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Abstract: The research features how parallel computing can advance hydrological performances
associated with different calibration schemes (SCOs). The result shows that parallel computing
can save up to 90% execution time, while achieving 81% simulation improvement. Basic statistics,
including (1) index of agreement (D), (2) coefficient of determination (R2), (3) root mean square error
(RMSE), and (4) percentage of bias (PBIAS) are used to evaluate simulation performances after model
calibration in computer parallelism. Once the best calibration scheme is selected, additional efforts
are made to improve model performances at the selected calibration target points, while the Rescaled
Adjusted Partial Sums (RAPS) is used to evaluate the trend in annual streamflow. The qualitative
result of reducing execution time by 86% on average indicates that parallel computing is another
avenue to advance hydrologic simulations in the urban-rural interface, such as the Boise River
Watershed, Idaho. Therefore, this research will provide useful insights for hydrologists to design
and set up their own hydrological modeling exercises using the cost-effective parallel computing
described in this case study.
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1. Introduction

A hydrologic model is commonly used to simulate real-world problems in many water-related
fields, including hydrological, ecological, biological, and environmental studies [1–4]. Recent advances
in data-intensive products, such as North American Land Data Assimilation system (NLDAS) and
NEXt Generation RADar (NEXRAD) enable hydrologists to better characterize hydrological processes
at higher spatial and temporal scales [5–8]. However, it is a daunting task for hydrologists to calibrate
their models using these data-intensive inputs.

Due to insufficiently observed datasets, the computer simulation approach is a typical exercise to
characterize hydrological processes and to enhance hydrological simulations based on physical and
conceptual parameters. In general, hydrologists utilize the selected key parameters to calibrate their
models for efficient simulations associated with cost and time [9–14]. However, model performances
are constrained by the number of sets of parameters used, which do not necessarily ensure that the
selected model performs best to characterize hydrological processes in a complex watershed. Therefore,
computer parallelism is a way to enhance simulation performances when many parameters are
considered for further adjustments in hydrological modeling settings. Thanks to computer parallelism,
computational modeling has rapidly advanced [15–17]. Although computer speed and capacity
improve over time, the model calibration time is still challenging for many practitioners [18].
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There are two typical approaches to parallelize hydrological simulations. First, a parallel algorithm
with parallel threads (e.g., multiple cores) within a single computer is one approach [19–23]. The other
approach is implementation of a parallel algorithm in connection with multiple machines [24,25].
Although several studies have been conducted for parallelizing model calibrations to reduce execution
time and effort using multiple threads in a single machine [26–28], few studies focus on quantifying
how multiple machines associated with cluster-based computing architecture can improve model
performances in the field of hydrology. Moreover, computer parallelism on a cluster-based framework
has not been fully implemented to find optimal parameters for hydrological simulations, especially
Hydrological Simulation Program–Fortran (HSPF) modeling settings. Therefore, this research explores
how computer parallelism can be implemented to evaluate the enhancement of hydrological simulations
using HSPF so that hydrologists can apply it to their own applications.

Figure 1 shows a flowchart of computer parallelism to calibrate HSPF in a Linux cluster framework.
A small Linux cluster system (sLCS) is first developed along with one master and six slave nodes.
Next, climate data and geographical information are used to create sub-watersheds using a built-in
delineation tool in BASINS 4 Software [29], and then climate data are routed into HSPF to generate
streamflow. Once the simulated streamflow is generated by HSPF, calibration and validation exercises
in computer parallelism are conducted to evaluate how well HSPF performs characterization of
hydrological consequences associated with climate and land-use/land-cover (LULC) profiles in the
study area.Water 2019, 11, x FOR PEER REVIEW  3 of 19 
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Figure 1. The procedual diagram of Hydological Simulation Program–Fortran (HSPF) simulations in
parallel computing.

