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Abstract: Nonstationarity of univariate flood series has been widely studied, while nonstationarity
of some multivariate flood series, such as discharge, water stage, and suspended sediment
concentrations, has been studied rarely. This paper presents a procedure for using the time-varying
copula model to describe the nonstationary dependence structures of two correlated flood variables
from the same flood event. In this study, we focus on multivariate flood event consisting of peak
discharge (Q), peak water stage (Z) and suspended sediment load (S) during the period of 1964–2013
observed at the Waizhou station in the Ganjiang River, China. The time-varying copula model
is employed to analyze bivariate distributions of two flood pairs of (Z-Q) and (Z-S). The main
channel elevation (MCE) and the forest coverage rate (FCR) of the basin are introduced as the
candidate explanatory variables for modelling the nonstationarities of both marginal distributions
and dependence structure of copula. It is found that the marginal distributions for both Z and S are
nonstationary, whereas the marginal distribution for Q is stationary. In particular, the mean of Z is
related to MCE, and the mean and variance of S are related to FCR. Then, time-varying Frank copula
with MCE as the covariate has the best performance in fitting the dependence structures of both
Z-Q and Z-S. It is indicated that the dependence relationships are strengthen over time associated
with the riverbed down-cutting. Finally, the joint and conditional probabilities of both Z-Q and Z-S
obtained from the best fitted bivariate copula indicate that there are obvious nonstationarity of their
bivariate distributions. This work is helpful to understand how human activities affect the bivariate
flood distribution, and therefore provides supporting information for hydraulic structure designs
under the changing environments.

Keywords: nonstationary; flood; main channel elevation; forest cover rate; time-varying copula; the
Ganjiang River

1. Introduction

Flood has been one of most common natural hazards, increasingly posing a significant risk
to human life and environment [1]. Flood events can be described in terms of the multivariate
characteristic variables of peak discharge, water stage and suspended sediment load, which
are all relevant to risk analyses. Univariate frequency analysis for these hydrological variables
mentioned above can be found in many literatures [2–5]. Unlike the common frequency distribution,
theoretically derived distributions of flood peak are constructed based on dominant runoff generation
mechanisms [6]. Flood frequency curves can also be established by use of a continuous simulation
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model [7,8]. Yet, the designs of hydraulic structures (e.g., dam spillways, dikes, and river channels),
cross drainage structures (e.g., culverts and bridges) and urban drainage systems require not only
peak discharge (Q) value but also peak water stage (Z) and suspended sediment load (S). In fact,
the multivariate frequency analysis can provide more comprehensive understanding of the flood event
than simple univariate analysis [9–13].

Human intervention in river basins (e.g., urbanization), the effect of climatic variability (e.g.,
Pacific Decadal Oscillation), and increased greenhouse gasses have been suggested to cause the changes
in the magnitude and frequency of extreme floods [14]. Therefore, statistical characteristics (e.g., mean
and variance) of univariate flood variables as well as their dependence structure could be time-varying
under changing environments (climate change and/or human activities) [15]. To better adapt such
background, it is essential to identify a reasonable distribution framework to dynamically capture
the evolution of statistical characteristics [16]. Under the time-varying moments model, distribution
parameters can be expressed as functions of some physical variables including atmospheric and land
cover indices [17–19]. Thus, it is a feasible way to describe the external effects in the construction
of dependence structures. Copulas [20] allow researchers to easily construct the distribution by
estimating marginal distributions and their dependence separately [21]. The method could provide a
more convenient statistical tool for more flexibility in modeling the marginal distributions and their
dependence [22]. In recent years, copula function has become a popular tool for multivariate flood
frequency analysis [23–29].

