariate case, the joint cumulative distribution function
H(x,y) of any pair (x,y) of continuous random variables can be written as

H(x, y) = C(F(x), G(y)) x, y ∈ R, (1)

where F(x) and G(y) are continuous marginal distributions, so that C:(0,1)2
→(0,1) such that all is a

copula [32]. This method separates joint distribution into a copula function and marginal distributions,
and it has the advantage that the selection of an appropriate model for the dependence between varieties,
represented by the copula, can then proceed independently of the choice of marginal distributions.
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In this study, the copula method was adopted to analyze the correlations between and build
joint distributions of rainfall amounts with critical rainfall durations for different flood sources,
thus representing the correlations among them. Assuming there are n flooding sources that affect a
risk assessment area, the critical rainfall duration for each flooding source is t1,t2 . . . tn, and rt1, rt2
. . . rtn are the rainfall amounts for critical rainfall durations. Then, a joint distribution can be derived
as follows:

F(rt1, rt2 . . . , rtn) = C(F1(rt1), F2(rt2), . . . , Fn(rtn)) (2)

where F is the joint distribution, and F1, F2, . . . Fn are marginal distributions. Under the assumption of
spatially identical rainfall, this joint distribution includes critical rainfall requirement information for
multiple flooding sources. The steps for using the copula method are as follows:

First, the critical rainfall durations for each flooding source t1, t2 . . . tn are identified. The empirical
methods discussed in Section 2.1 can be used.

Second, the correlation of rainfall amounts with different critical rainfall durations is estimated—i.e.,
the copula function C is estimated.

Genest and Favre introduced some 20 types of copulas that may be suitable for hydrological
studies, including Archimedean copulas, extreme value copulas, metaelliptical copulas, and other
miscellaneous families of copulas [33]. For parameter estimation, a widely used method for estimating
the copula parameter is a two-step parametric procedure, often referred to as the “inference from
margins”, or IFM method [34]. This method first requires fitting a marginal distribution and then
estimating the copula parameter via maximum likelihood estimation using data transferred from
the marginal distribution. This method usually performs well, but association parameter estimates
derived from IFM clearly depend on the choice of marginal distributions, and thus always risk being
unduly affected if the models selected for the margins turn out to be inappropriate [35]. Since the
dependence structure captured by a copula has nothing to do with the individual behavior of the
variables, inferences about copula parameters rely only on the ranks of the observations. Instead of
using a parametric method, rank-based nonparametric methods, such as the inversion of Kendall’s tau
or Spearman’s rho, and semiparametric methods, such as Maximum Pseudo Likelihood, can be other
possible choices.

There are two methods for constructing a high-dimensional copula: nested Archimedean
construction (NAC) and pair copula construction (PCC). NAC is convenient for simple and nested
structures; however, PCC is preferred as a more flexible method for multivariate copulas. PCC adopts
a hierarchical idea and takes advantage of the density function. Its modeling scheme is based on a
decomposition of multivariate density into d (d – 1)/2 bivariate copula densities, of which the first d – 1
is unconditional, and the rest are conditional [36]. There are two main types of PCC: canonical vines
and D-vines [37]. D-vines are more frequently used; however, fitting a canonical vine is advantageous
when a particular variable is known to be a key variable that governs interactions in the data set [38].

For copula selection, the characteristics of data and the size of data should be considered.
The most intuitive approach would be through a graphical diagnostic: either directly compare a
scatterplot of paired data with a copula-generated artificial data set, or compare the level curves of the
empirical distribution with the level curves of the theoretical distribution [33]. In addition, information
criteria, such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC),
frequently appear in some literature on copula application for the quantitative validation of the chosen
copula [39]. Another means of quantitative validation is goodness of fit (GOF). Genest et al. reviewed
goodness-of-fit tests for copulas and recommended some Cramer-von Mises statistics, including Sn,
SnB, SnC, and SnK [40].