Four different calibration schemes (described later) are used to determine optimal calibration
scenarios in computer parallelism. For example, the BEOPEST, a special version of PEST (a
model-independent parameter optimization program) [30] is used as a tool to calibrate HSPF with
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14 cores using a message passing interface (MPI) in sLCS and all simulation outcomes associated
with such schemes are then evaluated based on performance criteria as listed in the Appendix A.
The scheme includes: (1) index of agreement (D), (2) coefficient of determination (R2), (3) root mean
square error (RMSE), and (4) percentage of bias (PBIAS). Once the best calibration scheme is selected,
additional efforts are made to improve model performances at the selected calibration target points,
while the Rescaled Adjusted Partial Sums (RAPS) is used to evaluate the trend in annual streamflow.
The result indicates that hydrologic simulations using BEOPEST and HSPF in sLCS environment is a
way to improve model performances, especially when many parameters at the complex watershed are
used for model calibration exercises.

2. Study Area and Data

The Boise River Watershed (BRW) is selected as the study area (Figure 2). As a tributary of the
Snake River system, the BRW plays a key role of providing water to the Boise metropolitan areas,
including Boise, Nampa, Meridian, and Caldwell. The drainage area of the basin is about 10,619 km2

with a mainstream length of 164 km and flows into the Snake River near Parma. More than 40 percent
of Idaho residents live in this basin and 60 percent of the people reside around the floodplain. The main
physiographic characteristic of the BRW is that a greater proportion of precipitation falls as snow at
higher elevations. It causes the predictability of high flows due to the snow melting process, and
therefore a localized flood event is often observed during late spring and early summer.
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Figure 2. The study area, the Boise River Watershed adapted from [9].

To simulate streamflow using HSPF, it requires primary input datasets, including precipitation,
temperature, and potential evapotranspiration (PET). Phase 2 of the North American Land Data
Assimilation System (NLDAS-2) data were used as climate forcing because a series of required climate
data (e.g., precipitation, temperature, downward solar radiation, downward long wave radiation, wind
speed, specific humidity, surface pressure, potential evapotranspiration, and others) were available.
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These datasets were in the eighth-degree grid spacing and used for the simulation period from 1
January 1979 to 31 December 2015 (36 years) at hourly time-steps. Note that the NLDAS-2 data have
been examined along with the observed data product in several studies [31–35].

The derived climate data from NLDAS-2 were then converted to the watershed data management
(WDM) format to be used as inputs for HSPF. However, there were a few issues with the conversion
of the data from NLDAS-2 to WDM using conventional tools, which required significant time and
effort for all 112 grid points at the BRW. Since the existing WDM utility tool could not import a large
volume of forcing data (roughly about 30 MB per single file), a R script [36] was used to extract forcing
data from NLDAS-2 to a WDM file. The SARA Time Series Utility [37] was then utilized to create a
complete set of the WDM file.

A 30 m spatial resolution interval of digital elevation model (DEM) provided by the U.S. Geological
Survey (USGS) was used to delineate watersheds and to determine flow directions in BASIN 4.1
modeling platforms [29]. The National Hydrography Dataset (NHD) and DEM were then used to
characterize stream routing processes at a functional sub-watershed (1:100,000). A total of six observed
streamflow stations were selected for calibration target points (TPs), including three points above
reservoirs (no major diversion is found), two points below reservoirs, and one point at watershed
outlet (see Figure 2). Additionally, land-use/land-cover data (LULC) in year 2011 [38] was used to
classify land segments, such as urban, agricultural land, forest land, water/wet land, shrub land, grass
land, and barren/mining land (Figure 3). Model calibration and validation effort were then made from
1 January 1999 to 31 December 2015 (17 years) and 1 January 1979 to 30 December 2000 (22 years),
respectively. Note that there was a missing period from October 1, 1997 to December 2000 at the
calibration target point six (TP6) so that the period from 1 January 1979 to 30 September 1997 was used
for calibration.
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3. Methodology

