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Abstract: Sloping unconfined aquifers are commonly seen and well investigated in the literature.
In this study, we propose a generalized integral transformation method to solve the linearized
Boussinesq equation that governs the groundwater level in a sloping unconfined aquifer with an
impermeable bottom. The groundwater level responses of this unconfined aquifer under temporally
uniform recharge or nonuniform recharge events are discussed. After comparing with a numerical
solution to the nonlinear Boussinesq equation, the proposed solution appears better than that proposed
in a previous study. Besides, we found that the proposed solutions reached the convergence criterion
much faster than the Laplace transform solution did. Moreover, the application of the proposed
solution to temporally changing rainfall recharge is also proposed to improve on the previous
quasi-steady state treatment of an unsteady recharge rate.

Keywords: groundwater; rainfall recharge; unconfined aquifer; generalized integral transformation
method (GITM)

1. Introduction

Groundwater level has been widely investigated by experimental or field data collection, numerical
methods, and analytical approaches. In general, the groundwater level is difficult to estimate and predict
compared with the water on the ground. Various items of groundwater level estimation equipment
are highly expensive; thus, substantial financial support is required. Therefore, some researchers
study groundwater problems mainly by employing numerical methods but others prefer to apply
analytical approaches.

It is necessary to quantify the hydrological processes under the hillside and develop appropriate
approaches to describe these processes. Regarding this subject, many models have been developed
over the past 40 years. Paniconi and Wood [1] developed a three-dimensional finite element numerical
model based on the Richards equation to deal with catchment scale simulations. Such a large numerical
code consumes much computer time and memory, and it is very hard to examine the validation of the
code. Brutsaert [2] derived an analytical solution to the linearized Boussinesq equation and studied
the response of the groundwater flow per unit width of the slope with consideration of zero water
depth at the downstream boundary condition, corresponding to the free drainage of the unconfined
aquifer. The analytical method provides a powerful framework for analyzing the effects of different
features of the slope on its hydrological response shape.

Chapman [3] used a simple empirical method to build a power–law relationship between storage
and discharge in a hillside. Later on, Berne et al. [4] converted the linearized Boussinesq equation
into a hillslope-storage Boussinesq equation and presented the moments of the characteristic response
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function (CRF) to study the latter equation with fixed recharge, following the research of Troch et al. [5].
In fact, the thickness of the free seepage surface is known to vary with the configuration of the
hillside by referring to Chapman [3]. Recently, Dralle et al. [6] derived a new analytical solution
to the linearized hillslope Boussinesq equation with spatially variable recharge by the method of
eigenfunction expansion, and discussed the hydrologic response of topography to base flow discharge
properties. In their study, they claimed that their solutions exactly reproduce previous results, e.g.,
Verhoest and Troch [7] and Troch et al. [5], for the case of spatially uniform recharge, and perfectly
match the numerical solutions by a finite difference scheme for the case of spatially variable recharge.
However, the linearization constant, ε = 2/3 in Verhoest and Troch [7] but ε = 1 in Dralle et al. [6],
is different, and in their modeling scenarios they hypothesized the spatially and temporally variable
recharge and simplified its distribution in two intervals only.

Because the groundwater level is mainly influenced by flow seepage and external recharge,
some researchers recently considered rainfall recharge. Vehoest and Troch [7] performed the Laplace
transformation to solve the linearized Boussinesq equation to estimate the groundwater level under
the effect of rainfall recharge. In their study, Arfken and Weber [8] applied a complex inversion
formula to obtain the inverse Laplace transform by using a Bromwich integral. Moreover, the transient
groundwater level was approximated by a steady state condition that generated the same outflow.
Zissis et al. [9] discussed a groundwater table that was affected by a river’s constant recharge and
the variation in the water level of that river. They also linearized the nonlinear Boussinesq equation.
The results proved that under the same conditions and when not considering rainfall recharge,
the solution of the linearized equation is very similar to that of the nonlinear equation. However,
the discrepancy of these two solutions becomes apparent for a case that has a high amount of rainfall
recharge and a mild slope. Bansal and Das [10] proposed a groundwater model to discuss the water
table in an unconfined sloping aquifer under constant recharge and seepage from a stream in which
the water level varied. In their model, the linearized Boussinesq equation was also employed as a
governing equation.

Most published studies on groundwater problems have focused on uniform recharge, but this is
not sufficient to delineate various real conditions such as rainfall recharge. Kazezyilmaz-Alhan [11]
used the Heaviside function (also known as the unit step function) to represent temporally changing
rainfall events, and the transient variation in the overland flow was discussed by employing the
diffusion wave theory. Such techniques are considered to treat the source term in this study.

