
water

Article

Quantifying the Effects of Climate and Vegetation
on Soil Moisture in an Arid Area, China

Yunqian Wang 1,2,3,4,6, Jing Yang 5,*, Yaning Chen 2, Gonghuan Fang 2, Weili Duan 2 ,
Yupeng Li 2 and Philippe De Maeyer 4,7

1 School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China;
wangyunqian15@mails.ucas.ac.cn

2 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences, Urumqi 830011, China; chenyn@ms.xjb.ac.cn (Y.C.);
fanggh@ms.xjb.ac.cn (G.F.); duanweili@ms.xjb.ac.cn (W.D.); liyupeng14@mails.ucas.ac.cn (Y.L.)

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Geography, Ghent University, 9000 Ghent, Belgium; Philippe.DeMaeyer@UGent.be
5 National Institute of Water and Atmospheric Research, Christchurch 8000, New Zealand
6 Sino-Belgian Joint Laboratory of Geo-Information, Urumqi 830011, China
7 Sino-Belgian Joint Laboratory of Geo-Information, 9000 Ghent, Belgium
* Correspondence: yangjing@ms.xjb.ac.cn

Received: 23 January 2019; Accepted: 11 April 2019; Published: 13 April 2019
����������
�������

Abstract: Soil moisture plays a critical role in land-atmosphere interactions. Quantifying the controls
on soil moisture is highly valuable for effective management of water resources and climatic adaptation.
In this study, we quantified the effects of precipitation, temperature, and vegetation on monthly soil
moisture variability in an arid area, China. A non-linear Granger causality framework was applied
to examine the causal effects based on multi-decadal reanalysis data records. Results indicate that
precipitation had effects on soil moisture in about 91% of the study area and explained up to 40% of
soil moisture variability during 1982–2015. Temperature and vegetation explained up to 8.2% and
3.3% of soil moisture variability, respectively. Climatic extremes were responsible for up to 10% of soil
moisture variability, and the importance of climatic extremes was low compared to that of the general
climate dynamics. The time-lagged analysis shows that the effects of precipitation and temperature
on soil moisture were immediate and dissipated shortly. In addition, the effects of precipitation on
soil moisture decreased with the increase of precipitation, soil moisture, and elevation. This study
provides deep insight for uncovering the drivers of soil moisture variability in arid regions.

Keywords: soil moisture; precipitation; temperature; vegetation; non-linear Granger causality

1. Introduction

Soil moisture is an important state variable of the terrestrial system and plays a critical role
in land-atmosphere interactions [1,2]. Its spatial and temporal distributions have strong effects on
water, energy, and biogeochemical balances [3]. In recent decades, soil moisture has been widely
used in drought monitoring [4], hydrological modeling [5], vegetation changing [6], and weather
forecasting [7,8]. Consequently, it is critical to understand soil moisture variability and quantify its
driving forces.

Soil moisture is generally driven by climate, particularly precipitation and temperature [9].
Precipitation is the main source of soil moisture, while temperature affects soil moisture by controlling
evapotranspiration [10]. Recent and future global warming and the potential acceleration of the water
cycle may increase uncertainty in soil moisture variability [11]. In addition, anthropogenic effects,
which are commonly characterized by vegetation change, also have crucial effects on soil moisture [12].
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It is reported that humans have altered approximately 41% of the land surface by shifting from natural
vegetation into agriculture and settlement [13]. Vegetation change can alter soil infiltration and field
capacity, thus affecting soil moisture [14]. All these factors together affect soil moisture through complex
interactions. Furthermore, many investigations have demonstrated the non-linear effects of climate
and vegetation on soil moisture [15,16], as well as the multiple causations among these variables [3,17].
In this context, quantifying individual effects of these factors on soil moisture variability remains
a challenge.

Several studies tried to identify the controlling factors of soil moisture based on correlations
or multi-linear regressions [9,10]. However, these approaches are insufficient to infer causality
and are commonly affected by auto-correlation, nonlinearity, and cross-correlation between
variables [18]. Notably, a non-linear Granger-causality framework has been proposed and applied
in the land-atmosphere system [18], in which, the traditional linear ridge regression model of the
Granger-causality method is substituted with a non-linear random forest algorithm. The non-linear
Granger-causality framework can not only prevent over-fitting but also incorporate the non-linear nature
of land-atmosphere interactions. Furthermore, in recent decades, remote sensing and models provided
long-term data of soil moisture, climate, and vegetation, which facilitates applying sophisticated
data-driven methods to investigate the response of soil moisture to climate and vegetation.