3.1. Small Linux Cluster System (LCS)

A small Linux cluster system (sLCS) was designed and built for this study using a multimode
Beowulf, which is a portable computer cluster compatible with various computer architectures [39].
Beowulf is a local memory machine using messaging through local network linking master and slave
nodes via local ethernet networks (TCP/IP) so that it can support open multi-processing (OpenMP) [40],
message passing interface (MPI) [41], and compute unified device architecture (CUDA) parallelism [42].
A main advantage of sLCS is that it is easy to use and it is cost-effective to build high-performance
computing for a small research group at a university and/or a small business since it costs less than
$3000 (e.g., 6 × VIA CN10000 with 2 GHZ CPU, 1GB of RAM, 500GB of hard disk, 1Gbps Ethernet
card). A typical sLCS is composed of 1 master and 6 slave nodes that are controlled by the master node
and linked to each other via TCP/IP. For this study, 22 cores (8 cores in master node, 4 cores + 2 cores
each × 5 slave nodes = total 22 cores) were used to implement parallelism during the model calibration.
More specifically, a laptop was used as the master node, while the other slave nodes were connected to
each other via TCP/IP as shown in Figure 4. The primary roles of the master node included: (1) to use
resources for running software, (2) to exchange model parameters with the slave nodes, and (3) to
save and display simulation results. Note that Ubuntu 64-bit version [43] was used as an operating
system (OS).Water 2019, 11, x FOR PEER REVIEW  6 of 19 
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3.2. System Setup

A diskless sLCS in Beowulf system was developed in Ubuntu Operating System (OS) [44]. Slave
nodes with no hard disk were connected by an Ethernet network hub to the master node that could
control, supervise, and monitor other salve nodes. The MPI library was used to coordinate multiple
processes in a distributed memory environment. For communication protocols, the Secure Shell (SSH)
method was used along with the Ubuntu-based diskless remote boot system (UDRB) to manage cluster
nodes. Thus, the UDRB installed in the master node provided a diskless environment for the slave
nodes, accessing local hardware. A wireless network (WiFi) was used for the master node to access
the internet network, while all other connections between master and slave nodes were linked by
network cards.

3.3. Hydrologic Simulation Program–Fortran (HSPF)

HSPF is a process-based, river basin-scale, and semi-distributed model for hydrologic
simulations [45]. This model was used to simulate the impact of land management and/or climate
change on water, sediment, and water quality in large and complex watersheds. In addition, HSPF
was used to simulate water quality and quantity at various basin scales and locations (e.g., urban,
agricultural, mountain area), where complicated water issues are intertwined between the states and/or
the countries. HSPF consisted of three main modules (PERLND, IMPLND, and RCHRES) and an
additional optional utility module. Each module had different state variables representing water
quality and hydrological processes [45]. Further compiling effort is needed to make HSPF compatible
with the Linux environment so that it can parallelize the calibration processes using BEOPEST in sLCS.

3.4. Time-Series Processor (TSPROC)

A tool known as a general time-series processor (TSPROC) is an interface to assist seamless data
exchanges between input and output for optimal parameterizations in hydrologic simulations. Basically,
TSPROC generated the key input file for the parameter estimation (PEST) program (which minimized
model biases and errors of estimation formulated in a user-specified objective function). To fully
implement TSPROC in sLCS, compilation of TSPROC was also required (the compilation process is
not shown in the paper) because the current version of TSPROC was compiled for Windows only.

3.5. BEO-Parameter Estimation (BEOPEST)

PEST, the model-independent nonlinear parameter estimation and optimization tool developed
by [30] was used to assist with data interpretation, model calibration, and predictive analysis.
PEST used a recursive gradient-based optimization technique, linearizing the nonlinear problem
by iteratively computing the Jacobian matrix of sensitivities of model observations to parameters.
The parameter estimation in PEST was accomplished using the Gauss–Marquardt–Levenberg algorithm
(GML) to minimize the user-defined objective function (e.g., minimization of root mean squares
between simulated and observed values). The BEOPEST was a tool to mitigate the computation
burden and implement parallelism in PEST [46]. The BEOPEST was installed in the master
node and it communicated with the slaves without any additional physical file exchanges. Thus,
two communication protocols, such as Transmission Control Protocol/Internet protocol (TCP/IP) and
MPI were commonly used. Therefore, throughout TCP/IP, the BEOPEST and MPI were utilized to
run HSPF through data exchanges in a diskless Linux cluster environment, such as sLCS. As library
sources, an OPENMPI library was installed to compile a parallel code fully workable in sLCS. Since
BEOPEST in sLCS was a cost-effective approach and powerful, it was highly recommended to execute
model calibration in computer parallelism with affordable costs for a small research group.
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3.6. Streamflow Calibration Schemes