On the basis of Chapman’s study [12], when the angle of the impermeable bottom slope is less than
30◦, the flow in the aquifer appropriately conforms to Dupuit’s assumptions. Therefore, a modified
one-dimensional Boussinesq equation is presented for groundwater flow in a sloping aquifer. In this
text, the first section explains the research background, motivation and purpose, content and basic
structure of the paper. The second section describes the mathematical derivation of the presented
problem and its analytical solution as well as the introduction of the general integral transformation
method (GITM). In the third section, the differences among the present analytical solution, the previous
analytical solution and the nonlinear numerical solution are discussed, and the groundwater level
and flow fluctuations under different conditions are simulated. Finally, the results of this research
are concluded.

2. Mathematical Formulation

2.1. Conceptual and Mathematical Models

The groundwater flow in a sloping unconfined aquifer (Figure 1) based on Darcy’s law is governed
by (see Childs [13])

q = −KHw

(
cosθ

∂Hw

∂x
+ sinθ

)
(1)
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and the flow satisfies the following continuity equation according to the law of mass conservation:

n
∂Hw

∂t
+
∂q
∂x

= r (2)

where n is the drainable or effective porosity (-), q is the flow rate in the x direction per unit width
of the aquifer (L2/T), K is the hydraulic conductivity (L/T), Hw is the elevation of the groundwater
table measured perpendicularly to the underlying impermeable layer (L), θ is the inclined angle of the
aquifer bottom (-), and r = r(t) is the rainfall recharge rate (L/T).

To investigate the groundwater flow problem in a sloping unconfined aquifer, we substituted
Equation (1) into Equation (2) and obtained a Boussinesq equation for a sloping aquifer by assuming
no spatial variability in K, n, and θ:

∂Hw

∂t
=

K
n

[
cosθ

∂
∂x

(
Hw

∂Hw

∂x

)
+ sinθ

∂Hw

∂x

]
+

r
n

(3)

Brutsaert [2] stated that the nonlinear term Hw∂Hw/∂x on the right-hand side of Equation (3) can be
linearized by changing the first Hw to εD. D is the thickness of the initially saturated aquifer, and ε is a
linearization constant given by 0 < ε < 1. Thus, Equation (3) can be given as follows:

∂Hw

∂t
=

K
n

(
εDcosθ

∂2Hw

∂x2 + sinθ
∂Hw

∂x

)
+

r
n

(4)

Verhoest and Troch [7] improved on the study by Brutsaert [2] by adding a constant recharge to
the aquifer. In their study, they assumed that water initially filled a rectangular aquifer to a depth of
D− h, as displayed in Figure 1. Moreover, h was the distance from the ground surface to the average
groundwater level. Moreover, they assumed that a sudden drawdown at the outlet (x = 0) of the
aquifer caused the depth of the water level to be zero, and a zero-inflow boundary existed at the hilltop
(x = L). Hence, the initial condition was

Hw = D− h, 0 < x < L, t = 0 (5)

and the boundary conditions were
Hw = 0, x = 0, t > 0 (6)

q = 0, x = L, t > 0 (7)

In our present study, we utilized the Heaviside function u(t) to represent the temporally changing
rainfall recharge rate:

r(t) =
N∑

i=1

ri[u(t− ti−1) − u(t− ti)] (8)

Moreover, by substituting α = KεDcosθ/n and U = Ksinθ/n in Equation (4), we obtained
the following:

∂Hw

∂t
= α

∂2Hw

∂x2 + U
∂Hw

∂x
+

1
n

N∑
i=1

ri[u(t− ti−1) − u(t− ti)] (9)

To eliminate the first order derivative of x, we set

Hw(x, t) = e
−U
2α xe

−U2
4α tHv(x, t) (10)

By substituting Equation (10) into Equation (9), the initial condition provided by Equation (5),
and the boundary conditions given in Equations (6) and (7), we obtained the following:
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∂2Hv(x, t)
∂x2 +

∑N
i=1 ri[u(t− ti−1) − u(t− ti)]

αn
e

U
2α xe

U2
4α t =

1
α

∂Hv(x, t)
∂t

(11)

Hv(x, 0) = e
U
2α x(D− h), 0 < x < L (12)

Hv(0, t) = 0, t > 0 (13)

2α
∂Hv(L, t)

∂x
+ UHv(L, t) = 0, (14)
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Figure 1. Schematic diagram of a sloping aquifer.