Xinjiang Uygur Autonomous Region (hereafter as Xinjiang), located in Northwest China, is an arid
area with extremely scarce water resources. The fragile water-based ecosystem makes it highly sensitive
to climate change and human disturbances. It is reported that the temperature and precipitation in this
area showed an increasing trend over the past half-century [19]. In addition, with the development of
social economy, natural vegetation and bare land was replaced with cropland and construction land [20].
Land cover and climate change unavoidably lead to soil moisture variability. Hence, understanding
soil moisture variability and quantifying the individual effects of climate and vegetation change
on soil moisture are important for water resources management and land use planning. However,
although recently there are increasing studies on soil moisture in Xinjiang [21,22], studies have neither
investigated the relationship between vegetation and soil moisture, nor quantified the effects of climatic
factors (i.e., precipitation and temperature) and vegetation on soil moisture variability. In this study,
we combined the non-linear Granger-causality framework with multi-decadal reanalysis data to gain
a deeper insight into the contribution of climate and vegetation change to soil moisture variability.
The main aims of this study are: (1) To investigate soil moisture variability during the past three
decades; (2) to quantify the direct and lagged effects of precipitation, temperature, and vegetation on
soil moisture; (3) to quantify the effects of climatic extremes on soil moisture, and (4) to explore the
influential factors for the effects of precipitation, temperature, and vegetation on soil moisture.

2. Study Area

Xinjiang, located in the Eurasian hinterland, comprises an area of 1.66 million km2 extending
between 34◦15′ N and 49◦10′ N, 73◦20′ E and 96◦25′ E (Figure 1). It is the core area of the Silk Road
Economic Belt and the ecological environment has attracted wide attention.

There are two main basins (the Tarim and Junggar basins) lying between three high mountain
ranges stretching across the northern (Altay Mountains), middle (Tianshan Mountains), and southern
(Kunlun Mountains) parts of the study area. This typical mountain-basin system creates contrasting
environments, including high mountain forest, middle mountain forest-grassland, low mountain
desert, agricultural oasis, and natural shrub-grassland [23].

Xinjiang is far from oceans and is surrounded by high mountain ranges, which leads to an arid
climate [24]. The average annual precipitation for the entire study area is about 150 mm and the spatial
distribution is uneven with high precipitation in mountain areas and low in the plains. Xinjiang has
a typical continental climate with four distinct seasons, while the mean annual temperature ranges
between 2.5 and 10 ◦C.
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hydrological fields (MERRA-Land) was later generated by running a revised version of the land 
component of the MERRA system [26]. Reichle et al. [27] validated the MERRA and MERRA-Land 
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3. Data and Method

3.1. Data

3.1.1. Soil Moisture Data

The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a reanalysis
data product generated by the NASA Global Modeling and Assimilation Office (GMAO). It assimilates
observations from both in situ and remote sensing into the Goddard Earth Observing System (GEOS)
model and provides global estimates of soil moisture for 1979–present at a spatial resolution of
0.667◦ longitude by 0.5◦ latitude [25]. An improved data product of land surface hydrological fields
(MERRA-Land) was later generated by running a revised version of the land component of the MERRA
system [26]. Reichle et al. [27] validated the MERRA and MERRA-Land soil moisture against in
situ observations and found the accuracy of MERRA-Land soil moisture was higher than that of
MERRA soil moisture. Previous studies [28–30] showed very good performance of MERRA-Land soil
moisture data in comparison with other reanalysis products and in situ data. In this study, we used the
MERRA-Land monthly soil moisture data of the top soil layer (0–2 cm) during 1982–2015.

In addition, in situ soil moisture data at Shache (38◦71′ N, 77◦45′ E) and Wulawusu (44◦28′ N,
85◦82′ E) stations was used to validate the MERRA-Land soil moisture. In situ data at Shache
station (1990–2010) was from the National Meteorological Information Center of China Meteorological
Administration, and in situ data at Wulawusu station (1982–1994) was from the International Soil
Moisture Network [31]. These observations were measured on the 8th, 18th, and 28th day of each
month at different depths (0–10 cm, 10–20 cm, 20–30cm, 30–40 cm, 40–50 cm, 50–70 cm, and 70–100 cm).
In this study, the in situ data at the top layer (0–10 cm) was averaged into monthly data to validate the
MERRA-Land soil moisture.