The third step is to fit the marginal rainfall distributions F1(rt1), F2(rt2), . . . , Fn(rtn). Many studies
have been conducted on fitting extreme rainfall distributions, and several types of distributions have
been found that provide a good fit with rainfall data. However, no distribution can be universally
fitted to all rainfall data due to the variable nature of rainfall, different purposes of studies, different
locations, and so forth. For example, De Michele and Salvadori found generalized Pareto to be the
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best-fitted distribution [41], but Kao and Govindaraju found it to be the weakest [42]. Papalexiou and
Koutsoyiannis used a generalized extreme value distribution to investigate the extreme daily rainfall
all over the world and pointed out that the geographical location on the globe may affect the value of
the shape parameter [43]. Therefore, the following strategy is normally used: several distributions,
including Pearson distribution, generalized Pareto, generalized extreme value distribution, exponential
distribution, gamma distribution, lognormal distribution, and Weibull distribution, are selected as
candidates and tested for suitability based on a Kolmogorov–Smirnov test, as well as AIC.

The fourth step is to construct a joint distribution F(rt1, rt2 . . . , rtn) by combining step 2 and step
3. Once the marginal distributions and copula model are determined, the joint distribution can be
constructed. Nelsen described joint distribution for a bivariable copula [31]. However, an explicit joint
distribution for a high-dimensional copula is not always easy to obtain. Instead of using explicit joint
distributions, the algorithms for sampling values from vine copulas proposed by Aas et al. can be
used [37]. Note that the order of the steps is described in consideration of using the semiparametric
method to estimate the copula function. If the parametric IFM method is used, the order of step 2 and
step 3 is reversed.

Finally, rainfalls are designed based on the joint distribution according to the return periods.
This step is empirical design work. A detailed description is provided in the case study section of
this paper.

2.3. Spatial Flood Risk Assessment

Considering design rainfalls as input, the flood risk is assessed in terms of economic loss
following the rainfall–runoff–inundation loss estimation procedure. A rainfall–runoff–inundation
model combined with a geographic information system (GIS) is developed to support spatial flood
risk assessment [44]. Design rainfalls are simulated to obtain the probability distribution of hazard
information such as water depth, flow velocity, and so forth. Using exposure and vulnerability
information, economic loss can be calculated. Economic loss encompasses property losses and business
interruption losses [45]. Since hazard exposure and vulnerability information are both spatially
distributed, economic losses can be spatially estimated.

In this study, design rainfalls are derived from the joint probability distribution. Therefore,
for certain joint probabilities, various design rainfalls can be generated. Assuming λi is the exceedance
probability of a rainfall event, and fi(x) is the probability distribution of loss under the condition
of rainfall occurrence, the exceedance probability EP(x) of loss x can be estimated using the
following formula:

EP(x) =
∑

i

(λi − λi−1) ×

∫
∞

x
fi(x)dx (3)

where i represents the number of certain probabilities that are considered. Although the probability of
hazard occurrence can be a continuous variable, given the cost of flooding and inundation simulation,
usually only certain probabilities, such as 1/10, 1/20, 1/50, 1/100, and so forth, are considered. A sketch
map is shown in Figure 3 to help understand the risk curve. The integrated blue areas conditioned
on the probability of rainfall occurrence are the exceedance probabilities of loss x. The exceedance
probability of x includes the entire probability distribution of loss, when the probability of rainfall
occurrence is low, and a part of the probability distribution of loss, when the probability of rainfall
occurrence is relatively high. See references [3,46] for further discussion of the risk curve.
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3. Case Study

3.1. Study Area

The study area is located in the southern part of Osaka Prefecture, Japan. The Otsu River,
which originates in the Katsuragi Mountains and flows about 68 km westward to Osaka Bay, is a river
within Osaka Prefecture that consists of five branches. The river basin extends from 34◦20′ N to 34◦30′

N and from 135◦23′ E to 135◦21′ E with an area of 102.2 km2, and it includes three cities. The average
annual temperature in the study area is 16 ◦C, and the average annual rainfall is about 1200 mm.
Rainfall data were derived from four rain gauging stations with 49 years of hourly rainfall records.

Historical records show that the study area has been prone to flood-related disasters. From 1950
to 2011, 14 flooding events were recorded. Local inundation and river flooding are the main causes
of flood-related disasters. In particular, the downstream portion of the basin, which is flat and
characterized by the confluence of three rivers, has a high probability of flooding from these rivers and
from local inundation. In addition, population and properties are concentrated in the downstream
portion of the basin. Accordingly, this area should first be considered as a risk assessment area (RAA).
For the risk assessment area, flood sources include river flooding from the Ushitaki River, which is
controlled by runoff in the upper part of the Ushitaki sub-basin (SB1); river flooding from the Matsuo
River, which is controlled by runoff in the upper part of the Matsuo sub-basin (SB2); river flooding
from the Makio River, which is controlled by runoff in the upper part of the Makio sub-basin (SB3);
and local inundation from urban drainage or slope flow, which is controlled by runoff in the flood risk
assessment area. A map of the Otsu River Basin is shown in Figure 4.