BASINS Technical Note 6 [47] provided guidance on hydrologic and hydraulic parameters
including parameter definition, the units, and acceptable ranges for HSPF. Table 1 lists parameter
name, unit, initial value, and ranges for streamflow calibrations. Four different calibration schemes
were used for the simulation period, and the first two years (1 January 1999 to 31 December 2000)
were selected as a warm-up period to reduce the sensitivity of the model results to the assumed initial
conditions (see Table 1).

Table 1. Initial values and range of values for streamflow parameters for the HSPF model.

Parameter Definition Units Initial Value
Range of Values

Typical 1 Possible 1,2

AGWETP
Fraction of remaining potential
evapotranspiration from active

groundwater
None 0 0.0–0.05 0–1.0

AGWRC * Base groundwater recession rate None 0.98 0.92–0.99 0.82–0.999

BASETP *
Fraction of potential

evapotranspiration from
baseflow

None 0.02 0.0–0.05 0–1.0

CEPSC Interception storage capacity mm 2.54 0.76–5.08 0.25–254

DEEPFR Fraction of groundwater inflow to
deep recharge None 0.1 0.0–0.2 0.0–1.0

INFILT * Infiltration rate mm/hour 4.06 0.25–6.35 0.03–12.70

INTFW Interflow inflow parameter None 2.0 1.0–3.0 0.0–10.0

IRC * Interflow recession parameter 1/day 0.5 0.5–0.7 0.1–0.9

KVARY Variable groundwater recession
flow 1/mm 0 0.0–76.2 0.0–127.0

LZETP Lower zone evapotranspiration
parameter None 0 0.0–0.7 0.1–0.9

LSUR Length of the assumed overland
flow m 152.4 –60.96–152.4 30.48–304.8

LZSN * Lower zone nominal soil
moisture storage mm 152.4, 165.1 76.2–203.2 50.8–381.0

NSUR Manning’s roughness for
overland flow None 0.2 0.03–0.1 0.01–1.0

SLSUR * Slope of overland flow plane None 0.001 0.30–1.52 0.0001–304.8

UZSN * Upper zone nominal soil
moisture storage mm 28.7 2.54–25.40 0.25–254.0

INFEXP Exponent in infiltration equation none 2.0 2.0–2.0 1.0–3.0

* indicates the model parameters that were used by [9]. 1 BASINS Technical Note 6 [47]. 2 HSPF Version 12.4 User’s
Manual [48]).

Specifically, schemes (SCOs) 1 and 2 were designed to calibrate whole basin with different
parameter sets. Thus, scheme 1 (SCO1) used 7 model parameters provided by [9] because these
parameters are commonly used for model calibration regardless of watersheds. Scheme 2 (SCO2)
used 16 model parameters (see Table 1), while scheme 3 (SCO3) and scheme 4 (SCO4) are designed to
calibrate the model with different parameter sets for 6 independent sub-watersheds shown in Figure 5.
Thus, SCO3 uses 7 model parameters for 6 sub-watersheds (total 42 model parameters = standard 7
model parameters × 6 sub-watersheds) and SCO4 uses 16 model parameters for 6 sub-watersheds
(total 96 model parameters = 16 model parameters × 6 sub-watersheds). For each calibration scheme,
computer parallelism was applied to evaluate its performances using BEOPEST in sLCS.
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3.7. Performance Measures

3.7.1. Performance Measures for Parallel Computing

To evaluate parallel performances, various evaluation criteria, including run time, time reduction,
speedup, efficiency, scalability, and more were considered, however, program run time (PT), percentage
of time reduction (PP), parallel speedup (PS), and parallel efficiency (PE) were selected for the sake of
convenience. Parallel speedup (PS) was defined as the degree of true time reduction between a serial
computation and parallel computation, and this measure indicated the relative improvement of model
performance during calibrations. A notation of PS is proposed by Amdahl’s law [49] and it was used
to compute the theoretical maximum parallel speedup, when multiple processors were used. It was
denoted as:

PS =
Ts

TP
(1)

where, Ts = execution time of a serial computation on a single process core, s. TP = execution time of
parallel application on multiple processors, p.