3.1.2. Precipitation and Temperature Data

The daily precipitation and temperature gridded datasets (V2.0) at a spatial resolution of 0.5 degrees
were released by the National Meteorological Information Center of the China Meteorological
Administration (http://cdc.cma.gov.cn). These datasets were generated by spatially interpolating
observations from 2472 weather stations in China based on thin plate spline (TPS) method. The National
Meteorological Information Centre (NMIC) has conducted cross-validation and error analysis,
concluding that these datasets were highly correlated with original observational series and the
mean levels of monthly RMSE (root-mean-square error) were 0.49 mm and 0.25 ◦C for precipitation
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and temperature, respectively [32,33]. Previous studies also demonstrated that these datasets were
able to characterize precipitation and temperature variability in Xinjiang [34,35]. The datasets cover
the period from 1960 to the present day, as such we focused on the period between 1982 and 2015 in
this study. To match with the MERRA-Land soil moisture data, the data was subsequently converted
to monthly temporal resolution and 0.5◦ by 0.667◦ latitude-longitude spatial resolution.

In addition, three precipitation extreme indices and five temperature extreme indices, as described
in Table 1, were used as predictive variables. These extreme indices were calculated using the daily
precipitation and temperature data based on the information provided by Expert Team on Climate
Change Detection and Indices (ETCCDI) [36].

Table 1. Extreme indices considered as predictive variables.

Type Name Unit Description

Precipitation
SDII mm/day Simple precipitation intensity index

Rx1day mm Monthly maximum 1-day precipitation
Rx5day mm Monthly maximum consecutive 5-day precipitation

Temperature

DTR ◦C Daily temperature range
TXx ◦C Monthly maximum value of daily maximum temperature
TXn ◦C Monthly maximum value of daily minimum temperature
TNx ◦C Monthly minimum value of daily maximum temperature
TNn ◦C Monthly minimum value of daily minimum temperature

3.1.3. Normalized Different Vegetation Index (NDVI)

NDVI is a radiometric measure of the amount of photosynthetically active radiation absorbed
by chlorophyll in green leaves, which can be used as a proxy for vegetation development and land
use change [37,38]. Here we used the GIMMS NDVI3g dataset generated from the Advanced Very
High Resolution Radiometers sensors by the Global Inventory Modeling and Mapping Studies group
(GIMMS) [39]. GIMMS NDVI3g dataset is generally considered as a more accurate dataset for analyzing
long-term trends than other products [39,40], and the dataset used here ranges from July 1981 to
December 2015 with a 15 days temporal and 0.0833◦ spatial resolution. Here the monthly NDVI data
was obtained with the maximum value composite method [41] and the monthly data was subsequently
aggregated to 0.5◦ by 0.667◦ latitude-longitude spatial resolution.

3.2. Method

Granger causality was proposed by Granger [42] and first used in econometrics to identify
causation between variables based on the theory of predictability. In recent years, this method has
been extended to the climate system [43,44]. The Granger-causal inference is that variable X causes
variable Y if the predictability of Y improves when X is taken into account. The Granger-causal method
is suited for stationary and linear systems.

In the Granger causality theory, the coefficient of determination R2 is introduced as a performance
measure to evaluate the forecast. R2 can be interpreted as the fraction of explained variance by the
forecasting model, and can be expressed as follows [18]:

R2(y, ŷ) = 1−

∑N
i=P+1

(
yi − ŷi

)2

∑N
i=P+1

(
yi − y

)2 (1)

where y represents the observed data; ŷi is the predicted data; y refers to the mean of y; and P is the
length of the lag-time moving window.

In the Granger causality, the linear vector autoregressive model is used to make forecasts. X causes
Y if R2 of a linear model where only the information of Y is taken into account to predict Y is lower
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than that of a linear model where X is added as a predictor to predict Y. The difference between R2 of
these two models can be interpreted as the effect of X on Y.