In this study, we focus on Q, Z and S observed at Waizhou station in the Ganjiang River basin,
which has undergone extensive urban and suburban development over the past 50 years. The mean
elevation of the main channel dominated by sediment supply deficit or surplus at the bed can exert
a direct influence on water stage [30]. The section-cross elevation in the downstream of Ganjiang
River displays a change process over the past decades [31]. Forest cover rate is a valuable indicator
of forests in a country or region, controlling runoff processes and sediment generation [32]. Forest
coverage rate of the Ganjiang River basin has increased from 41% to 69% due to large-scale forest
planting of the basin. Given the aforementioned physical correlations, the main channel elevation
(MCE) and forest cover rate (FCR) are chosen as explanatory variables for modeling the time variations
of Q, Z, and S of the Ganjiang River. Using time-varying copula model with the covariates MCE and
FCR, the nonstationary bivariate joint distributions of different flood variables (i.e., Z-Q and Z-S) are
constructed to analyze the evolution of the bivariate relationships of both Z-Q and Z-S, including their
joint probabilities and conditional probabilities of Q and S given water stage.

This paper is organized as follows. The study region and the available data used in this study
are described in the next section. Then, the methodologies including marginal distribution and
copula model with time-varying parameters are presented. Based on deriving the best fitted marginal
distributions and copulas, the results about the time-variation of joint and conditional probability for
both Z-Q and Z-S are calculated. Finally, the main conclusions of the case study are summarized.

2. Study Region and Data

The Ganjiang River, which is the largest tributary of the Poyang Lake basin, is situated in Jiangxi
Province (in Southeastern China) with a drainage area of 83,500 km2 (Figure 1). This study area belongs
to hilly region with the main land use type of woodland [33]. The Ganjiang River basin is located in
the subtropical humid monsoon climate zone with distinct seasonal variations, where the annual mean
precipitation is about 1680 mm. The heaviest rainfall occurs in the main flood season from April and
June, and often lasts 15 to 20 days due to monsoon and typhoon rainstorms [34].
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Figure 1. Topography and river channel of the Ganjiang River basin (GRB) above Waizhou station.

The catchment area upstream of the Waizhou station (115◦50′ E, 28◦38′ N) accounts for about
97% of the total basin area of the Ganjiang River, and covers an area of 80,948 km2 (Figure 1).
The hydrological data used in this study include daily river discharge, daily water stage, daily
suspended sediment rate and yearly section-cross elevation at the hydrological station from 1964 to
2013. These data are provided by the Hydrological Bureau of Jiangxi province (http://www.jxsw.cn/).
To reflect the capacity of suspended sediment transport in a flood event, suspended sediment load
that measures the absolution amount of sediment appears to be more reasonable than suspended
sediment rate, since the latter is a relative value for sediment. The daily suspended sediment load (S) is
calculated by multiplication between the daily discharge and the corresponding suspended sediment
rate. Then, the hydrological series of Q, Z and S are extracted from the same flood event in each year
with the maximum discharge value criterion. Besides, the annual forest cover rates of the region are
obtained from the book of China Compendium of Statistics 1949–2008 [35] and Jiangxi provincial
statistical yearbook from 1983 to 2014 (http://www.jxstj.gov.cn/).

3. Methodology

The time-varying copula model, in which both marginal distributions parameters and copula
parameter are expressed as functions of explanatory variables, is constructed to describe the time
variations of both marginal distribution and dependence structure of bivariate flood variables. Then,

http://www.jxsw.cn/
http://www.jxstj.gov.cn/
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joint probability and conditional probability that are derived from time-varying bivariate copula are
illustrated to present nonstationarity of bivariate flood variables over time.

3.1. Calculation of Explanatory Variables

Change in the main channel elevation of alluvial rivers is a normal result about the hydraulic
adjustments to adapt the variations of discharge and sediment load. In this study, the observed
cross-section elevation data for each year are tabulated and graphed as the profiles of the river
cross-section. Then, the main channel elevations of 20 points are extracted from the cross-section
digitized graph from left to right bank [36]. To weaken the influence of some distortion/variability
points, the point elevations are divided into four quartiles and the 2nd quartile value is considered as
the main channel mean elevation (MCE) as follow:

MCEt = Me(Ht) (1)

where Me(·) refers to the median of vector value Ht = (ht
1, ht

2, . . . , ht
20), which represents the bed

elevation value of the selected point.
The forest landscape structure usually contains of the six forest cover classes (i.e., coniferous forest,

broadleaf forest, bamboo forest, mixed forest, economic forest, and shrubbery land). Each forest cover
with crown cover percent (cp) bigger than 20% has good effects on soil and water conservation [37].
Here, the criterion with this threshold value used in national forest definition is employed to calculate
forest area. Thus, the forest cover rate (FCR) is the percentage of six forest cover area to total land area
in a region and can be expressed as follow:

FCRt =
6

∑
i=1

At
i(cp > 0.2)

AL
× 100% (2)

where At
i(cp > 0.2) (i = 1,2, . . . , 6) is the six forest cover classes area with crown cover percent bigger

than 20%. AL stands for the total land area of the study region.