3.2. Rainfall Analysis and Rainfall Design

3.2.1. Identification of Critical Rainfall Durations and Rainfall Data Pre-Processing

According to the empirical Kraven formula [9], the flood concentration time for SB1 is 2 h, 1.6 h
for SB2, and 2.7 h for SB3. Since there is no large reservoir or dam in the runoff areas, the flood
concentration time suggests that a 2 h maximum rainfall amount in SB1 and SB2, and a 3 h maximum
rainfall amount in SB3 will produce a flood peak in the risk assessment area. For the flood concentration
time in the risk assessment area itself, a 1 h rainfall amount is considered critical. Thus, the analysis of
the joint probability of flooding from multiple sources becomes an analysis of the joint probability
of 1 h, 2 h, and 3 h rainfall amounts under the assumption of spatially identical rainfall. Before the
analysis, rainfall data were pre-processed, which included obtaining the basin average rainfall from
four rain gauging station data by the Thiessen polygon method and dividing the rainfall time series
into rainfall events using the interval time method [20,47,48].
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3.2.2. Estimating the Correlation of Rainfall Amounts with Different Critical Rainfall Durations

Although all rainfall data could be used to evaluate the dependence structure, flood risk analysis is
more concerned with extreme rainfall events. Therefore, annual maximum rainfall events corresponding
to 1 h, 2 h, and 3 h durations were selected. Data triplets were selected to analyze the correlations of
the maximum 1 h, 2 h, and 3 h rainfall amounts in extreme rainfall events. For each year, using the
annual maximum 1 h rainfall amount as a criterion, an extreme event is selected. Then, one triplet
of (1 h, 2 h, 3 h) rainfall amount data is obtained. The same is done using the annual maximum 2 h
or maximum 3 h rainfall amount as a criterion. Since we have 49 years’ worth of records, we have
49 × 3 = 147 triplets. However, many of the triplets overlap because annual maximum 1 h, 2 h, and 3 h
rainfall amounts may occur during the same rainfall event, or two of them may occur during the same
rainfall event. Removing repeated triplets resulted in 68 data triplets (1 h, 2 h, 3 h rainfall amounts),
which were adopted for the trivariate copula analysis.

In our study, peak rainfall is treated as the key variable, and the relationship between 1 h rainfall
amount and 2 h rainfall amount, or the relationship between 1 h rainfall amount and 3 h rainfall
amount, is relatively more important than the relationship between 2 h rainfall amount and 3 h rainfall
amount. Therefore, a three-dimensional canonical vine was constructed. To reduce uncertainties
from the choice of marginal distributions, the maximum pseudo-likelihood method was used for
parameter estimation.

Among the roughly 20 types of copulas mentioned in Section 2.2, AIC shows that a Gumbel
survival copula with a parameter of 3.357, a Gaussian copula with a parameter of 0.804, and a BB7
copula with parameters of 2.923 and 3.451 can properly fit the 1 h/2 h rainfall correlation, the 1 h/3 h
rainfall correlation, and the conditional 2 h/3 h rainfall correlation, respectively. Figure 5 shows 3-D
scatter points of pseudo data and fitted copula densities for 1 h/2 h, 1 h/3 h, and conditional 2 h/3 h
rainfall amounts, from which the correlation of rainfall amounts of different durations can be illustrated.
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3.2.3. Fitting of Marginal Distributions