As the relationships between soil moisture and its influencing factors are highly nonlinear,
the nonlinear Granger-causality framework was suggested. Papagiannopoulou et al. [18,45] proposed
a nonlinear Granger-causality framework, in which the traditional linear model is replaced with
the random forest model to enable it for non-linear relationships. The random forest regression
algorithm is an ensemble-based machine learning algorithm that combines a large set of regression
trees [46]. Each tree contributes a single vote to the final output, and the predicted value is calculated
by averaging over all the trees. There are two main parameters in the random forest algorithm; the
number of regression trees (ntree) and the number of predictor variables per node (mtry). In this study,
the values of ntree and mtry were set as 500 and 1/3 of the total number of variables. Furthermore,
5-fold cross-validation was applied to assess model performance. The random forest algorithm was
implemented based on the free “randomForest” package [47] in R language environment [48] at each
pixel of the study area.

In this study, soil moisture was considered as the response variable, while precipitation,
temperature, extreme indices, NDVI, and lagged variables (with monthly lags up to six months)
served as predictor variables. Taking the variable precipitation as an example, the explained variance
(R2) of soil moisture anomaly by precipitation was calculated by: (1) applying the random forest
algorithm to predict soil moisture based on all variables except for precipitation; (2) applying the
random forest algorithm to predict soil moisture with all variables as predictors (referred to as the full
random forest model hereafter); and (3) calculating the improvement in terms of R2 after including
the precipitation.

In addition, as the Granger causality is only for stationary time series, we eliminated the linear
trend and seasonal cycle from the raw time series and Granger causality was applied on anomaly time
series of datasets. For example, variable Y can be detrended based on a simple linear regression with
the time t as a predictor. The regression equation can be denoted as follows:

YTr = b + at (2)

YD = Y−YTr (3)

where a and b are the slope and intercept, respectively; YTr refers to the predicted time series; Y is the
raw time series; and YD represents the detrended time series.

The seasonal cycle YSe can be simply estimated as the multi-year average for each month, and
then the anomaly YR can be calculated as follows:

YR = YD
−YSe (4)

4. Results

4.1. MERRA-Land Data Validation

The in situ soil moisture data from two agriculture stations (i.e., Shache and Wulawusu) (shown
in Figure 1) were used to validate the MERRA-Land data. Due to the different units of in situ (weight
percentage) and MERRA-Land (volumetric percentage) data, we compared the variations of these
two datasets instead of their magnitudes. Figure 2 shows that MERRA-Land data could capture
the main fluctuations of the in situ data from both stations at a monthly scale, with correlation
coefficients between in situ and MERRA-Land data of 0.54 and 0.49 for Shache station and Wulawusu
station, respectively. According to previous studies, the accuracy is reasonable for soil moisture
validation [10,22].
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Figure 2. Comparisons of the MERRA-Land soil moisture and in situ observations at Shache (a) and
Wulawusu (b) stations.

4.2. Spatial and Temporal Characteristics of Soil Moisture, Precipitation, Temperature, and NDVI

Figure 3a shows the spatial distribution of mean annual soil moisture, which ranged from 0.02
to 0.33 m3

·m−3. The minimum soil moisture appeared in the centers of the Tarim and Junggar basin,
while the maximum appeared between these two basins. In addition, soil moisture generally increased
with elevation. The spatial pattern of soil moisture linear trend from 1982 to 2015 was presented
in Figure 3b. Only 27% of the study area was significant at p < 0.05, of which 76% showed an
increasing trend. The spatially averaged rate was about 0.0002 m3

·m−3/year. Inter-annual change of
spatially averaged soil moisture (Figure 3c) was not obvious during 1982–1997 and 2005–2015, while it
experienced a sharp increase from 1997 to 2005.

In Figure 3d, the mean annual precipitation ranged from 10 to 800 mm and its spatially averaged
value was 151 mm. Taking the Tianshan mountains as a middle boundary, precipitation in the south
part was lower than in the north part. Mountains with high orographic precipitation were wetter than
basins [24]. Figure 3e presents the spatial distribution of annual precipitation trend. The spatially
averaged change rate was about 0.87 mm/year. About 85% of the study area showed an increasing
trend, while only 15% showed a slightly downward trend, mainly in the Junggar basin. About 20% of
the study area, which was mainly distributed in high altitude areas, showed a significantly increasing
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trend at the 95% confidence level. The spatially averaged precipitation increased steadily from 1982 to
2015 (Figure 3f).
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Annual temperature ranged from −12 to 15 ◦C with low values in high altitude areas and high
values in low altitude areas (Figure 3g). The temperature in the Tarim basin was much higher than
in other regions. In addition, most regions (about 87%) showed significantly increasing trends at the
95% confidence level (Figure 3h). Only the northern mountainous areas and a patch in the center of the
Tarim basin showed a decreasing trend which was not significant. As shown in Figure 3i, there were
some differences in the inter-annual change of spatially averaged temperature for the two periods (i.e.,
1982–2004 and 2004–2015). Temperature showed an increasing trend from 1982 to 2004, while a slightly
downward trend from 2004 to 2015.