3.2. Marginal Distribution with Time-Varying Parameters

To construct the dependence structure of bivariate hydrological variables by copulas, marginal
distribution of each variable should be determined firstly. In this study, five probability distributions,
including four two-parameter distributions (i.e., Lognormal, Weibull, Logistic, and Gamma) and
one three-parameter distributions (Pearson type III distribution) are selected as candidate marginal
distributions for Q, Z and S. These distributions have been widely applied in flood frequency
analysis [38,39]. The marginal distribution of a flood variable denoted by Y can be specified through a
parametric cumulative distribution function (CDF) FY(y|µ, σ, ν), where µ, σ and ν represent location,
scale and shape parameters, respectively, and are denoted by the vector θ = (µ, σ, ν) [40].

The Generalized Additive Models for Location Scale and Shape (GAMLSS) introduced by Rigby
and Stasinopoulos [40] has been widely employed in nonstationary hydrological frequency analysis
for its flexibility [15,18,19,41]. If candidate marginal distribution function FY

(
yt|θt) is chosen to fit the

distribution of the variable yt at any time t, parameters of marginal distribution can be expressed as a
function of explanatory variables as follow:

g(θt) = α0 + α1MCEt + α2FCAt (3)

where g(·) represents the monotonic link function, which depends on the domain of statistical
parameter, i.e., if the domain of the distribution parameter θt is θt ∈ R, the link function is g

(
θt) = θt,

or if θt > 0, g
(
θt) = ln

(
θt). θt represents one of marginal distribution parameters (µt, σt, νt). α0, α1,

and α2 are the GAMLSS parameters. MCEt and FCAt represent two candidate explanatory variables.
In practice, the shape parameter νt (if it exists) is often treated as constant since it is quite unstable and
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difficult to estimate [42], whereas time variations are considered only in location parameter µt and
scale parameter σt. What’s more, if the parameters are independent from the explanatory variables,
it would be a stationary distribution with constant parameters.

The best fitted marginal distribution is determined by the Corrected Akaike Information Criterion
(AICc) [43], which is derived from the likelihood function with a penalty determined by the number
of model parameters. In addition, because of the potential drawbacks in the quality of the fitting of
AICc [44], the goodness-of-fit (GOF), which describes how well the selected distribution fits a set of
observations, for candidate distributions is assessed by the Kolmogorov–Smirnov (KS) test and Root
Mean Square Error (RMSE). Besides, visual assessment of the residual plot (QQ-plot) [45] is used to
examine the best fitted marginal distribution.

3.3. Time-Varying Bivariate Copula Model

In practice, the implementation of the time-varying copula model could be divided into two
steps: fitting the time-varying marginal distribution of each variable firstly, and then estimating the
time-varying dependence structure of the copula. In other words, both the parameters of marginal
distribution and copula dependence parameter could be treated as time variation in building the
time-varying copula function. According to the definition of the copula [20], time-varying bivariate
copula function H(·) for the hydrological variable pairs of (Zt, Qt) and (Zt, St) at any time t can be
expressed as follows:

HZ,Q(zt, qt) = C(FZ(zt|θt
z), FQ(qt|θt

q)|θt
zq)

HZ,S(zt, st) = C(FZ(zt|θt
z), FS(st|θt

s)|θt
zs)

(4)

where C(·) represents bivariate copula function with time-varying dependence parameter θt
zq or

θt
zs. FZ(·), FQ(·) and FS(·) represent marginal cumulative distribution functions with corresponding

time-varying parameter vectors θt
z = (µt

z, σt
z, νz), θt

q = (µt
q, σt

q, νq), and θt
s = (µt

s, σt
s , νs), respectively.

The joint distribution can be constructed by three Archimedean copula functions (i.e., Clayton,
Gumbel–Hougaard, and Frank, as shown in Table 1).

