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Abstract: Water resource management has faced challenges in recent decades due to limited in situ
observations and the limitations of hydrodynamic modeling. Data assimilation techniques have been
proposed to improve hydrodynamic model outputs of local rivers (river length ≤ 1500 km) using
synthetic observations of the future Surface Water and Ocean Topography (SWOT) satellite mission
to overcome limited in situ observations and the limitations of hydrodynamic modeling. However,
large-scale data assimilation schemes require computationally efficient filtering techniques, such as
the Local Ensemble Transformation Kalman Filter (LETKF). Expansion of the assimilation domain to
maximize observations is limited by error covariance caused by limited ensemble size in complex river
networks, such as the Congo River. Therefore, we tested the LETKF algorithm in a continental-scale
river (river length > 1500 km) using a physically based empirical localization method to maximize the
observations available while filtering error covariance areas. Physically based empirical local patches
were derived separately for each river pixel, considering spatial auto-correlations. An observing
system simulation experiment (OSSE) was performed using empirical localization parameters to
evaluate the potential of our method for estimating discharge. We found our method could improve
discharge estimates considerably without affected from error covariance while fully using the
available observations. We compared this experiment using empirical localization parameters with
conventional fixed-shape local patches of different sizes. The empirical local patch OSSE showed
the lowest normalized root mean square error of discharge for the entire Congo basin. Extending
the conventional local patch without considering spatial auto-correlation results in very large errors
in LETKF assimilation due to error covariance between small tributaries. The empirical local patch
method has the potential to overcome the limitations of conventional local patches for continental-scale
rivers using SWOT observations.

Keywords: hydrological data assimilation; local patch; observation localization; Local Ensemble
Transformation Kalman Filter

1. Introduction

Management of water resources is essential to society, as surface waters are vulnerable to floods
and droughts. Although river discharge is the primary focus of water resource assessments [1], stream
gauges have inadequate temporal and spatial resolution for detailed assessment of water resources.
Recent advances in satellite technology have enabled estimation of river discharge from remote sensing
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data, complementing data collected with existing in situ gauge networks [2]. The next-generation
satellite altimetry mission Surface Water and Ocean Topography (SWOT) is intended to provide
simultaneous mapping of inundated areas and inland surface waters (i.e., rivers, lakes, wetlands,
and reservoirs) that vary both temporally and spatially using a Ka-band radar interferometer [3,4].
The channel centerline and width (above 50 m) [5], which can be extracted from the dynamic water
mask of SWOT [6], can be used to measure water storage changes in terrestrial water bodies and
characterize river discharge [7].

Data assimilation methods can be used to extract information from space-borne measurements that
is not directly observable [8]. These methods are useful for reducing the uncertainty of hydraulic models
and thus facilitating flood monitoring [9]. Andreadis et al. [10] and Biancamaria et al. [5] used synthetic
SWOT measurements to correct river hydrodynamic model forecasts in the Ohio (50 km reach) and
Ob (1120 km reach) Rivers, respectively. Andreadis et al. [11] proposed a methodology for improved
flood forecasting with a hydrodynamic model based on satellite water elevation and water area data
(from nadir altimetry, LiDAR, synthetic aperture radar (SAR) imagery and SWOT) in a 500-km reach of
the Ohio River. Durand et al. [12] and Yoon et al. [2] developed methods for estimating bathymetry
and slope in a 240 km reach of the Amazon River floodplain and a 1580 km reach of the Ohio River,
respectively. Pedinotti et al. [13] accurately estimated Manning’s coefficient based on virtual SWOT
observations of the Niger Basin. However, these studies focused only on local rivers or portions of a
main stem without considering its tributaries, and were conducted in basins much smaller than the
Congo River.

Large-scale hydrologic data assimilation demands an efficient Kalman filtering technique with a
low computational burden. The computationally efficient Local Ensemble Transformation Kalman
Filter (LETKF: [14]) has been used extensively for numerical weather prediction (NWP) at the global
scale [6–8], because it can process a large number of variables efficiently in a local patch. This method
has the ability to separately update the forecast for each pixel using the local patch, and this operation
can be executed in parallel. Therefore, LETKF has the potential to be an efficient algorithm for
estimation of river hydrodynamics with a low computational burden.

River hydrodynamics exhibit a large degree of spatial dependency, and thus increasing patch size
enables extraction of information from distant observations. Conventionally, a square shaped local
patch is defined to obtain information from distant observations. However, large conventional local
patches introduce large sampling errors and may destabilize LETKF assimilation [15]. Most hydrologic
data assimilation studies examine local river sections (river length ≤ 1500 km) without considering
tributaries (e.g., Andreadis et al. [10], Biancamaria et al. [5]; Yoon et al. [2]). Hence, these studies could
remove the error covariance caused by small tributaries. In contrast, when assimilating an entire river
basin like that of the Congo River, local patch shape and size must be adaptively selected for each river
pixel to maximize the number of observations while reducing error covariance. Although local patch
size and shape selection for NWP has been well studied (e.g., Houtekamer et al. [16]; Anderson [17];
Miyoshi et al. [15]), understanding the effect of the local patch size and shape, on hydrologic data
assimilation remains limited.

When assimilating distant observations, spurious errors can occur due to error covariance caused
by the limited ensemble size [18], despite proper local patch shape and size selection. The most
common method for reducing such errors is observation or covariance localization, which uses a
Gaussian [15,18,19] or fifth-order piecewise rational [2,5,20] weighting function. However, identification
of the most appropriate localization parameters using ad hoc methods is a challenge. Most previous
studies of hydrologic data assimilation have employed different covariance localization parameters for
different river networks; e.g., 10 km [5], 250 km [21], and 200 km [20] for the Ob, Tennessee, and Niger
rivers, respectively. Usually, such studies used a constant localization weighting function (constant
localization parameter), as they focused on only one river stem. For complex river networks, such
as the Congo, no method has yet been proposed to select the localization parameters for hydrologic
data assimilation.
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The main aim of this study is to examine the potential of an adaptive empirical localization
technique (e.g., local patch and observation localization parameter) for assimilating water surface
elevation (WSE) to estimate river discharge for a continental-scale river (river length > 1500 km).
The empirical local patch was obtained considering the spatial auto-correlations of the simulated
WSE for individual river pixels separately. We hypothesize that the empirical local patch proposed
here can filter out observations affected by error covariance and thereby obtain information from
distant observations more effectively than the conventional local patch. We adopted LETKF [14] to
assimilate WSE for the integration of future SWOT observations into a global river hydrodynamic
model, Catchment-based Macro-scale Floodplain (CaMa-Flood: [22]), achieving continental-scale data
assimilation at a reasonable computational cost. In Section 2, we describe the study area. A detailed
description of the assimilation methodology is presented in Section 3 and the experimental conditions
are explained in Section 4. Results and discussion are provided in Section 5, followed by our conclusion
in Section 6.