A major advantage of constructing copula-based joint distributions is that the copula structure
and marginal distribution can be estimated independently. The 68 data triplets are used to estimate the
copula structure. However, according to block extreme value theory, for each year, only one value
for each 1 h, 2 h, and 3 h rainfall amount can be used. Therefore, three sets of 49 data points are used
to estimate the marginal distribution. The AIC and KS tests indicate that among the set of candidate
distributions mentioned in Section 2.2, for annual maximum 1 h rainfall, the best-fitting distribution is
a lognormal distribution with parameter (3.098, 0.359); for annual maximum 2 h rainfall, the best-fitting
distribution is Pearson 3 with parameter (1.76, 16.259, 10.725); and for annual maximum 3 h rainfall,
the best-fitting distribution is lognormal with parameter (3.672, 0.369), as shown in Figure 6.
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3.2.4. Construction of Joint Distributions and Generation of Correlated Critical Rainfall

Taking advantage of algorithms proposed by Aas et al. [37], random copula values can be
generated. Then, a random value of rainfall amount with critical durations can be obtained as the
inverse of the marginal distributions. Figure 7 shows 10,000 random values generated by copula
functions together with observed real rainfall data. From this figure, it can be seen that the correlation
of real rainfall data is captured by the copula model. Therefore, it is reasonable to use the simulated
random values for flood risk assessment.
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3.2.5. Design and Generation of Rainfall Based on Joint Distribution

Assuming a peak appears at the center of each rainfall event, the amount of 1 h, 2 h, and 3 h
rainfall can be distributed in the following way: Let Tp represent the time of peak rainfall, rtp represent
the amount of peak rainfall, and r1h, r2h, r3h represent the 1 h, 2 h, and 3 h rainfall amounts simulated
from the joint distribution of rainfall events, respectively. The rainfall amount for the critical duration
of three hours can be determined as follows: rtp = r1h; rtp-1 = r2h-r1h; rtp+1 = r3h-r2h. Since the generated
rainfall data contain not only information about 1 h, 2 h, and 3 h rainfall amounts, but also information
about the joint probability of these events, the design rainfall event will share the same probability.
In addition to the critical rainfall durations, the remaining duration of a rainfall event will also affect
runoff but contribute less to the flood peak. Therefore, the remaining duration can simply be added
using the statistical average of historical rainfall events. Using this strategy, rainfall was designed
for the case study area. Because a joint probability function was adopted, more than one rainfall
value can be expected for a certain return period. In Figure 8, five rainfall events with 50-year and
100-year return periods are shown. The generated rainfall can be interpreted as the design rainfall,
which includes contributions from multiple flood sources such as, in our study, river flooding from the
Ushitaki, Matsuo, and Makio Rivers, and local inundation from urban drainage. It is obvious that even
for the same return period, variations in generated rainfall reflect different combinations of floods from
different sources.
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3.3. Spatial Flood Risk Assessment

Using the design rainfall from the previous section as input, flood scenarios under different
rainfall situations can be simulated. Figure 9 presents two examples of flood simulations under
different rainfall scenarios but with the same return period. Based on this flood simulation, the spatial
distribution of hazards can be understood. It is interesting to note that due to the joint probability
analysis of rainfall, different rainfall scenarios can be generated, even under one joint probability; thus,
inundation can be different, even for the same return period.Water 2019, 11, x FOR PEER REVIEW 11 of 16 
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Figure 9. Example of flood simulations (maximum inundation depth) under different rainfall scenarios
using a 100-year return period.

To evaluate property loss caused by floods, exposure data such as population density, enterprises,
industrial types, and number of employees should be considered. This information can be obtained
and processed from the census and economic census data of Japan. Fragility curve information,
which describes the relationship between water depth and loss ratio, can be found in [45,49].

Loss can be calculated by combining hazard, exposure, and vulnerability. A risk curve can be
estimated after calculating all rainfall events using Equation (3). Figure 10 shows an example of a
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risk curve for a single mesh cell. For each return period, expressed here as exceedance probability,
several rainfall events are generated. As stated above, the rainfall events are simulated from the
joint distribution of rainfall amounts of different critical durations, which represent the influence of
different flooding sources on the risk assessment area. Therefore, the distribution of loss at a certain
return period reveals the uncertainty of the combination of floods from different flooding sources.
It is obvious that as many rainfall events as possible should be included to produce a better fit of the
loss distribution for each return period. However, given the cost of flood simulation, only a limited
number of rainfall events are chosen. This can be improved in future studies. The risk curve describes
the exceedance probability distribution of loss. For example, in Figure 10, the exceedance probability
of economic loss of 140,000 Japanese yen is about 0.02, which means, considering all the floods that
may happen in this area, the probability of economic loss beyond 140,000 is about 0.02.