Parallel efficiency (PE) is another way to measure the effectiveness of multiple processors. Under
an ideal condition in computer parallelism, PE should be equal to all the cores used with maximum
efficiency, which is 1. Although PE varied depending upon the number of cores used, PE should be
between 0 and 1 in real-world applications due to the interference of physical components associated
with load balancing, lack of hardware capacity, network connection, and other physical constraints,
if any. PE was denoted as:

PE =
S
P

(2)

where, S = efficiency of a single process core, P = efficiency of multiple processors.

3.7.2. Performance Measures for HSPF Simulations

Six typical performance measures, including index of agreement (D), coefficient of determination
(R2), Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), RMSE-observations standard
deviation ration (RSR), and percentage of bias (PBIAS), were selected to evaluate how well HSPF
simulated streamflow as compared with the observed streamflows at the BRW. D was the insensitivity
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of the correlation-based measure to variances [50]. It ranged from 0.0 to 1.0. R2 was the degree of
collinearity between the observed and simulated values. It ranged from 0.0 to 1.0. Note that higher
values of D and R2 indicated better agreement between the simulated data and the observed data.
Typically, if the R2 value was greater than 0.5, acceptable model performances were granted [51,52].
The NSE was the percentage of the observed variance explained by the model and determined the
efficiency criterion for the model verification [53]. It ranged from minus infinity to 1.0, with higher
values indicating better agreement between the observed data and the simulated data. If the NSE value
was greater than zero, the model was deemed a better system simulation than that of the mean of the
observed data. The RMSE was an absolute error measure, quantifying error with regards to the variable
units. It calculated a measure of the difference between the simulated data and the observed data.
The individual differences were called residuals. The RMSE aggregated them into a single measure of
predictive power. A lower value of RMSE showed better model performance and zero value indicated
a perfect fit. The RSR was a standardized RMSE using the observed standard deviation. It incorporated
both an error index and the additional information recommended by [54]. The lower RSR value (e.g.,
close to zero) indicated better model performance. The PBIAS was calculated to determine the average
tendency of the simulated values as larger or smaller than observed counterparts [55]. A value of zero
was the optimal model performance. Positive values indicated the underestimated bias, while negative
values indicated the overestimated bias for the simulated results against the observed values.

3.7.3. Streamflow Analysis in Time Series.

The Rescaled Adjusted Partial Sums (RAPS) method [56] was used to detect and quantity trends
fluctuation of simulated streamflow at the watershed outlet. This method overcame small systematic
changes and variability in the time series. Note that trend, data clustering, irregular fluctuations, and
periodicities in the time series can be represented by the RAPS visualization. The RAPS was calculated
using the equation below:

RAPSk =
k∑

t=1

Yt − Y
SY

(3)

where, Y is the mean data for entire data, SY is standard deviation over the entire data, k (k = 1, 2, 3, 4,
. . . , n) is the counter limit of the summation for k-th year, and n is the number of the values in the
time series.