2. Study Area

In this study, we focused on the Congo River (Figure 1a), which is the second-longest river in
Africa. The major sources of the Congo River are located in the East African highlands, including Lake
Tanganyika and Lake Mweru. The river is approximately 4700 km in length, with a drainage area
of 4 million km2 and an average discharge of 41,000 m3/s at its mouth. Its major tributaries include
the Alima, Aruwimi, Elila, Itimbiri, Kwa, Lomani, Lowa, Lufira, Lukuga, Lulonga, Luvua, Mongala,
Sangha, Ruki, and Ubangi. Figure 1a shows a map of the Congo River, with red dots indicating the
locations used for results comparisons, which are labeled C1–C6 from upstream to downstream.

Two flow regimes can be observed in the Congo Basin, depending on the geographic location.
North of the Equator, with contrasting wet and dry seasons, a single peak is present in the annual
discharge distribution. The Oubangui tributary shows a marked maximum discharge between
September and November, and strongly reduced discharge between February and April. In the
southern Congo basin, the Lualaba, Luvua and Luapula tributaries also show single peaks, but these
occur between March and May, with significantly lower discharge between September and November.
Thus, the downstream (Kinshasa) reach of the Congo River shows two hydrographic peaks, with
reduced flow in June and July. Furthermore, Figure 1b shows a hydrograph at the Kinshasa Global
Runoff Data Centre (GRDC) location with two clear peaks: a small peak in March-April and a large
peak in November–December.
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Figure 1. (a) Map of the Congo River. Red dots indicate locations C1–C6 considered in this study.
The locations of Kinshasa and Kisangani are represented by black dots. The tributaries Lualaba, Lindi,
Lomami, Kasai, and Oubangui are shown. (b) Hydrograph at Kinshasa for 1980–1983 obtained from
the Global Runoff Data Centre (GRDC) dataset.
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The Congo basin was selected as our study area for several reasons. First, the Congo Basin is a
major river network, i.e., the second longest on the African continent. Second, it is affected by a low
frequency of SWOT observations, as SWOT observations are less common near the equator than at
higher latitudes. Third, Africa has the poorest in situ river gauging network among continents [23].
Finally, there were very limited amount of SWOT-related studies have been carried out in the Congo
basin (e.g., Revel et al. [24]).

3. Methodology

3.1. Framework of the Virtual Assimilation Experiment

We used an observing system simulation experiment (OSSE) [2,10] to assess the potential estimation
of discharge through assimilation of WSE at the continental scale. The OSSE consisted of three separate
simulations: the ‘true simulation’, ‘corrupted simulation’, and ‘assimilated simulation’ (Figure 2).
The CaMa-Flood hydrodynamic model [22] was used to generate the true, corrupted, and assimilated
simulation estimates for the data assimilation framework in this study (see Supplementary Materials).

To create synthetic SWOT observations, we carried out the true simulation to generate the
true virtual water state, which was continuous in space and time. In the true simulation, the river
hydrodynamic model was forced by true (i.e., assumed to be true) input runoff forcing (or non-corrupted
runoff) and true water state data (river discharge, WSE, and water storage) were generated. Then,
synthetic SWOT observations were generated by applying a SWOT coverage mask delineated using
orbit data [25] to the true WSEs, followed by addition of Gaussian noise. Therefore, we assumed that
only a portion of the true water state was known (i.e., WSEs in the SWOT observation area with some
observation errors) when data assimilation was performed (creation of virtual SWOT observations is
explained in Section 3.4).

The ‘corrupted simulation’ was carried out to compare the corrupted state of the model with the
true and assimilated simulations. The corrupted simulation in this study was executed using corrupted
model settings (i.e., corrupted input runoff forcing, corrupted Manning’s coefficient) representing errors
in both forcing and model parameters. All other parameters (i.e., river channel depth, river width,
elevation) in the corrupted simulation were identical to those in the true simulation. Furthermore,
noise was added to the corrupted settings (runoff and Manning’s coefficient) to generate the ensemble
states used in the assimilation procedure.
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We executed the ‘assimilated simulation’ to test the potential utility of SWOT observations for
estimating discharge. We used the same model settings employed in the corrupted simulation, but with
assimilation of synthetic SWOT observations. At the end of each day, the synthetic SWOT observations
were assimilated into the water state forecast, and the initial conditions of the simulation for the
following day were updated to reflect the assimilated water state. The assimilation of WSE was carried
out using LETKF.

3.2. Hydrodynamic Model Description and Implementation

We used the global river hydrodynamic model CaMa-Flood [22,26,27] to propagate the
hydrodynamic parameters over time within our data assimilation framework. CaMa-Flood receives
runoff data from a land surface model (LSM) as the input forcing (amount of water entering a river
from a unit of land area in mm/day), and simulates river and floodplain hydrodynamics (i.e., river
discharge, WSE, inundated area, and surface water storage) at the global scale. The spatial resolution of
CaMa-Flood (set to 0.25◦ in this study) is coarser than that of two-dimensional flood inundation models
(typically < 1 km) (e.g., Bates et al. [28]). CaMa-Flood calculates river discharge using a local inertial flow
equation (a computationally efficient modification of the shallow water equation) [27,28]. Furthermore,
the WSE values simulated using CaMa-Flood were directly comparable to WSE observations based
on satellite altimetry [26]. Though the 0.25◦ (~25 km near the equator) resolution simulation by
CaMa-Flood was applicable for large-scale rivers [22,26], comparison between model and observation
might be difficult in smaller and steep rivers. For the fully use of satellite altimetry, higher-resolution
river model is being developed currently. Therefore, we selected CaMa-Flood as the hydrodynamic
core of our data assimilation framework.