Table 1. The applied time-varying bivariate copulas in this study.

Copula Cumulative Distribution Function with Time-Varying Parameters Parameters

Clayton C(u, ν|θt) =
(
(u)−θt

+ (ν)−θt
− 1

)−1/θt

θt > 0

Gumbel–Hougaard C(u, ν|θt) = exp
(
−
(
(− ln u)θt

+ (− ln ν)θt
)1/θt)

θt > 1

Frank C(u, ν|θt) = − 1
θt ln

(
1 +

(
exp

(
−uθt)− 1

)
×

(
exp

(
−νθt)− 1

)
/
(
exp

(
−θt)− 1

))
θt 6= 0

Because of the impacts of external forces on the Ganjiang River basin, the dependence structure of
both Z-Q and Z-S could be nonstationary. Similar to the formula expression in Equation (3), the copula
dependence parameter could be expressed as a function of the two explanatory variables (FCR and
MCE) to reflect the nonstationarity of dependence structure. The totally four scenarios for copula
dependence parameter in this paper are listed as follows:

gc
(
θt

c
)
= β0 (5)

gc
(
θt

c
)
= β0 + β1FCRt (6)

gc
(
θt

c
)
= β0 + β1MCEt (7)

gc
(
θt

c
)
= β0 + β1FCRt + β2MCEt (8)

where gc(·) depends on the domain of copula dependence parameter θt
c, i.e., if θt

c ∈ R, the link function
is gc

(
θt

c
)
= θt

c or if θt
c > 0, gc

(
θt

c
)
= ln

(
θt

c
)
. β0, β1 and β2 are the model parameters.
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The dependence parameter of Archimedean copula family can be estimated by Inference Function
for Margins method (IFM) [46]. The IFM method estimates the parameters through maximization of
the log-likelihood function of a copula. The most fitted copula function with time-varying dependence
parameter is determined by AICc criterion. The Cramér-von Mises test (CM) [47] and RMSE are used
to test the GOF of the copula functions. In addition, similar with the test of the univariate distribution,
QQ plot is also used to examine the best fitted copula based on the joint probability derived by the
selected copula.

3.4. Joint and Conditional Probability under Nonstationary Framework

Joint probability gives the probability that each component falls in any particular range or discrete
set of values specified for these variables. Referring to the multivariate frequency analysis, the joint
probability of two variables usually includes three cases in general (i.e., KEN, OR, AND). Take AND
for the further analysis in this study, AND (∧) means the space in which all the variables exceed
corresponding values simultaneously [48]. Under the time-varying copula framework, the joint
probability P∧ZQ and P∧ZS can be calculated based on the best fitted copula function as follows:

P∧ZQ = P(Z ≥ z∗ ∧Q ≥ q∗)

= 1− FZ(z∗|θt
z)− FQ(q∗|θt

q) + C
(

FZ(z∗|θt
z), FQ(q∗|θt

q)|θt
zq

)
P∧ZS = P(Z ≥ z∗ ∧ S ≥ s∗)

= 1− FZ(z∗|θt
z)− FS(s∗|θt

s) + C
(

FZ(z∗|θt
z), FS(s∗|θt

s)|θt
zs
) (9)

where z∗, q∗, and s∗ are the threshold values of Z, Q and S, respectively. In fact, a given joint probability
can correspond infinite data couples, among which there exist the most likely combination with the
largest probability density [49]. The most likely combinations conditioned on the given joint probability
k can be expressed as follows:

(z, q) = argmax
H(z,q)=k

c
(

FZ(z|θt
z), FQ(q|θt

q)|θt
ZQ

)
· fZ

(
z|θt

z
)
· fQ

(
q|θt

q

)
(z, s) = argmax

H(z,s)=k
c
(

FZ(z|θt
z), FS(s|θt

s)|θt
ZS

)
· fZ

(
z|θt

z
)
· fS

(
s|θt

s
) (10)

where c(·) represents copula density function. fZ(·), fQ(·) and fS(·) represent the marginal distribution
density functions of Z, Q and S, respectively. argmax

H(·)=k
stands for argument of the maxima, which is the

set of points, (z, q) or (z, s), for which the function c(·) attains the function’s largest value conditioned
on H(·) = k.