The spatial distribution of NDVI was described in Figure 3j, ranging between 0.02 and 0.4 in the
study area. NDVI was less than 0.3 in about 96% of the study area, while some pixels in Tianshan
Mountains and Altay Mountains displayed more than 0.3, which reveals that vegetation was relatively
sparse in the study area. Most regions of the Tarim Basin maintained low vegetation with a NDVI
around 0.1. In Xinjiang, vegetation was mainly distributed in the mountainous areas and oases [17].
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As shown in Figure 3k, there were about 66% pixels showing an increasing trend, of which 58%
reached 95% confidence level. The degenerating vegetation area only covered about 34%, and mainly
appeared in the Junggar basin. The spatially averaged NDVI presented in two-stage changes (Figure 3l).
It showed an increasing trend from 1982 to 1997 and then reversed to decrease from 1997 to 2015.

4.3. Effects of Precipitation, Temperature, and Vegetation on Soil Moisture

4.3.1. Spatial Patterns of the Effects

Figure 4 demonstrates the spatial patterns of the precipitation, temperature, and vegetation effects
on soil moisture. As shown in Figure 4a, among these three factors, precipitation was the primary
control of soil moisture variability in about 87% of the study area. Figure 4b shows that the regions
with strong effects of precipitation on soil moisture were mainly distributed in mid-elevation and
low-elevation areas, where soil moisture was relatively low. The temperature was the primary driving
of soil moisture variability for 10% of the study area, mainly distributed in the Kunlun Mountains.
In these mountainous regions, soil moisture was vulnerable to snow/ice melt, which is controlled by
temperature [49]. Vegetation had a relatively weak effect on soil moisture variability due to its small
covering area, with vegetation being the main driving factor to soil moisture for only 3% of the area in
high-elevation regions.

The spatial patterns of individual effects of precipitation, temperature, and vegetation on soil
moisture are depicted in Figure 4b–d, respectively. Precipitation had effects on soil moisture in about
91% of the area and explained 0–40% of soil moisture variability. Strong effects of precipitation on
soil moisture appeared in some patches of east and south Xinjiang. Temperature contributed 0–8.2%
to soil moisture variability in about 59% pixels, which were mainly located in marginal regions of
southeast and northwest Xinjiang. For about 44% of pixels, vegetation had effects on soil moisture
and its contributions were low, i.e., only 0–3.3% of the variance of soil moisture variability can be
explained by vegetation. In spite of the weak impact, vegetation served as a regulator to soil moisture
variability [12].
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4.3.2. Time-Lagged Effects

The atmosphere, vegetation, and soil moisture have a memory [45,50], as such, soil moisture may
take time to respond to environmental changes. For example, vegetation affects soil moisture in a slow
way by altering soil infiltration, field capacity, and evapotranspiration [14,51]. Exploring the latency
and persistence of climate and vegetation effects on soil moisture would be helpful for analyzing soil
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moisture variability. Here we disaggregated the effects of precipitation, temperature, and vegetation
on soil moisture at 0–2-month time lags.

Figure 5 shows the lagged effects of precipitation (a–c), temperature (d–f), and vegetation (g–i) on
soil moisture. 0-month, 1-month, and 2-month antecedent precipitation had effects on soil moisture in
about 93%, 65%, and 41% of the study area, respectively. Spatially averaging, precipitation explained
about 12%, 1.6%, and 0.7% of soil moisture variability at 0-month, 1-month, and 2-month time lags,
respectively. The temperature at the current month (0-month lag) contributed about 1.9% to soil
moisture variability in about 78% of the study area. With the increasing time lag, both affected
intension and area decreased rapidly. The effects of precipitation and temperature on soil moisture
were immediate and dissipated shortly, which suggests that soil moisture has less resilience to the
variations of precipitation and temperature. Vegetation explained 0.7%, 0.68%, and 0.76% of soil
moisture variability in about 53%, 51%, and 45% of the area at 0-month, 1-month, and 2-month time
lags, respectively. There was no obvious change in the vegetation effects on soil moisture at different
time lags. However, since the effects of vegetation on soil moisture were too weak, it was statistically
meaningless to explore the lagged effects.
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4.3.3. Effects of Climatic Extremes