We used the runoff output from the Minimal Advanced Treatment of Surface Interaction Runoff

(MATSIRO) [29] LSM as the input runoff forcing for CaMa-Flood. Previous assessments showed
that river hydrodynamics were reasonably well represented by the combination of CaMa-Flood and
MATSIRO runoff forcing [22,26,27], supporting the use of CaMa-Flood simulations as a ‘virtual truth’
method for the data assimilation framework. For the true simulation, the runoff from MATSIRO [30]
was used directly, whereas in the corrupted and assimilated simulations, the runoff forcing was
intentionally modified to represent uncertainty in runoff data. We conducted the experiment over
1 year using runoff forcing from 2008. Thus, the initial conditions of the true simulation were determined
from 2007 true runoff data.

We added an artificial bias to the true runoff forcing to create the corrupted runoff, following
previous SWOT assimilation experiments [10]. Thus, corrupted runoff values were generated through
addition of a −25% bias to the true runoff forcing. In general, river discharge and WSE in the corrupted
simulation are 25% smaller than those of the true simulation due to this bias in the runoff forcing.
The initial conditions of the corrupted and assimilated simulations were generated using corrupted
runoff data for 2007.

In this study, the ensemble of model simulations was represented using multiple runoff forcing
conditions. We used 20 ensembles in this study, although errors in Monte Carlo sampling decrease with
increasing ensemble size [31]. Ensemble size strongly affects the computational cost of data assimilation,
as the CaMa-Flood model has a higher computational burden than the data assimilation algorithm.
We prepared 20 different runoff forcing conditions by adding a random Gaussian noise variable to the
corrupted runoff (Figure 2), to simulate 20 different water state forecasts in the assimilated simulation.
The standard deviation of the Gaussian noise was set to 25% of the monthly mean runoff value.

Furthermore, artificially corrupted Manning’s coefficients were used for the corrupted and
assimilated simulations, representing errors in model parameters or formulation. In the true simulation,
Manning’s coefficient was determined using the original CaMa-Flood model (0.03 for river channel
flow and 0.1 for floodplains). Meanwhile, for the corrupted and assimilated simulations, Manning’s
coefficient (river channel flow) was determined by multiplying the original Manning’s coefficient
by a Gaussian noise term representing a unit mean and 25% standard deviation Hence, Manning’s
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coefficient is distributed approximately normally over the range of 0.0225 to 0.0375 for the river
channel. Manning’s coefficients for natural streams seems to be vary between 0.02 to 0.05 according to
Chow [32], Barnes [33], and Akan [34]. In addition the error of the model should not to be very large,
hence the assimilation always finds the observation is much accurate. Therefore we select CaMa-Flood
Manning’s coefficient to be normally distributed between −25% to +25% of the original Manning’s
coefficient in assimilated and corrupted simulations.

3.3. Data Assimilation Strategy

A data assimilation scheme is typically used to estimate time-varying model state variables,
e.g., hydraulic model states such as discharge or water depth. In this study, we used LETKF [14,15],
which is a variation of the Ensemble Kalman Filter (EnKF) [31], an advanced Kalman filter (KF) [35],
to simultaneously assimilate WSE from SWOT observations. The computational cost of using an EnKF
at the global scale can be reduced with LETKF, which enables global-scale data assimilation.

Our implementation of the data assimilation strategy involves: (1) propagation of the model state
variables through time with the CaMa-Flood model, and (2) updating the state variables based on
SWOT observations using LETKF. The LETKF analysis equation for the update step is:

Xa = X f + E f
[
VD−1VT

(
HE f

)T
(R

w

)−1(
Yo
−HX f

)
+

√
(m− 1) VD−1/2VT

]
, (1)

where Xa is the posterior state estimator (or assimilator); Xf is the prior state estimator (or forecast); Yo is
the observation (here, WSE); H is the observation operator, which is linearly related to the observation
and the state; m is the number of ensembles; Ef is the prior state error covariance, which is obtained
directly from the ensembles; R is the observation error covariance, determined from the uncertainty of
the measurements; w is the weighting term for the observation localization [15]; and VDVT is given by:

VDVT = (m− 1)I +
(
HE f

)T
R−1HE f , (2)

where I is the unit matrix with dimension m which is the number of ensembles. VD−1VT and VD−1/2VT

can be calculated from the eigenvalue decomposition of VDVT.

3.4. Generation of Synthetic SWOT Observations

We generated synthetic SWOT observations at the end of each daily time step using the WSE from
the true simulation (Figure 3, left). Generation of synthetic SWOT observations followed three steps: (1)
obtaining WSE from the true simulation, (2) delineating SWOT observations using the SWOT coverage
mask, and (3) adding observation error (following the basic steps presented in Figure 3). The true
simulation was carried out as described in Section 3.1. The SWOT coverage mask was created using
SWOT orbit data, which are available online from the website of the National Centre for Space Studies,
France [25]. Orbit data provide the path of the 120 km wide observation swath containing a 20 km
nadir gap for each day of the 21-day orbit cycle. We converted these path data into a 0.25◦ observation
coverage mask with the same grid coordinate system used by CaMa-Flood (Figure 3: upper middle). If
the center point of a 0.25◦ grid was within the observation coverage of the path data, the grid was
considered within the coverage mask. Because the observation area differed daily within the orbit
cycle, we prepared 21 coverage masks to generate synthetic SWOT observations for grids containing
rivers wider than 50 m within the coverage mask. Moreover, we assumed Gaussian random error with
zero mean and standard deviation of 5 cm (Figure 3, lower right), following previous studies [2,10,11].
SWOT data should have error of less than 10 cm for areas greater than 1 km2 [11,23]; as the error
decreases exponentially with increasing averaging area [10], our assumption about observation error
appears valid. The CaMa-Flood grid resolution of 0.25◦ is about 25 × 25 km near the equator.
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Figure 3. Generation of synthetic Surface Water and Ocean Topography (SWOT) observations. (1) True
surface elevation (left), (2) SWOT coverage mask (upper middle: 2), and (3) observational error
modeled using a Gaussian distribution (lower middle: 3). Synthetic SWOT observations are presented
in the rightmost panel.