To display the time variation of flood variables with given water stage, the conditional probability
of peak discharge or suspended sediment load could be derived from the joint probability as Equation
(9). The conditional probability based on nonstationary bivariate copula can be expressed as follows:

PQ|Z = P(Q ≥ q∗|Z ≥ z∗) = 1− P(Z≥z∗ ,Q≥q∗)
P(Z≥z∗)

=
1−FZ(z∗ |θt

z)−FQ(q∗ |θt
q)−C

(
FZ(z∗ |θt

z),FQ(q∗ |θt
q)|θt

ZQ

)
1−FZ(z∗ |θt

z)

PS|Z = P(S ≥ s∗|Z ≥ z∗) = 1− P(Z≥z∗ ,S≥s∗)
P(Z≥z∗)

=
1−FZ(z∗ |θt

z)−FS(s∗ |θt
s)−C(FZ(z∗ |θt

z),FS(s∗ |θt
s)|θt

ZS)
1−FZ(z∗ |θt

z)

(11)

4. Results

The temporal trends of peak discharge, peak water stage and suspended sediment load are
investigated for selection of explanatory variables. Then, the marginal distributions of three flood
variables are described by time-varying distributions, and time-varying copulas are applied to construct
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joint distributions of both Z-Q and Z-S. Finally, joint probability and conditional probability of bivariate
flood variables are estimated to display time variation of their joint distributions over time. The details
of the results are provided in the following sub-sections.

4.1. Temporal Trend Analysis

The nonstationarities of the flood series Q, Z and S at Waizhou station are examined by three
trend analysis methods, including the MK test, Spearman test and Kendall test. Results of the trend
analysis for Q, Z, and S are shown in Table 2. It is seen that the series of Z and S have undergone
significant decreasing trends at the 1% significance level during 1964–2013. Peak discharge Q has
presented some degree of negative trends, but cannot pass the trend tests at the 5% significance level.
The change of forest cover does not have strong effects on flood peak discharge during large storm
events, especially for large basins [50].

Table 2. Trend analysis of the three flood peak series at the Waizhou station during 1964–2013.

Series
Annual Mean

MK Spearman Kendall
1964–2003 2004–2013

Q 12.01 10.47 −1.33 −0.16 −0.12
Z 23.25 20.96 −2.92 ** −0.41 ** −0.29 **
S 418.23 123.90 −5.33 ** −0.70 ** −0.52 **

Note: Q: peak discharge (103 m3/s); Z: peak water stage (m); S: suspended sediment load (103 kg/d). –: delineates
negative trends; * and ** delineate significant trend at 0.05, 0.01 significance level, respectively.

The suspended sediment load has undergone significant decreasing trend, particularly after 2003
because of projects implementation about afforestation and conservation measures [51]. The river
elevation has undergone significant decrease due to river sand mining [31], which has intensified
obviously since 2003. In order to display the sharp changes of Q, Z, and S in the period of last decades,
the year of 2003 is chosen as a separated point from the inherent physical cause-effect connection.
The annual mean values of Z and S are about 23.25 m and 418.22 × 103 kg/day from 1964 to 2003, and
then decrease to 20.96 m and 123.90 × 103 kg/day for the last decade. Through the aforementioned
analysis, it is reasonable to conclude that both Z and S display significant nonstationarity during the
period from 1964 to 2013, whereas Q is stationary. The trend identification of Q, Z and S are consistent
with some previous research conclusions [52,53].

4.2. Nonstationary Marginal Distributions

According to the cause-effect analysis, MCE and FCR could be two potential physical driving
forces for the nonstationarity of Z and S. MCE series (Figure 2a) at Waizhou station have presented an
obvious decreasing trend from 1964 to 2013, especially during last ten years. FCR series (Figure 2b) of
Ganjiang River basin displays a slight decreasing trend before 1980s, but it expands rapidly from 1980s
to 2010s due to artificial afforestation and forest conservation in Jiangxi province. Figure 2c,d illustrate
significant positive correlation between Z and MCE, and significant negative correlation between S
and FCR, respectively. Considering their inherent physical connection as well as statistical correlation,
MCE and FCR are separately used as explanatory variables of the nonstationarity of Z and S.
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Figure 2. Data analyses of four variable series in the Ganjiang River basin (GRB) during 1964–2013.
(a) is evolution of the main channel mean elevation (MCE) at Waizhou station, (b) is evolution of
forest coverage rate (FCR) of the GRB, and two correlation plots are between peak water stage (Z) and
MCE (c) and suspended sediment load (S) and FCR (d), respectively. R2 value is the square of the
correlation coefficient.