2.2. Present Improved Solutions

In the present study, we employed the generalized integral transformation (GITM) of Özisik [14]
to solve Equation (11) in terms of the following formulas. The GITM is usually employed to solve
boundary value problems of heat conduction, which eliminates the spatially quadratic differential
term of the governing equation by inserting a kernel function with a space variable only, and then
the partial differential equation is transformed into an ordinary differential equation with a time
variable. The ordinary differential equation is of a first-order type and easily solved. In the generalized
integral inverse transformation, an infinite series with corresponding eigenvalues is included. In theory,
while the infinite series is calculated, its eigenvalues need to be evaluated and summed to a maximum
number of terms to obtain a more accurate solution. In fact, the integral-transform technique helps to
reach a fast convergence of the infinite series.

Transform formula:

Hv(βm, t) =
∫ L

x′=0
ξ(βm, x′)Hv(x′, t)dx′ (15)

The inverse transform formula can be given as

Hv(x, t) =
∞∑

m=1

ξ(βm, x)Hv(βm, t) (16)

here,

ξ(βm, x) ≡
√

2
(

βm
2 + γ2

L(βm2 + γ2) + γ

)1/2

× sin(βmx) (17)
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γ =
U
2α

(18)

where βm is the root of
βcot(βL) = −γ (19)

for the presented problem. The solution to Equation (11) is

Hv(x, t) =
∞∑
m

e−αβ
2
mtBmηmsin(βm x)

(D− h) +
1
n

N∑
i=1

ri

∫ ti

ti−1

e
4α2β2

m+U2

4α t′dt′
 (20)

where

Bm =

√
2(βm2 + γ2)

L(βm2 + γ2) + γ
(21)

ηm =

∫ L

0
eUx/2α

× sin(βmx)dx =
2α[2αβm − 2αβme

U
2αLcos(βmL) + Ue

U
2αLsin(βmL)]

U2 + 4α2β2
m

(22)

By substituting Equation (20) into Equation (10), we obtained

Hw(x, t) = e
−U
2α xe

−U2
4α t

∞∑
m=1

e−αβ
2
mtBmηmsin(βm x)

(D− h) +
1
n

N∑
i

ri

∫ ti

ti−1

e
4α2β2

m+U2

4α t′dt′
 (23)

After the groundwater level has been estimated, the flow discharge at the outlet can be obtained
by integrating Equation (2) as follows.

q = −L
N∑

i=1
ri[u(t− ti−1) − u(t− ti)] + n

∫ L
0
∂Hw
∂t dx

= −L
N∑

i=1
ri[u(t− ti−1) − u(t− ti)]

−

∞∑
m=1

Bmηmλm
(
αβ2

m + U2

4α

)
e

4α2β2
m+U2

4α t

×

[
n(D− h) +

N∑
i=1

ri
∫ ti

ti−1
e

4α2β2
m+U2

4α t′dt′
]

(24)

with

λm =

∫ L

0
e
−U
2α x
× sin(βmx)dx =

2α[2αβm − 2αβme
−U
2α Lcos(βmL) −Ue

−U
2α Lsin(βmL)]

U2 + 4α2β2
m

(25)

The generalized integral transformation method is different from the Laplace transform method
and the Fourier transform method, and can directly perform integral operations about the space
variable in a finite field, a semi-infinite domain and an infinite domain. In reality, the surface
replenishment intensity will change with time; therefore, we used the Heaviside function to represent
temporally varying recharge rates as shown in Equations (23) and (24) to analyze groundwater level
and flow, respectively.

3. Results and Discussions

3.1. Comparison of Analytical and Numerical Solutions

To validate the present analytical solutions, we followed the hypothetical case proposed by
Verhoest and Troch [7] with D − h = 1.5 m, K = 0.001 m/s, n = 0.34, r = 3 mm/h, and ε = 2/3.
For comparison, a numerical solution to the nonlinear Boussinesq Equation (3), subjected to the
conditions of Equations (5)–(7), was obtained. In the numerical method, we employed the central
difference and the upwind scheme in the Swanson and Turke [15] with respect to space. The time
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reference was solved by the third-order Total Variation Diminishing Runge-Kutta scheme proposed by
Shu and Osher [16].

After the parameters had been substituted into these solutions, the proposed analytical solution
better matched the numerical solution than the solution of Verhoest and Troch [7], as depicted in
Figure 2, which illustrates the spatial changes of the groundwater levels for various bottom slopes.
Figure 2 demonstrates that there is a large discrepancy between the curve of Verhoest and Troch [7]
and the curve of the numerical solution for constant recharge. However, the curve of the present
solution is closer to the numerical solution. The shift between both solutions is displayed in Figure 2a,b;
it decreases as the bottom slope increases. Furthermore, for the case of simulation time of 3 days,
the peak value of the present solution is close to that of the numerical solution while the solution of
Verhoest and Troch [7] shifts to the right, as indicated in Figure 3. Because they solved the linearized
governing equation by the Laplace transform method instead of the fully nonlinear one, their solution
obtained a response to the sloping effect slower than the numerical solution. Similar results could
be found in Figure 4 for the case of simulation time of 5 days. On the contrary, the present solution
by GITM made a response to the sloping effect a little faster than the nonlinear solution owing to the
linearization, as shown in Figure 4a.