3.5. Empirical Determination of the Local Patch

Here, we derive the adaptive local patch shapes and sizes to filter the error covariance observations
as much as possible; such filtering cannot be achieved using the conventional local patch. Empirical
local patches were derived from CaMa-Flood-modeled WSE for each river pixel separately. First,
CaMa-Flood-modeled WSE for 1980 to 2000 was converted into spatial dependency weights. This
spatial dependency weighting was derived from the auto-correlation length, which was obtained from
semi-variogram analysis. Calculating spatial dependency weights involved four steps: (1) removing
trends, (2) removing seasonality, (3) standardizing, and (4) finding auto-correlation lengths. Then, we
derived the empirical local patches by defining the spatial dependency weight threshold for each river
pixel separately.

4. Experimental Conditions

We performed three different OSSEs, referred to as the “Empirical”, “Zero” and “Fixed” local patch
experiments, to examine the efficiency of the assimilation scheme. We examined the potential of the
empirical local patch to assimilate distance observations without being affected by the error covariance
due to the limited ensemble size. In the empirical patch experiment, empirically derived local patches
were used for assimilation. A conventional fixed square-shaped local patch was used in the fixed local
patch experiments. We assimilated observations only in the target pixel for the Zero local patch experiment.
The details of these experiments are explained in Sections 4.1–4.3 for the empirical, zero and fixed local
patch experiments, respectively. The experimental conditions are summarized in Table 1.

4.1. Empirical Local Patch Experiment

Here, we developed physically-based local patches using CaMa-Flood-modeled WSE data for
1980 to 2000. We did not consider the year 2008 (Section 3.2) for local patch derivation. A spatial
dependency weight was calculated using CaMa-Flood-modeled WSE transformed into a distribution
similar to a normal distribution. The spatial dependency weighting function was derived based on the
auto-correlation length, which was obtained from semi-variogram analysis. Then, we derived the local
patches by defining the threshold of the spatial dependency weights (Figure 4). Hereafter, we refer
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to these local patches derived from CaMa-Flood-modeled WSE as “Empirical” local patches. Next,
we carried out an OSSE with the localization parameters determined from semi-variogram analysis
(hereafter, the “Empirical” local patch OSSE).

Table 1. Description of experimental conditions.

Local Patch Experiment Patch Size Description

Empirical Varies depending on the
hydrodynamics of the site

Local patches developed from spatial
auto-correlation of WSE 1

Zero 1 × 1 pixels Only target pixel assimilated

Fixed-Small 11 × 11 pixels Square-shaped area of 11 pixels in both
meridional and zonal directions

Fixed-Large 21 × 21 pixels Square-shaped area of 21 pixels in both
meridional and zonal directions

1 Water surface elevation.
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We selected 0.6 as the threshold for deriving the local patch for each target pixel using the spatial
dependency weight. We examined the sensitivity of the weighting threshold for the local patch by
comparing the root mean square error (RMSE) of the assimilated WSE. We found that the threshold of
0.6 performs well with 20 ensembles and note that stricter threshold values decrease the observation
frequency. Therefore, a weighting threshold value of 0.6 was selected for our data assimilation scheme.
Furthermore, we used 5 pixels along each river stem as the baseline for the Empirical local patch.

We derived the observation localization weighting factor to force large errors for distant
observations in the LETKF algorithm. In this study, we used a Gaussian function to calculate
the localization weight [15].

w(r) = e

(
−

r2

2σ2

)
, (3)

where σ is the localization length and r is the distance between the target pixel and an observation.
Here, we use a lag distance corresponding to the threshold of the spatial dependency weight

(used to define the local patch, which is 0.6 in this study) as the limiting value; the weight drops to
zero beyond that lag distance, following a fifth-order piecewise rational function [36]. Therefore, we
calculated the localization parameter σ as follows:

σ =
1
2

√
3
10

a, (4)
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where a is the lag distance, corresponding to the threshold used to define the local patch. We did not
assimilate observations beyond the lag distance a from the target pixel.

4.2. Zero Local Patch Experiment

We assimilated river pixels only when a direct observation is available at that pixel and the WSE
of only the observed pixel was updated. Thus, we did not consider any observation localization
techniques here, as we did not assimilate distant observations.

4.3. Fixed Local Patch Experiment

Here, we performed two OSSEs with assimilation schemes using two different conventional
square-shaped local patches. The local patch sizes used for these two fixed local patch OSSEs are
11 × 11 pixels for small patches and 21 × 21 pixels for large local patches. A schematic representation
of conventional fixed local patch delineation is shown in Figure 5. The corresponding localization
parameters of small and large local patches were 1000 km and 3000 km, respectively and the observation
localization weights were calculated considering the river length. Hereafter we refer to the two OSSEs as:
“Fixed-Small” local patch OSSE for 11 × 11 pixels and “Fixed-Large” local patch OSSE for 21 × 21 pixels.
The Fixed-Small and Fixed-Large local patch assimilation schemes are equivalent to the assimilation
windows used in the studies by Durand et al. [12] and Andreadis et al. [11], respectively.Water 2019, 11, x FOR PEER REVIEW 10 of 24 
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4.4. Evaluation Method

We defined the assimilation index (AI) [37] to evaluate the effectiveness of data assimilation in a
virtual experiment. AI is calculated from the ratio of river discharge error rates between the assimilated
and corrupted simulations given by the following equation:

AI = 1−
∣∣∣∣∣Assimilated Discharge−Corrupted Discharge

True Discharge−Corrupted Discharge
− 1

∣∣∣∣∣, (5)