Since annual peak discharge displays stationarity during 1964–2013, Q is fitted by five candidate
distributions with all parameters treated as constants. In fitting Z and S series by nonstationary
models, there are three main possible situations for each candidate distribution: (1) only the location
parameter is time-varying, (2) only the scale parameter is time-varying and (3) both the location and
scale parameters are time-varying. The final distribution model for each candidate is determined from
the three models above by the selection criterion of AICc (i.e., model with the minimum AICc is the
best). For the three flood variables Q, Z and S, the estimated parameters and the results of the GOF
test of all candidate marginal distributions are summarized in Table 3. The P-value of the KS test was
simulated using the Monte Carlo method. All the distributions pass the KS test at the 0.01 significance
level. According to AICc, the most appropriate marginal distributions of Q, Z and S are Gamma
distribution. The location parameter µ of the Gamma distribution for describing Z is positively related
to MCE, whereas the scale parameter σ is constant. Meanwhile, both location and scale parameters of
the Gamma distribution for describing S are positively related to FCR. The QQ plot (Figure 3a) of the
best fitted distribution indicates that these selected distributions have a quite good fitting quality.
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Table 3. Parameters and goodness-of-fit of the candidate marginal distributions fitted to Q, Z, and S at
the Waizhou station during 1964–2013, respectively.

Variable Distribution Estimated Parameters AICc
KS-Test

Statistic p-Value

Q

LNO m = 9.309, σ = 0.346 970.57 0.083 0.881
WEI µ = 13090, σ = 3.154 973.81 0.101 0.683
LOG µ = 11451, σ = 2305 976.57 0.108 0.602
GAM µ = 11703, σ = 0.339 970.48 0.097 0.737
PIII µ = 11694, σ = 0.350, γ = 0.474 971.89 0.080 0.910

Z

LNO µ = exp (1.081 + 0.004MCEt) 177.31 0.084 0.843
σ = 0.059

WEI µ = exp (3.005 + 0.011MCEt) 181.46 0.101 0.646
σ = exp (2.123 + 0.061MCEt)

LOG µ = 18.461 + 0.326MCEt 179.09 0.081 0.873
σ = 0.782

GAM µ = exp (2.946 + 0.014MCEt) 177.24 0.089 0.793
σ = 0.059

PIII µ = exp(2.936+0.014MCEt) 178.67 0.093 0.745
Σ = 0.060, γ = 0.251

S

LNO µ = exp (2.150 − 0.886FCRt) 646.40 0.097 0.701
σ = exp (-1.332 + 1.378FCRt)

WEI µ = exp (8.072 − 4.544FCRt) 648.35 0.136 0.285
σ = exp (1.476 − 1.448FCRt)

LOG µ=950.510 − 12.693FCRt 657.23 0.131 0.332
σ = exp (6.137 − 3.412FCRt)

GAM µ = exp (7.943 − 4.530FCRt) 645.95 0.113 0.515
σ = exp (−1.336 + 1.291FCRt)

PIII µ = exp (8.098 − 4.854FCRt) 646.05 0.084 0.845
σ = 0.537, γ = 0.702

Note: LNO, WEI, LOG, GAM and PIII are the abbreviations of Lognormal, Weibull, Logistic, Gamma and Pearson
type III distribution, respectively. MCE and FCR stand for the main channel mean elevation (m) and forest coverage
rate (%), respectively. µ, σ and ν represent location, scale and shape parameters of marginal distribution, respectively.
The best appropriate distribution marked with bold fonts.