Water 2019, 11, x FOR PEER REVIEW 11 of 16 

 

 

Figure 9. Example of flood simulations (maximum inundation depth) under different rainfall 
scenarios using a 100-year return period. 

To evaluate property loss caused by floods, exposure data such as population density, 
enterprises, industrial types, and number of employees should be considered. This information can 
be obtained and processed from the census and economic census data of Japan. Fragility curve 
information, which describes the relationship between water depth and loss ratio, can be found in 
[45,49]. 

Loss can be calculated by combining hazard, exposure, and vulnerability. A risk curve can be 
estimated after calculating all rainfall events using Equation (3). Figure 10 shows an example of a risk 
curve for a single mesh cell. For each return period, expressed here as exceedance probability, several 
rainfall events are generated. As stated above, the rainfall events are simulated from the joint 
distribution of rainfall amounts of different critical durations, which represent the influence of 
different flooding sources on the risk assessment area. Therefore, the distribution of loss at a certain 
return period reveals the uncertainty of the combination of floods from different flooding sources. It 
is obvious that as many rainfall events as possible should be included to produce a better fit of the 
loss distribution for each return period. However, given the cost of flood simulation, only a limited 
number of rainfall events are chosen. This can be improved in future studies. The risk curve describes 
the exceedance probability distribution of loss. For example, in Figure 10, the exceedance probability 
of economic loss of 140,000 Japanese yen is about 0.02, which means, considering all the floods that 
may happen in this area, the probability of economic loss beyond 140,000 is about 0.02. 

 

Figure 10. Risk curve in terms of economic loss. (The exchange rate between U.S. dollar and Japanese 
yen is about 1:111.). 

Figure 10. Risk curve in terms of economic loss. (The exchange rate between U.S. dollar and Japanese
yen is about 1:111.).

Figure 11 shows the spatial distribution of flood risk in terms of expected loss, which is an
integration of the risk curve. From the figure, it can be seen that there are four locations at risk in
the study area: the area along the middle of Ushitaki River, the area between Matsuo downstream
and Makio downstream, and the area to the right of Makio downstream and the upper part of Makio
River. It seems that the expected loss in each mesh is not very large. On one hand, this result is due to
the small size of the mesh, which includes limited exposures. On the other hand, as Haimes pointed
out, expected loss may make risk look moderate [50]. However, the risk curve at each mesh provides
complete flood risk information. It is interesting to note that both the values and the shapes of the
risk curves can be very different from mesh to mesh, which reveals the local flood risk characteristics.
For example, the risk curve of a mesh between Matsuo downstream and Makio downstream (as shown
in the top left of Figure 11) shows a gentle slope at the tail. Compared with the risk curve of a mesh
along the middle of Ushitaki River (as shown in the bottom left of Figure 11), this result indicates that
the former area is relatively more sensitive to the hazard return period. If the occurrence probability
changes from once in 50 years to once in 200 years, the economic loss in the former area increases
more than in the latter area. In other words, considering the economic reasonability, to prevent flood
risk, countermeasures in the former area should take into account extreme events that occur once in
100 years or more; however, in the latter area, it is sufficient for countermeasures to take into account
events that occur once in 50 years.
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4. Discussion

The proposed methodology for spatial flood risk assessment in small-basin areas considering both
inundation and flooding is based on a reinterpretation of design rainfall. The design rainfall in this
study is not only a result of statistical analysis of rainfall data, but also gives significant consideration
to flood simulation input. Thus, it accounts for risk characteristics of different flood sources. Therefore,
in the process of rainfall statistical analysis and rainfall design, emphasis is placed on pre-estimation of
response characteristics of a flood risk assessment area to different flood risk sources and reflecting
these characteristics into rainfall design.