AI describes the similarity between the assimilated and true simulations compared to the corrupted
simulation. High AI (near the maximum value of 1) indicates that the assimilated discharge is closer
to the true discharge than to the corrupted discharge, while low AI indicates that the assimilated
discharge did not have improved accuracy relative to the corrupted discharge. AI is particularly useful
for evaluating the effectiveness of data assimilation, as river discharge in the corrupted simulation
is generally 25% lower than that in the true simulation for most places and times. AI is a metric
representing the relative effectiveness of data assimilation and not a measure of simulation accuracy,



Water 2019, 11, 829 10 of 22

such as the Nash–Sutcliffe (NS) coefficient [38]. In addition, AI can be calculated for any time and
location during the experiment, enabling analysis of when and where the data assimilation framework
effectively estimated river discharge. We excluded days when the true and corrupted discharge values
were similar (<10% error) when calculating the annual mean AI. Furthermore, we compared the fixed
and empirical local patch experiments using normalized root mean square error (NRMSE). NRMSE is
calculated as the RMSE based on true discharge and normalized to the same quantity.

5. Results and Discussion

This section outlines the results derived from the Empirical, Zero, Fixed-Small and Fixed-Large
local patch OSSEs. We demonstrate the effectiveness of hydrological data assimilation using the
Empirical local patch in Section 5.1. A comparison of the Empirical local patch assimilation scheme
with the other local patch experiments is provided in Section 5.2. Furthermore, we present the details
of the assimilation and the computational efficacy of our method in Sections 5.3 and 5.4, respectively.

5.1. Empirical Local Patch Experiment

In this section, we discuss the results of the data assimilation scheme developed using empirical
local patches and evaluate the potential of a future SWOT mission to estimate river discharge in a
situation with 25% negatively biased runoff. The relative effect for the Congo River was determined
using AI, considering locations C1–C6.

Hydrographs collected at locations C1–C6 during the simulation period (366 days) are shown in
Figure 6a–f. Red, blue, and black lines indicate the assimilated, corrupted and true discharge values,
respectively. The green line represents AI. When the true and corrupted discharge values are very
similar (within 10%), we used a yellow line to indicate AI. Green/Yellow dots on the AI curve represent
days with direct observations for the target pixel. Mean AI and percentage bias (pBias) are provided in
the upper left corner of the graph for each location, C1–C6.

Figure 6a shows the hydrograph for C1, which is the most upstream location studied.
The assimilated (red line) and true (black line) discharge values are similar for most of the simulation
period, except in January, the end of June, and the middle of October. Figure 6b presents the time
series of discharge at location C2, immediately downstream of the confluence of the Lualaba (the main
tributary of the Congo River) and Lindi (a small tributary). The assimilated (red line) and true discharge
(black line) are generally similar, but some low AI values were observed in the beginning of January,
the end of May, and the beginning of December. Figure 6c shows the hydrograph of location C3, located
on the Oubangui tributary. Low AI values were observed in January, the end of April, and the end of
May. Figure 6d shows the time series of discharge at location C4, on the Kasai tributary. AI remained
high (>0.8) for most of the simulation period, but was low at the beginning of January, beginning of
August, and beginning of November. The downstream locations C5 and C6 are presented in Figures 6e
and 6f, respectively. The assimilated discharge (red lines) is almost identical to the true discharge
(black lines), except in the beginning of January.

Figure 7 shows the spatial distribution of annual mean AI for the Congo Basin in the Empirical
local patch experiment, where the annual mean discharge was greater than 500 m3/s. The annual mean
AI was computed for each grid to compare the effectiveness of data assimilation spatially. Annual mean
AI is nearly 1 for most large tributaries (Figure 7), indicating good assimilation. We excluded days
from the calculation of annual mean AI if the pBias was <10% of the corrupted discharge, with respect
to the true discharge (e.g., yellow lines in Figure 6). The main stem and large tributaries (Oubangui,
Kasai, and Lualaba) of the Congo River have high mean AI values (>0.8), and other tributaries, such
as the Lulonga, Sangha, Lomami, Lindi, Kotto, and Uele, also exhibit relatively high mean AI (>0.6).
Only the most upstream river pixels show very low AI (<0.3). Although most upstream sites have low
efficiency of assimilation, the majority of the Congo River appears to be reasonably well estimated,
with river discharge estimates close to the true values.
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Figure 6. Hydrographs for the year 2008. (a–f) represent locations C1–C6, respectively, along the Congo
River in the empirical local patch experiment. True, corrupted, and assimilated discharge values are
indicated by black, blue, and red lines, respectively. The thin blue and red lines show the ensembles
of corrupted and assimilated discharge, respectively. The assimilation index (AI) is shown in green,
and the yellow line indicates the bias of corrupted discharge relative to true discharge. Green/Yellow
dots represent the times of synthetic SWOT observations. The mean AI and percent bias (pBias) of the
assimilated simulation are shown in the left corner of each hydrograph.

To our knowledge, this is the first attempt to use physically based localization parameters for
hydrological data assimilation with LETKF. Although conversion from the initial corrupted state
to the well-assimilated state could take 10–15 days, the peaks, troughs, and time to peak discharge
of the respective hydrographs were recreated well. AI was unreasonably depressed when the true
and corrupted discharge values were similar, despite the effectiveness of assimilation. AI was
improved, even for upstream sites and places where direct observations are unavailable, i.e., locations
where river width < 50 m. Thus, local patches enable better estimation of discharge, even without
direct observations.
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5.1.1. Empirical Local Patches