Due to the balance of riverbed erosion and deposition during 1964–1994, the mean value of Z at
Waizhou station is about 23.26 m. In the period of 1995–2013, the value of MCE has underwent a sharp
decrease from 12.74 to 5.90 m, thus the variable value for Z has dropped obviously as well. Similarly,
the mean and coefficient of variation (Cv) of the suspended sediment load at Waizhou station are
469.81 × 103 kg/day and 0.47 during 1964–1994. After 1995, the mean and Cv of S are getting smaller
significantly, because massive afforestation activities have been implemented in the study basin with
growth rate of forest cover at 1.17% year by year.

4.3. Nonstationary Dependence of Bivariate Flood Variables

Bivariate copulas under stationary and nonstationary conditions are constructed based on the
estimated marginal distributions. In modelling time-varying copula, selection of the explanatory
variables (i.e., MCE and FCR) is determined by the two corresponding marginal variables. In detail,
about the link function of copula parameter, MCE is selected as covariate expressed in Equation (6) for
Z-Q, while MCE and/or FCR are chosen as covariates described in Equations (7) and (8) for Z-S.

The results of the estimated parameters and GOF are summarized in Table 4. The P-value of the
CM test is simulated using the Monte Carlo method. All the applied copula functions pass the CM test
at the significance level of 0.01. Then, RMSE and AICc, which claim that the model with smaller values
is the better, are used as selected criteria [54]. Performances of the candidate copulas are not different
obviously from RMSE because of a little difference between them. But the optimum time-varying
copulas perform better than stationary ones for Z-Q and Z-S in terms of AICc. Frank is found to be
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the more appropriate bivariate copula for both Z-Q and Z-S, and parameters θt
ZQ, θt

ZS expressed in
Equations (12) and (13), respectively, as below:

θt
ZQ = 41.713− 1.747MCEt (12)

θt
ZS = 16.169− 0.782MCEt (13)

Table 4. Parameters and goodness-of-fit of the candidate bivariate copulas fitted to Z-Q and Z-S at the
Waizhou station during 1964–2013, respectively.

Copula Parameter (θ) AICc RMSE CM-Test

Statistic p-Value

Z-Q

Clayton 5.702 −103.91 0.031 0.053 0.457
exp (1.811 − 0.005MCEt) −101.93 0.031 0.053 0.458

GH 4.008 −94.76 0.039 0.056 0.426
exp (1.743 − 0.026MCEt) −93.33 0.039 0.055 0.433

Frank 17.683 −102.79 0.035 0.055 0.434
41.713 − 1.747MCEt −104.25 0.035 0.054 0.448

Z-S

Clayton

1.250 −22.70 0.040 0.048 0.538
exp (−1.760 + 0.063FCRt) −25.11 0.039 0.038 0.716
exp (1.739 − 0.114MCEt) −24.01 0.040 0.044 0.596

exp (−5.025 + 0.118FCRt − 0.113MCEt) −23.48 0.040 0.052 0.479

GH

1.796 −28.04 0.038 0.050 0.506
exp (0.350 + 0.007FCRt) −26.25 0.039 0.047 0.541

exp (1.195 − 0.045MCEt) −27.40 0.038 0.047 0.556
exp (3.563 − 0.039FCRt − 0.128MCEt) −26.76 0.039 0.057 0.410

Frank

5.319 −28.77 0.032 0.035 0.759
−1.528 + 0.226FCRt −28.79 0.032 0.029 0.855
16.169 − 0.782MCEt −30.29 0.031 0.028 0.870

24.186 − 0.132FCRt − 1.072MCEt −28.45 0.032 0.030 0.840

Figure 3b shows the QQ plot of the two bivariate copulas above. It displays a good agreement
between empirical distribution and theoretical distribution. In addition, graphical GOF of the selected
Frank copulas for both Z-Q and Z-S are shown in Figure 4. The simulation series of Q, Z, and S, which
are 30 scatters per year from 1964 to 2013, are generated by Monte Carlo method. Data are transformed
to the real space by use of the corresponding marginal distributions. This graphical GOF also
demonstrates that the selected time-varying copula functions have satisfactory fitting performances.
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Figure 4. Scatter plots of Z-Q (a) and Z-S (b) shown comparison of observed data with sets of 1500
generated random samples based on the selected bivariate copulas. Solid circles in blue color are
observed data and gray dots are simulated samples.