4. Results

4.1. Parallel Performance

Parallel performances in sLCS are evaluated based on four different calibration schemes
(SCO1–SCO4) using BEOPEST. Figure 6 shows the results of total program (calibration) run time (PT),
percentage of time reduction (PP), parallel speedup (PS), and parallel efficiency (PE) by the number
of core processes with respect to SCOs. Obviously, PT decreases as the number of cores increases.
Note that PT of SCO4 is about ten times longer than that of SCO1 when a single core is used with the
seven parameters (not shown in this paper). However, when model calibrations are conducted using
two to eight cores, PT gradually decreases until no distinct improvement is observed at nine cores and
above. The PP also shows a similar pattern in the sense that calibration with multiple cores can have
time saving advantages. Therefore, the reduction rate of the total calibration time (PP) is achieved for
76%, 89%, 89%, and 90% from SCO1, SCO2, SCO3, and SCO4, respectively.
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Based on the values of PS after calibration in parallelism, SCO1 do not gain many benefits as
compared with that of the other schemes. Thus, the values of PS from SCO2 and SCO3 gradually
increase as the number of cores increases, while that from SCO4 is the highest. It implies that the
loss of speedup is due to the communication overhead when more processor nodes are added to the
sLCS. Theoretically, if the number of parallel jobs is set, each core simultaneously reads files to be
written in hard disk via TCP/IP. For this reason, the speedup will not reach 14, even if 14 cores are
fully used due to network constraints. Similarly, PE is most likely a less-than-ideal value, which is
one, because of system overhead issues associated with physical constraints (e.g., network bandwidth
and/or throughput between cores). The results show that SCO2 has the lowest PE, and SCO4 has
the highest PE. Overall, SCO4 has the best parallel performance as compared with other calibration
schemes, regardless of number of cores. This implies that BEOPEST in sLCS settings works well,
especially when many hydrological parameters need to be calibrated at multiple sub-watersheds.

4.2. HSPF Model Performance

In addition to the computer parallelism aspect, HSPF performances are also observed to evaluate
how streamflow simulations are well made, associated with the historical data at the selected calibration
target points (PTs). Table 2 shows the comparison of the model performance criteria for SCO1–SCO4.
SCO1 and SCO2 are first compared to see how the different number of parameters affect the model
performance. The result shows that R2, d, NSE, and PBIAS of SCO 2 are higher than that of SCO1,
but RMSE and RSR of SCO 2 are lower than SCO 1. It seems that SCO2 is more affected by the
volume variation of streamflow driven by using more parameters. Obviously, HSPF performances after
calibration improve against the no calibration option based on the performance criteria (see Table 2).
Overall, SCO4 is the best, with higher NSE and D, and lower RSR, RMSE, and PBIAS, as compared
with any other schemes, including the no-calibration option. As such, SCO4 is selected for additional
effort to calibrate the interior calibration target points (TP1–TP5) at the BRW.
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Table 2. The model performance comparison of calibrated monthly streamflow by calibration schemes
at the calibration target point 6 (watershed outlet).

Criteria OBS No Cal SCO1 SCO2 SCO3 SCO4

Daily mean streamflow (m3/sec) 30.95 27.01 24.21 24.04 25.55 27.44

D - 0.66 0.50 0.60 0.54 0.74

R2 - 0.30 0.41 0.45 0.41 0.37

NSE - 0.17 0.24 0.31 0.28 0.34

RMSE (m3/sec) - 28.87 27.64 26.30 26.89 25.76

RSR - 0.91 0.87 0.83 0.85 0.81

PBIAS (%) - 12.74 21.78 22.32 17.46 11.33

4.3. Results of Calibrated and Validated Streamflow Using SCO4

SCO4 is now employed to calibrate all six TPs and Table 3 shows the final set of calibrated model
parameter values at each calibration target point. Note that the same model parameters are initially
assigned to six sub-watersheds, but the optimal parameter values differ from each of the others after
calibration. Table 4 lists the statistical results after model calibration and validation using SCO4 at all
six TPs.

Table 3. The final set of calibrated model parameters at six calibration target points.

Parameter Units
Calibration Target Points (TPs)