Examples of local patches for target pixels C1–C6 are shown in Figure 8a–f. The upstream target
pixels (Figure 8a–d) have small local patches compared to the downstream target pixels (Figure 8e,f).
We derived local patches for each river pixel, which have unique shapes and sizes based on the river’s
hydrodynamics. We were able to expand the number of observations, while filtering the observations
based on error covariance using these empirical local patches. Most of these local patches consist of a
portion of the downstream river stem and a major contributing upstream river stem, which is equivalent
to the area considered in small-scale hydrologic data assimilation studies (e.g., Andreadis et al. [10];
Biancamaria et al. [5]; Yoon et al. [2]; Munier et al. [20]). Hence, we were able to use the maximum number
of observations while minimizing errors due to error covariance caused by the limited ensemble spread in
our data assimilation scheme using the adaptive empirical local patch technique.Water 2019, 11, x FOR PEER REVIEW 13 of 24 
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C1–C6 shown in (a–f), respectively. Red circles indicate the target pixels. Grey denotes major tributaries
of the Congo River.
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The size of each empirical local patch is determined from the river hydrodynamics, and therefore
empirical local patches derived for different river pixels had different sizes (Figure 9a). Large rivers are
associated with large empirical local patches (in terms of area), whereas the empirical local patches of
small rivers are small. Large river stems show a right-skewed distribution of empirical local patch
sizes, with a mean of 80 pixels. Medium and small rivers show relatively small spread, with mean
pixel sizes of 13 and 5, respectively. Therefore, small rivers have relatively smaller local patches, while
large rivers have large local patches.

Water 2019, 11, x FOR PEER REVIEW 14 of 24 

 

with mean pixel sizes of 13 and 5, respectively. Therefore, small rivers have relatively smaller local 

patches, while large rivers have large local patches. 

 

Figure 9. (a) Size of the empirical local patch for the Congo basin (as area, km2). (b) Box plot of the 

empirical local patch sizes (number of pixels) for large (watershed area ≥ 105 km2), medium (105 km2 

≥ watershed area > 5000 km2), and small (watershed area < 5000 km2) river pixels. 

5.1.2. Observation Frequency 

Figure 10 shows the number of observations available for assimilation within the derived 

empirical local patch (indicated by light blue bars) for locations C1–C6. Days with direct SWOT 

observations are indicated by red stars. Here, we assume that SWOT observations have a similar 

spatial resolution to the CaMa-Flood model, which is 0.25° for our virtual experiments. The number 

of observations at location C4, which is represented by only one direct SWOT observation per SWOT 

cycle, increased to 34 per cycle. The number of observations increased to 72, 180, 144, 34, 291, and 

277, respectively, for C1–C6. Hence, through derivation of an empirical local patch, the observation 

frequency increases by a large margin compared to the use of direct observations. We note that the 

observation frequency is extended using the local patch, enabling the WSE to be updated without 

direct observations (see Figure 10). Upstream sites and small tributaries that may not be directly 

observable with SWOT gain the greatest benefit from the extension of the local patch. 

Figure 9. (a) Size of the empirical local patch for the Congo basin (as area, km2). (b) Box plot of
the empirical local patch sizes (number of pixels) for large (watershed area ≥ 105 km2), medium
(105 km2

≥watershed area > 5000 km2), and small (watershed area < 5000 km2) river pixels.

5.1.2. Observation Frequency

Figure 10 shows the number of observations available for assimilation within the derived empirical
local patch (indicated by light blue bars) for locations C1–C6. Days with direct SWOT observations are
indicated by red stars. Here, we assume that SWOT observations have a similar spatial resolution to the
CaMa-Flood model, which is 0.25◦ for our virtual experiments. The number of observations at location
C4, which is represented by only one direct SWOT observation per SWOT cycle, increased to 34 per
cycle. The number of observations increased to 72, 180, 144, 34, 291, and 277, respectively, for C1–C6.
Hence, through derivation of an empirical local patch, the observation frequency increases by a large
margin compared to the use of direct observations. We note that the observation frequency is extended
using the local patch, enabling the WSE to be updated without direct observations (see Figure 10).
Upstream sites and small tributaries that may not be directly observable with SWOT gain the greatest
benefit from the extension of the local patch.

5.1.3. Physically Based Observation Localization

Spatial dependency weights follow the hydrodynamics of the river and can be used successfully
to derive the covariance among adjacent river pixels. Spatial dependency weights represent features
such as sudden topographic changes (Figure 11b) (i.e., waterfalls), connecting tributaries carrying large
discharge (Figure 11c) and WSE slope changes (Figure 11d) (i.e., from mild to steep). Most previous
studies have used fifth-order piecewise rational weighting functions to replicate localization errors
with a constant localization parameter [5,20,21], which may not represent the actual flow behavior of
the river. In addition, some NWP studies have noted the importance of flow-dependent localization in
their data assimilation schemes [17,39–41]. We derived observation localization parameters adaptively
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for each river pixel using a lag distance corresponding to the threshold (0.6 for deriving the empirical
local patch) and Equation (4). Thus, we derived observation localization weights that better represent
the hydrodynamics of the river.
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Figure 11. Variation of spatial dependency as a weighting factor (red vertical lines) along each river
stem, with target pixels C1–C6 shown in (a–f), respectively. The upstream area has the largest correlated
lengths. The horizontal axis shows distance from the target pixel, with negative values indicating
the upstream direction and positive values downstream. The bathymetric profile is shown in black,
average water surface elevation (WSE) is indicated in blue, and average discharge is shown in indigo.
Average values are calculated for 1980–2000.
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5.2. Comparison among OSSEs

Figure 12 represents the hydrographs for Empirical, Zero, Fixed-Small, and Fixed-Large
experiments in panels a–d, respectively, for the GRDC location at Kinshasa on the Congo River
(see Figure 1). Annual mean AI indicates that empirical patch assimilation outperformed other
assimilation methods. Ensemble spread is lowest in the Empirical local patch experiment and increased
in the order of Zero, Fixed-Small, and Fixed-Large OSSEs. Comparison with the hydrograph from
Kinshasa (which is on the main stem of the Congo River) revealed that the empirical local patch scheme
is best among the Empirical, Zero, Fixed-Small, and Fixed-Large local patch assimilation schemes in
terms of mean AI and ensemble spread.
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Figure 12. Hydrograph at Kinshasa for the year 2008 in the (a) empirical, (b) zero, (c) fixed-small, and
(d) fixed-large local patch experiments. True, corrupted, and assimilated discharge values are indicated
by black, blue, and red lines, respectively. The thin blue and red lines show the ensembles of corrupted
and assimilated discharge, respectively. The AI is shown in green, and the yellow line indicates the bias
of corrupted discharge relative to true discharge. Green/Yellow dots represent the times of synthetic
SWOT observations. The mean AI and ensemble spread (EnSpr) of the assimilated simulation are
shown in the lower-right corner of each hydrograph.