To quantitatively assess the difference between analytical and numerical solutions, we proceeded
to an error analysis by evaluating the relative percentage difference (RPD), which is defined as follows:

RPD =
Hwnum −Hwana

Hwnum
(26)

The error analysis of groundwater level between the analytical solutions and the numerical
solution is shown in Figures 5–7 for different durations and different slopes. Figure 3 illustrates that
the maximum RPD value of the present solution is 12% as 20 < x < 80 m, but the maximum RPD value
of the solution of Verhoest and Troch [7] is 44%. This indicates that the present solution is much better.
Comparing Figure 5a,b, we also found that the results of the present solution for θ = 6◦ were better
than that for θ = 2◦. This implies that the accuracy might increase with the slope. A similar tendency
could also be found in Figures 6 and 7.

Moreover, while inspecting Figures 2–7 carefully, we found that as the dip angle of the aquifer
increases, the difference between Verhoest and Troch [7] and the present solution becomes smaller,
and it is speculated that ε is the key to affect this difference. Verhoest and Troch [7] used a linearization
parameter ε of 2/3 constantly, but Koussis [17] argued that ε should be affected by the net infiltration,
slope, and hydraulic conductivity, and Brutsaert [2] suggested that Hw in the nonlinear term could be
replaced by εD. Such suggestion of linearization will not create too much error in the solutions if the
variation of groundwater table is small. Based on the foregoing statement, this study admits ε = 0.17 in
the case of θ = 2◦ and ε = 0.3 in the case of θ = 6◦ to obtain better results.

Figure 8 displays the temporal change of the flow rate at the outlet for various bottom slopes.
As can be seen from the figure, the trend of all the three solutions is consistent. However, as the bottom
slope increases, the present solution matches the numerical solution much better than the solution of
Verhoest and Troch [7]. Although there is still a little discrepancy between the analytical linearized
solution and the numerical nonlinear solution, the presented solution improves the analytical results of
the previous study. To sum up, the present solution is closer to the numerical solution of the nonlinear
Boussinesq equation within a short period and tends to be constant and overlap with the numerical
results for a long time. Therefore, the present solutions seem to be more feasible.
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3.2. Comparison of Unsteady State and Quasi-Steady State

Moreover, Verhoest and Troch [7] adopted a quasi-steady state method to calculate the groundwater
response of a hillslope for a temporally changing recharge rate. However, the proposed unsteady state
solutions could be directly applied to the same hillslope case without requiring any extra treatment,
as depicted in Figure 9. Note that the discrepancy between both solutions is not large, and the
slight difference primarily arises from the temporal treatment conducted in the study of Verhoest and
Troch [7].
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In summary, Verhoest and Troch [7] used the Laplace transform method to solve the partial
differential specified by Equation (4); however, that inverse Laplace transform is extremely difficult
to obtain, even by applying a complex inversion formula for an inverse Laplace transform.
Arfken and Weber [8] used a Bromwich integral to overcome the problem; however, convergence
could only be approached after a lengthy calculation. When the inclined angle θ is equal to 2◦ and
6◦, the summation in their solution requires the first 999 terms to reach convergence. However,
the proposed solutions obtained by the generalized integral transformation method only require
15 terms to obtain convergence; a reasonable example would be 10−5 m for the groundwater level and
10−3 m2/day for the outflow.
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4. Conclusions

A generalized integral transformation method can provide an improved solution to a linearized
Boussinesq equation for a sloping unconfined aquifer. The presented analytical results combine
the effect of the bottom slope and the time-varying recharge pattern on the water table fluctuations.
Owing to the limitations and difficulties of directly measuring the groundwater level, we developed a
mathematical model such that we can predict or simulate the variation in the groundwater level that
can be affected by any rainfall recharge rates. Some conclusions are proposed as follows.

1. According to the error analysis, in the case of a constant recharge rate for a sloping aquifer,
the results of the proposed solution are better than the results proposed by Verhoest and Troch [7]
after comparing with the numerical solutions; therefore, the present analytical solution appears
to be more feasible than that proposed in a previous study.

2. The proposed solutions reach the convergence criteria faster than the solutions of Verhoest and
Troch [7], thus saving computation time.

3. The present solution can be directly applied to unsteady recharge rate cases without the
requirement of the quasi-steady state method which was employed in the study of Verhoest and
Troch [7].
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