TP1 TP2 TP3 TP4 TP5 TP6

AGWETP None 0.0001 0.0004 0.0003 0.0001 0.0126 0.0025

AGWRC None 0.9796 0.9813 0.9808 0.9164 0.9782 0.9401

BASETP None 0.2256 0.0864 0.1000 0.0362 0.1867 0.2000

CEPSC mm 12.70 12.70 2.58 12.70 8.51 12.70

DEEPFR None 0.5000 0.5000 0.1016 0.5000 0.3352 0.5000

INFILT mm/hour 1.58 4.49 2.08 0.03 4.41 1.38

INTFW None 0.7209 0.4337 0.8227 0.1173 0.4422 0.1932

IRC 1/day 0.9000 0.8562 0.9000 0.9000 0.8569 0.4687

KVARY 1/mm 0.00 0.00 0.00 0.00 0.00 3.72

LZETP None 0.5000 0.5264 0.9648 0.2698 0.1000 0.1000

LSUR m 12.05 35.05 28.81 238.91 64.05 243.84

LZSN mm 50.80,
58.13

50.80,
158.23

50.8,
242.73

68.45,
63.62

56.81,
156.96

50.80,
71.39

NSUR None 0.1317 0.1533 0.1260 0.9989 0.2825 0.0218

SLSUR None 4.5068 0.2193 0.3623 0.0033 1.2819 0.1635

UZSN mm 65.99 5.34 2.54 195.64 2.68 62.73

INFEXP None 2.00 2.00 2.00 2.00 2.0 1.00
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Table 4. Statistical results after calibration and validation using SCO4 at the six calibration target points
(TP1–TP6) in the BRW.

Calibration
Target Point

Daily Mean Streamflow
(m3/s)

Evaluation Statistic

R2 D RSR NSE RMSE PBIAS (%)

TP1
Cal 5.02

(5.90) 0.82 0.95 0.45 0.79 3.44 14.88

Val 7.40
(8.09) 0.76 0.92 0.60 0.64 6.07 8.60

TP2
Cal 15.15

(17.04) 0.85 0.93 0.41 0.83 8.43 11.09

Val 17.65
(21.27) 0.78 0.93 0.49 0.76 13.31 17.03

TP3
Cal 32.63

(30.95) 0.84 0.95 0.41 0.83 13.57 6.83

Val 35.40
(34.41) 0.82 0.95 0.45 0.80 16.50 −2.88

TP4
Cal 22.75

(21.56) 0.58 0.86 0.59 0.66 14.63 −5.48

Val 25.18
(27.71) 0.54 0.85 0.77 0.40 19.67 9.10

TP5
Cal 44.94

(61.29) 0.59 0.84 0.70 0.51 39.17 26.67

Val 55.19
(78.69) 0.65 0.86 0.69 0.53 47.21 29.86

TP6
Cal 28.26

(30.95) 0.59 0.87 0.66 0.57 20.89 8.63

Val 36.03
(48.97) 0.60 0.82 0.69 0.52 34.50 26.43

() indicate observed daily mean streamflow.

Figure 7 shows hydrograph comparisons between the calibrated and validated simulation results
using SCO4 at all calibration target points (TP1–TP6). The results indicate adequate calibration and
validation performance over the simulation and validation period. The timing of peak flows and
the magnitude of peaks match well between the simulated and observed flows at TPs 1, 2, 3, and
4 during the calibration period. However, the magnitude of peaks at TPs 5 and 6 show somewhat
different results due to the large reservoir diversion nearby. The values of D between the simulated
and observed streamflows at all TPs during the calibration and validation periods ranged from 0.84 to
0.95 and 0.82 to 0.95, respectively, which is a satisfactory performance as shown in Table 5.
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Figure 7. Hydrograph comparison at the calibration target points (TP1 (a), TP2 (b), TP3 (c), TP4 (d),
TP5 (e), TP6 (f)) between the simulated flows (before and after calibration) and the observed flows for
the validation period (1981–2000) and calibration period (2001–2015) using HSPF in sLCS.

Table 5. General model performance rating for recommended statistics at monthly time steps.

Performance Rating R21 RSR2 NSE2 PBIAS1

Very good 0.85 < R2 0.00 ≤ RSR ≤ 0.50 0.75 < NSE PBIAS < ±10

Good 0.75< R2
≤ 0.85 0.50 < RSR ≤ 0.60 0.65 < NSE 0.85 ±10 < PBIAS ±15

Fair 0.65< R2
≤ 0.75 0.60 < RSR ≤ 0.7 0.50 < NSE 0.65 ±15 < PBIAS ±25

Poor R2
≤ 0.65 RSR > 0.7 NSE ≤ 0.50 PBIAS > ±25

Note that the values of 1 and 2 are adopted from [57] and [58], respectively.
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4.4. Results of Streamflow Analysis Using SCO4