We found that the low assimilation efficiency of the Empirical local patch experiment was caused
by the low observation frequency. As noted above, the observation frequency increased with the
use of a larger local patch. However, the annual mean AI of both fixed local patch experiments are
smaller than that of the zero patch OSSE. This discrepancy is primarily due to two factors: (1) uneven
distribution of SWOT cycle observations (Figure 13) and (2) low spatial dependency of the observations
in small tributaries on the target pixel (tributaries that the empirical local patch did not include)
(Figure 14). The empirical local patch contains more than 20 observations for each day of the 21-day
SWOT cycle (Figure 14a), whereas for fixed local patches (Fixed-Small and Fixed-Large), observations
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are available only on days 3, 4, 9, 13, 19, and 20 (Figure 14b,c). Furthermore, spatial dependency along
the main stem of the Congo River appears as far away as Kisangani (see Figure 1). In the fixed local
patches, such spatial dependency was not considered for assimilation. Thus, the empirical local patch
for Kinshasa on the Congo River performs better than the fixed local patches.Water 2019, 11, x FOR PEER REVIEW 18 of 24 
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ensemble size [15]. Several researchers have reported spurious errors caused by error covariance due 

to limited ensemble size when assimilating distant observations in NWP [15,18,39]. Our adaptive 

empirical local patches can effectively filter observations with error covariance and extend the local 

patch to use the maximum possible number of observations.  

Figure 13. Number of SWOT observations in the (a) Empirical, (b) Fixed-Small, and (c) Fixed-Large
local patches (light blue) for Kinshasa. Red stars indicate days for which direct SWOT observations
are available.

In Figure 15a–c, we present the difference in mean annual AI between the empirical local patch
experiment and the zero, fixed-small, and fixed-large local patch experiments, respectively. For most
places on the Congo River, the annual mean AI of the Zero local patch was one unit (difference ≈ 0.1)
lower than that obtained from the Empirical local patch experiment. The Fixed-Small and Fixed-Large
OSSEs show a similar pattern, where large streams have lower annual mean AI than the Empirical
patch experiment (Fixed-Small: 0.1~0.3, Fixed-Large: 0.3~0.5). Meanwhile, the upstream sites and
smaller tributaries show slightly elevated AI in the fixed local patch experiment. Thus, assimilation of
the empirical local patch is better than that of the Zero local patch for most of the Congo River and
better than the Fixed-Small and Fixed-Large local patches in downstream reaches of large river stems.
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Figure 14. Local patch for Kinshasa used in the (a) empirical, (b) fixed-small, and (c) fixed-large local
patch experiments (blue). Background color indicates the number of SWOT observations per cycle.
The Congo River network is shown in black. Red circle indicates the target pixel.

We carried out a very large local patch OSSE, using 81 × 81 pixels with 20 ensembles, in addition
to the Zero, Fixed-Large, Fixed-Small, and Empirical local patch experiments. We found that WSE
assimilation leads to large errors caused by error covariance between small tributaries due the limited



Water 2019, 11, 829 17 of 22

ensemble size [15]. Several researchers have reported spurious errors caused by error covariance due
to limited ensemble size when assimilating distant observations in NWP [15,18,39]. Our adaptive
empirical local patches can effectively filter observations with error covariance and extend the local
patch to use the maximum possible number of observations.
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Figure 15. Difference in the annual mean AI between the empirical and (a) zero, (b) fixed-small, and
(c) fixed-large local patch experiments. Pixels with annual mean discharge > 100 m3/s are shown for
visualization purposes.

A conventional fixed local patch is not effective at using information from distant observations
due to the fixed shape and size. When extending the size of a fixed local patch to capture significantly
correlated areas (such as those included in the empirical local patch; Figure 14a), other areas with
non-significant correlations are also included. Therefore, error covariance between small tributaries
causes spurious correlations. More strict localization (Fixed-Small local patch) reduces errors due to
non-significant correlation areas but disregards flow-dependent areas with significant correlations [15].
Consequently, the conventional fixed local patch technique is less effective for using available
observations while removing error covariance.

Local patch size can be adjusted according to observation error and ensemble size in the
assimilation. In this study, we assumed that observation error could be represented as spatially
uncorrelated, following a Gaussian distribution with a mean of zero and standard deviation of
about 5 cm, in accordance with previous works [2,10,12]. Moreover, we limited the ensemble size to
20 members. Depending on the observation error and ensemble size, the threshold for identifying the
local patch based on the spatial dependency weight can be adjusted; importantly, this will increase the
availability of observations.

5.3. Assimilation Efficiency

Figure 16 presents a comparison of the NRMSE values of different OSSEs. The Zero, Fixed-Small,
Fixed-Large, and Empirical local patch experiments have mean NRMSE values of 0.078, 0.073, 0.133,
and 0.030, respectively, after rounding to the third decimal point. All experiments have lower NRMSE
values than the corrupted state (blue line in Figure 16). In the first 2 months (January and February),
the lowest NRMSE was observed for the empirical local patch (0.031). This finding indicates that
conversion from the initial-corrupted state to the well-assimilated state is efficient in the empirical
local patch assimilation scheme. Thus, the empirical local patch OSSE performed well in terms of
estimating discharge and efficiently converting the initial-corrupted state to the well-assimilated state.