This study began with the problem of how to assess flood risk from multiple flood sources.
However, with the assumption of spatially identical rainfall, it focused on the problem of the
temporal correlation of design rainfall. Compared to design rainfall methods based on conventional
intensity-duration-frequency (IDF) curves (e.g., the Chicago method), our approach has two advantages
for solving the problem of flood risk assessment from multiple flood sources: (1) Critical rainfall
durations are determined by the time of concentration of flooding from different flood sources that
connect flood risk assessment with design rainfall. (2) Copula-based rainfall analysis considers the
joint distribution of rainfall amounts with different critical durations, which enables the generation
of different types of rainfalls rather than a deterministic type of rainfall for a certain return period.
In addition, since copula-based design rainfall uses joint probability and IDF-curve-based design
rainfall uses only marginal probability, according to the copula’s Frechet–Hoeffding bounds [30],
given a return period, copula-based design rainfall will always be larger than IDF-curve-based design
rainfall, as illustrated in Figure 12. With regard to this study, this phenomenon can also be interpreted
such that flooding from multiple sources will always be more dangerous than flooding from only a
single source. Hence, flood risk will be underestimated when conventional IDF-curve-based design
rainfall is applied to consider flooding from multiple flood sources.

The proposed methodology is suitable for small-basin areas, where spatially identical rainfall can
be used for estimating both river flooding and urban inundation. For larger study areas, river flooding
and urban inundation may be controlled by different rainfalls. In these situations, more complex
spatiotemporal correlations of rainfall should be considered. Besides design rainfall, stochastic-based
rainfall generators which preserve the auto- and cross-dependence structures across scales provide
alternative approaches to consider this problem. However, the precision of generated rainfall time
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series data is sometimes not satisfactory. Nonetheless, these approaches are being continuously
developed [51,52] and could be better in the future. In recent studies, long-term climate ensemble
forecasting data simulated by global circulation model (GCM) or regional climate model (RCM) are
used for flood risk assessments [15,46]. It is a possible solution for solving problems regarding flood risk
from multiple sources. However, the high cost and uncertainties of ensemble forecasting prevent the
widespread use of this method in flood risk assessment practice. Methodologies based on traditional
rainfall analysis and rainfall design are still worthy of further study.
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5. Conclusions

This study has proposed a new methodology for spatial flood risk assessment in small-basin
areas considering both inundation and flooding. A case study, conducted in the Otsu River Basin,
Osaka prefecture, Japan, demonstrates this methodology. From this study, the following conclusions
can be drawn.

(1). Considering risk information derived from multiple flood sources that may affect the risk
assessment area is an important issue in assessing the spatial flood risk. Design rainfalls are usually
used for flood risk assessment: however, the conventional method of design rainfall may lead to an
underestimation of flood risk.

(2). This study illustrates that the copula method is suitable for constructing a joint probability
distribution for rainfall design. Under the assumption of spatially identical rainfall, copula-based
design rainfall provides a possible solution for small basin areas to consider flood risk from both
inundation and river flooding. In addition, the requirement for an integrated rainfall–runoff–inundation
simulation is also emphasized.

(3). Many previous studies concerned with “hazard of place” use a weighted index to integrate
multi-hazards [4,5], which is reasonable if the relation between multi-hazards is weak. However,
some closely related hazards, such as urban inundation, river flooding, and coastal storm surge
inundation, should be integrated in a more realistic way. In this paper, we trace urban inundation and
river flooding to rainfall, reflect their relation through design rainfall and integrated flood simulation,
and, finally, adopt the risk curve at mesh to represent the total flood risk from multiple sources.

(4). Risk curve at meshes provides complete spatial flood risk information [46]. Using expected
value, conditional expected value, or value of certain return periods calculated from the risk curves as
indicators, risk maps can be made. In the case study, the main areas at risk are identified. The risk curve
at meshes can facilitate integrated flood risk countermeasures. For example, through the spatially
distributed risk curve, policy makers can determine in which place they should adopt a 1/100 years
mitigation measure and in which place a 1/50 years mitigation measure is economically reasonable.
Also, the spatially distributed risk curves provide basic information for risk transfer and risk sharing
between areas, and agreements to this end can only be researched in areas that accurately understand
their own and others’ risk.
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Further study in this area will be focused on two aspects: First, the proposed methodology of
design rainfall is suitable only for flood risk assessment in small river basins because of the assumption
of spatially identical rainfall. Future research could be conducted to extend analysis to large river basins
by considering more complex spatiotemporal correlations. Second, this paper provides a new way to
view the problem of “hazard of place”. Additional hazards, besides river flooding and inundation,
can be included as technology improves and the estimation of high dimensional correlations and the
development of simultaneous multi-hazards simulation models becomes more feasible.
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