Figure 8a shows the time series of the simulated annual streamflow using SCO4 for 1981–2015 at
the watershed outlet. In general, annual streamflow shows a negative trend with minimum, mean,
and maximum flow of 12.24 m3/s, 31.89 m3/s, 59.14 m3/s, respectively, while a positive trend is also
observed when subsets of annual streamflow are used (Figure 8b). Thus, the simulation periods are
divided into five subsets for visual inspection with 1981–1986 (Sub 1), 1987–1994 (Sub 2), 1995–1998
(Sub 3), 1999–005 (Sub 4), and 2006–2015 (Sub 5). The trend lines for the respective time window are
then generated as shown in Figure 8c.
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Our simulation model results show reliable model simulation performance based on the evaluation
criteria. However, it is difficult to determine exact model performance since analyzed statistical criteria
provide different performance ratings from very good to fair performance depending on the selected
criteria. Therefore, the integrated criteria of model performance, such as the ideal point error (IPE)
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metric [59–62] or the standardized ranking performance index (sRPI) [63] could be additional measures
to evaluate more robust model performance in a future study.

5. Conclusions

Computer parallelism is a useful tool to reduce the computation time. Hydrologic model
calibration in parallel computing can provide various opportunities to improve model performance,
yet its qualitative performance has not been reported in the hydrology community. To quantify
those performances in hydrological simulations, four different calibration schemes are employed and
BEOPEST is used as a tool to parallelize the HSPF model in sLCS. Performance measures of parallelism,
including program run time (PT), percentage of time reduction (PP), parallel speedup (PS), and parallel
efficiency (PE) are used along with other evaluation criteria for hydrological simulations, which include:
index of agreement (D), coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), root mean
square error (RMSE), RMSE-observations standard deviation ration (RSR), and percentage of bias
(PBIAS).

The results show that total PT during calibration is tremendously reduced by 76%, 89%, 89%,
and 90% from SCO 1, SCO 2, SCO 3, and SCO 4, respectively, when 14 cores are used instead of a
single core. Additionally, SCO4 outperforms others based on its performance measures described early.
As such, SCO4 is used for further analysis to improve model performance for all calibration target
points (TP1–TP6). After model calibration based on SCO4, annual streamflow trends are also observed
for the interested reader using RAPS for the subsets (Sub 1 thru Sub 5) of the annual streamflow in
different time windows.

We can conclude that computer parallelism, with many parameters at multiple sub-watersheds,
will benefit hydrologists for improvement of hydrological simulations. In addition, the proposed
method will provide great potential for reliable water quality and quantity simulations when large
reservoir and irrigation components are fully incorporated into HSPF. Therefore, the proposed
case study is a good example for hydrologists to apply computer parallelism using sLCS to their
own applications, including but not limited to streamflow, physical and conceptual hydrologic,
and environmental simulations in a changing global environment.
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Appendix A

D = 1.0 −

∑N
i=1(QOi − QSi)

2∑N
i=1

(∣∣∣QSi − QOi

∣∣∣ + ∣∣∣QOi − QOi

∣∣∣)2 (A1)

D = insensitivity of correlation-based measure to variances (Wilmott, 1984).

R2 =


N×

∑N
i =1(QOi ×QSi) − (

∑N
i=1 QOi) ×

(∑N
i=1 QSi

)
√

N× (
∑N

i=1 Q2
Oi) −

(∑N
i=1 QO1

)2
×

√
N× (

∑N
i=1 Q2

Si) −
(∑N

i=1 QS1

)2


2

(A2)

NSE = 1.0 −


∑N

i=1(QOi − QSi)
2∑N

i=1

(
QOi − QOi

)2

 (A3)
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RMSE =

 1
N

N∑
i=1

(QOi − Qsi)
2


0.5

(A4)

RSR =
RMSE

STDEVobs
=

√∑N
i=1

(
QQi − Qsi

)2√∑N
i=1

(
QOi − QOi

)2
(A5)

PBIAS =

∑N
i=1(QOi − QSi)∑N

i=1 QOi
× 100 (A6)

where, QOi and QSi are observed and simulated streamflow at time step, respectively. QOi and QSi are
the mean observed and simulated streamflow for the simulation period. N is total number of values
within the simulation period.
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