To gain a better understanding of the effects of climatic extremes on soil moisture, the individual
effects of precipitation and temperature extremes (see Table 1) were isolated from other predictor
variables. As depicted in Figure 6a, three precipitation extremes had effects on soil moisture in about
76% of the study area, particularly in the southern Xinjiang where the precipitation was relatively
low. Precipitation extremes were able to explain 0–10% of soil moisture variability. Five temperature
extremes explained 0–8% of soil moisture variability in about 54% of the area (Figure 6b) and these
regions were mainly located in northern and eastern Xinjiang. Visual comparisons in Figure 6a,b reveal
that the regions affected by precipitation extremes and those affected by temperature extremes were



Water 2019, 11, 767 10 of 16

spatially complementary. In addition, the effects of climatic extremes were weaker than that of the
general climate changes.Water 2019, 11, x FOR PEER REVIEW 10 of 16 
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Figure 7a–c shows that the effects of precipitation on soil moisture declined with precipitation,
soil moisture, and elevation increasing. In regions with low precipitation and soil moisture, precipitation
had relatively strong effects on soil moisture variability. The relationship between the effects and
elevation was related to the content of soil moisture and precipitation at different elevations.

The effects of temperature on soil moisture did not pose any significant statistical relationship with
temperature (Figure 7d), soil moisture (Figure 7e), and elevation (Figure 7f), as also indicated by the r2

(r2 < 0.01). This might be because the effects of temperature were too small (0–10%). This phenomena
and reason can also be applied to the relationships between the effects of vegetation and NDVI
(Figure 7g), soil moisture (Figure 7h), and elevation (Figure 7i).

5. Discussion

For most previous studies about the climate effects on soil moisture, the relationships between
soil moisture and climate factors were generally qualitatively analyzed based on correlation analysis
or multi-linear regressions [9,10,22]. This study, by contrast, quantified the causal effects of climate
factors and vegetation on soil moisture variability based on a non-linear Granger-causality framework
which can cope with non-linearity and cross-correlation between variables [18]. The transformation
from qualitative analysis to quantitative analysis has advanced the research about the effects of climate
and vegetation on soil moisture variability.

We note that the MERRA-Land soil moisture product used in this study is the shallow depth of
soil moisture. However, previous study found that shallow depth observations (upper 5 cm of soil at
most) can be a representative value for soil moisture dynamics at the root zone layer (max 2 m) [52].
In addition, many studies analyzed the relationship between shallow soil moisture and vegetation, and
found that vegetation plays a non-negligible role in the temporal dynamics of the soil moisture for the
shallow depth [6,53]. Hence, quantifying the effects of vegetation on shallow soil moisture is feasible.

Precipitation, temperature, and vegetation contributed differently to soil moisture. Among
these three factors, precipitation was the primary factor driving soil moisture variability, followed
by temperature and vegetation. Previous studies also found that soil moisture was more controlled
by precipitation than temperature in an arid region based on correlation analysis or multi-linear
regressions analysis [10,22]. In Xinjiang, since loam and sandy loam take up more than 90% of the
study area according to FAO textural classification scheme [54], the infiltration rate of soil is relatively
high. Besides, Xinjiang is an arid region and the initial soil moisture is low. Hence, the conversion rate
of precipitation into soil moisture is high, and thus precipitation has strong effects on soil moisture.
For temperature, temperature indirectly affects soil moisture through evapotranspiration, while soil
moisture also has effects on evapotranspiration [3,55]. In arid areas, low soil moisture strongly
constrains evapotranspiration variability, thus resulting in relatively small effects of temperature on
soil moisture. Compared to precipitation and temperature, vegetation had weaker impacts on soil
moisture variability. The reason may be mainly attributed to their small area [12].