When comparing NRMSE among experiments (Figure 16), NRMSE values from all experiment
other than the empirical local patch were similar, while the empirical local patch experiment shows
a markedly lower NRMSE. In all experiments aside from the empirical local patch experiment,
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the localization weight was calculated along the river, rather than from the spatial distance, using
Hubeny’s formula. Therefore, weights are qualitatively similar for the same location. NRMSE is
calculated using the mean ensemble discharge, and does not reflect the ensemble spread of assimilated
discharge. Mean NRMSE is lower for the Empirical local patch OSSE, largely because of the efficiency
of transformation from the initial-corrupted state to the well-assimilated state. Figure 16 shows that
the NRMSE of the Empirical local patch experiment is lowest in January and February. When sufficient
observations were available, NRMSE converged to a similar value in the Zero, Fixed-Small, and
Fixed-Large experiments. The latter part of the simulation benefitted from the increased number
of direct observations and propagation of the inflow correction from upstream areas. Large errors
in NRMSE (January–March) in the large local patch experiment may be the result of spurious error
covariance due to sampling errors caused by the limited ensemble size for assimilating distant
observations [2,5,15,20]. Thus, the Fixed-Small local patch can be used as a simplified method for
Empirical local patches, but it is essential that localization be performed along the river.
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Figure 16. Time series of normalized root mean square error (NRMSE) of assimilated discharge in the
zero (magenta), fixed-small (red), fixed-large (violet), and empirical (cyan) local patch OSSEs. Blue
line indicates the NRMSE of the corrupted simulation. The fixed-small and fixed-large patches were
11 × 11 and 21 × 21 pixels, respectively. The y-axis has been stretched to enhance the visibility of low
NRMSE values.

5.4. Computational Efficiency

As this work represents a major step toward building a global-scale hydrodynamic data assimilation
scheme, we used an LETKF-based assimilation technique. In global-scale assimilation schemes, LETKF
has been favored among the available assimilation techniques [19,42]. Furthermore, each pixel can be
assimilated in parallel due to localization in the LETKF, which completes the update step in the area
spanned by the ensembles, and therefore the computational cost of LETKF is considerably lower [42,43].
Our LETKF assimilation for the empirical local patch required less than 20 s per day for the Congo
basin (100 × 100 pixels) on a 12-core 2.6-GHz processor using Intel Fortran with Math Kernel library
(MKL); thus, this method is sufficiently fast for real-time application (for the entire globe, it can be
executed in less than 2 min per day of assimilation).

Furthermore, assimilating WSE while considering distinct localization parameters for each river
pixel requires an extensive data input/output (I/O) process, which must be addressed before this
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method can be used in near real-time applications. By characterizing the localization parameters
(according to elevation, slope of the river bathymetry, etc.), the computational burden of this data I/O
process can be reduced greatly.

6. Conclusions

In this study, we carried out four distinct OSSEs, i.e., Empirical, Zero, Fixed-Small, and Fixed-Large
experiments, to evaluate the potential of physically-based localization parameters for use in hydrological
data assimilation using LETKF. We conducted semi-variogram analysis to determine the spatial
dependency weights and derived local patches by defining a threshold in these weights. A fixed
number of grids were used for each of the Zero (1 × 1), Fixed-Small (11 × 11), and Fixed-Large (21 × 21)
local patch experiments. Then, we compared the four OSSEs with synthetic SWOT observations for
2008 (366 days) and found that the Empirical local patch experiment estimated river discharge more
efficiently than the fixed local patch assimilation methods.

The empirical local patches were derived adaptively for each river pixel, with consideration of
spatial auto-correlation. We were able to use the maximum number of observations for assimilation
without promoting error covariance due to the limited sample size by using empirical local patches.
Conventional local patches cannot filter based on error covariance of observations, which lead to
spurious errors from small tributaries. Using the empirical local patch technique allows use of distant
observations, which cannot be effectively used with the conventional local patch method. Therefore,
the limitations of conventional patches can be overcome using empirical local patches.

The Empirical local patch OSSE results suggested that SWOT observations have the potential
to improve continental-scale river discharge with the use of physically based spatial dependency
parameters. Overall, assimilation was effective for the entire Congo Basin, with high AI values
even in upstream river sections where direct observations are unavailable (river width < 50 m).
The hydrodynamics of continental-scale rivers can be reasonably estimated by assimilating SWOT
observations using an empirical local patch, even when the model formulation and input runoff

forcing contain errors. Hence, our study provides a useful technique for improving observation
frequency by enlarging the local patch in an effective manner and performing data assimilation at the
continental-scale with a low computational burden.

In our comparison of the fixed and empirical local patch experiments, we note that the latter
OSSE has a lower mean NRMSE over the entire simulation. The Fixed-Large local patch experiment is
most strongly affected by sampling errors due to limited ensemble spread when assimilating distant
observations. The NRMSE of the initial months (January–February) suggested notable differences
between the small and empirical local patch OSSEs, showing that the transition from the initial-corrupted
state to the well-assimilated sate is highly effective with an Empirical local patch OSSE.

In this study, we used a simple error structure for both input forcing and model parameters.
Future studies should test more complicated error structures, including those that may be spatially
correlated. Moreover, we assumed that errors in model parameters or formulation would occur
only for Manning’s coefficient. However, river bathymetry represents one of the greatest sources of
uncertainty in river hydrodynamic modeling. Hence, the empirical local patch can be combined with
state parameter estimation techniques [31]. Future studies should focus on developing a hybrid system
that combines conventional and empirical localization techniques to overcome the limitations of the
present study (i.e., assimilation in upstream areas). This study is an initial step in the development of a
more robust global assimilation scheme using physically based localization parameters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/4/829/s1,
Descriptions of (1) Development of empirical local patches, (2) Selection of fixed local patch sizes, and (3) Very
large local patch assimilation, Figure S1: (a) Spatial dependency weights and (b) local patch for Kinshasa in Congo
River. River pixels inside the local patch are shown in blue and other river pixels are shown in black, Figure
S2: Time series of normalized root mean square error (NRMSE) of assimilated discharge in the 7 × 7 (magenta),
11 × 11 (red), 15 × 15 (violet), 21 × 21 (cyan), and 31 × 31 (blue) local patch OSSEs, Figure S3: (a) Local patch with
the number of SWOT observations (colors) and (b) time series of WSE of Kinshasa.
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