In the study area, the spatial pattern of soil moisture was similar to that of the precipitation
(Figure 3a,d). In areas with low precipitation, the initial soil moisture is relatively low and the infiltration
rate is relatively high, thus the increased precipitation may totally transfer into soil moisture [56].
As precipitation continues to increase, soil gets wet and infiltration rate declines [57], thus the portion
of precipitation into soil moisture gradually decreases, while the portion of precipitation into runoff

gradually increases [58]. Hence, the effects of precipitation on soil moisture decreased with precipitation
and soil moisture increasing. In addition, the effects of precipitation decreased as the elevation increased.
The declining relation is a result of the negative relationship between precipitation and elevation in the
study area [24], as also shown in Figure 3a,d, i.e., soil moisture and precipitation in low elevation area
were lower than that in high elevation area.

Except for precipitation, temperature, and vegetation, there are other factors such as wind speed
or agricultural practices that affect soil moisture variability. Figure 8a shows the spatial pattern of the
explained variance (R2) of soil moisture variability based on a full random forest model in which all
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variables (precipitation, temperature, climatic extremes, NDVI, and lagged variables) were included as
predictors. In about 73% of the study area, more than 40% of the variance of soil moisture could be
explained by these variables. However, the variance of soil moisture explained in other areas, such
as the southern (Kunlun Mountains) and eastern (Turpan Basin and Lop Nor) regions, was below
25%. We hypothesize two potential reasons: (a) the uncertainty in the observations used as target and
predictors is typically larger at high altitudes (especially in the Kunlun Mountains) due to snow and
ice cover, and (b) there are some regions where soil moisture may be predominantly driven by other
variables (such as wind speed). Evapotranspiration is a function of wind speed, therefore wind speed
could increase the soil moisture evaporation loss [59]. For further analysis, we downloaded the in situ
wind speed data from the China Meteorological Administration (CMA) (http://www.nmic.gov.cn/)
and calculated the annual mean wind speed during 1982–2015 (Figure 8b). Comparison of Figure 8a,b
reveals that the regions with low explained variance corresponded to the regions with high wind speed
especially in the northern part of Xinjiang, which suggests that wind speed may have a strong effect
on soil moisture in these regions. In addition, many studies have found that the Turpan Basin and
Lop Nor have a climate with frequent strong winds [60–63]. Hence, the low explained variance in the
Turpan Basin and Lop Nor may be because the wind speed was not taken into account in the random
forest model.Water 2019, 11, x FOR PEER REVIEW 13 of 16 
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6. Conclusions

In this study, we analyzed the variations of soil moisture and its influencing factors in Xinjiang
during 1982–2015, and then quantified the effects of these factors on soil moisture by applying a
non-linear Granger-causality framework driven by reanalysis data of soil moisture, precipitation,
temperature, and NDVI. The conclusions can be drawn as follows:

(1) The spatially averaged soil moisture had no obvious change during 1982–1997 and 2005–2015,
while it experienced a sharp increase during 1997–2005. Precipitation generally presented an
increasing trend during 1982–2015. Temperature and NDVI increased first and then decreased.

(2) Precipitation, temperature, and vegetation contributed differently to soil moisture variability.
Precipitation had effects on soil moisture in about 91% of the study area and explained 0–40%
of soil moisture variability. Temperature and vegetation explained up to 8.2% and 3.3% of soil
moisture variability, respectively. Among these three factors, precipitation was the primary
control for 87% of the study area.

(3) The effects of precipitation and temperature on soil moisture were immediate and dissipated
shortly, indicating a low resilience of soil moisture to changes in these variables. Since the effects

http://www.nmic.gov.cn/
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of vegetation on soil moisture were too weak at different time lags, it was statistically meaningless
to explore the lagged effects.

(4) Climatic extremes also had effects on soil moisture. Precipitation extremes could explain up to
10% of soil moisture variability during 1982–2015. Temperature extremes explained 0–8% of soil
moisture variability. The effects of climatic extremes on soil moisture were weaker than that of
the general climate changes.

(5) The effects of precipitation on soil moisture decreased with the increase of precipitation, soil
moisture, and elevation, while the effects of temperature and vegetation on soil moisture had no
significant statistical relationship with temperature, NDVI, soil moisture, and elevation.

Author Contributions: Y.W. analyzed the data and wrote the first draft. J.Y. proposed the main structure of this
study. Y.C., P.D.M, G.F., and W.D. provided useful advice and revised the manuscript. Y.L. processed the in situ
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