Therefore, evolutions of the correlation parameters (i.e., θt
ZQ, θt

ZS) present the overall upward
trend significantly from 1964 to 2013, which can demonstrate that the dependence structures of Z-Q
and Z-S are nonstationary. These results demonstrate that riverbed down-cutting instead of forest
coverage is the main external effect for both Z-Q and Z-S at Waizhou station. It is possible to analyze
the multivariate flood frequency in the future through the prediction of explanatory variables at
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Waizhou station based on their relationships [55,56]. Furthermore, it can give supporting information
for the flood control design of hydraulic structures under the changing environments [14,39].

4.4. Temporal Variation in Joint and Conditional Probabilities

Contours for various joint probabilities denoted in Figure 5 are calculated by using the selected
copulas with parameters in the years of 1970, 1990 and 2010. With the same probability, Z maintains
generally higher and almost equivalent value before 1990, whereas moves downward greatly from 1990
to 2010 due to the decrease in mean of the peak water stage. Similarly, the value of S falls rapidly in
last ten years due to the significant decrease in mean and Cv of S after 1995. For example, the contours
for 0.2 in 2010 for both Z and S are lower than lines for 0.7 in 1970 and 1990, which indicates that the
nonstationarity play a great influence on joint probability in the last decade. Upon closer inspection,
due to the strengthening in dependence for both Z-Q and Z-S, the corner of contour with the same
joint probability becomes angular, especially for the lower probability.
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Figure 5. Joint probability contours with the given P∧ (AND) of Z-Q (a) and Z-S (b) using the best
fitted bivariate copulas at the Waizhou station in the years of 1970, 1990 and 2010.

As shown in Figure 6, the temporal variations of joint probability as Equation (9) are assessed
for each time step from 1964 to 2013. Meanwhile, the magenta dots on the probability contours
represent the corresponding the most likely combination derived from Equation (10). The probability
contours cover a broad range, with marginal values ranging from 22.12 m to 25.06 m for Z and
721.78 × 103 kg/day to 151.58 × 103 kg/day for S. It can be seen that the suspended sediment load is
more sensitive to flood event than the peak water stage from comparison of their value ranges. For the
most likely combination, the peak discharge at Waizhou station in the Ganjiang River displays a slight
increasing trend from 15.97 × 103 m3/s to 16.41 × 103 m3/s over time, while the values of peak water
stage and suspended sediment load have obviously decreased, especially in the last decade. As shown
in Figure 6b,d, it is indicated that Z and S in the most likely combination are obviously affected by
riverbed down-cutting and the change of forest cover, respectively. Moreover, since the dependence
structure of Z-Q is nonstationary as Equation (12), Q in the most likely combination is impacted by
riverbed down-cutting as well.
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Figure 6. Time variation of joint probability contours P∧ = 0.1 for Z-Q (a) and Z-S (c) and corresponding
the most likely combinations for Z-Q (b) and Z-S (d) derived from the best fitted bivariate copula at the
Waizhou station from 1964 to 2013.

The conditional probability as Equation (11) is calculated by the best fitted copula function for
both Z-Q and Z-S. In practice, flood control planners and managers usually focus on the water stage
rather than discharge and suspended sediment load in severe flood flow. Given the warning water
stage (23.5 m) at Waizhou station, the time variations of conditional probability (PQ|Z, PS|Z) from 1964
to 2013 are presented in Figure 7. The result can be of great important and noteworthy for spillway
design and flood control. It can be seen that PQ|Z for the fixed discharge has increased over time, while
PS|Z has decreased during last fifty years. That’s to say, even if Z maintains the same value at Waizhou
station, the fact should attract more attention that probabilities of inundation and riverbed erosion are
getting higher from 1964 to 2013.
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Figure 7. Time variation of conditional probability PQ|Z (a) and PS|Z (b) with the given warning water
stage (Z ≥ 23.5 m) at the Waizhou station from 1964 to 2013.

What is more, the proposed method also allows us to obtain more information concerning the
conditional probabilities under various given water stages. Figure 8 has shown the results, where MCE
and FCR are assumed to be 6 m and 70%, respectively. The conditional probabilities become bigger for
both Q and S with the higher peak water stage. When values of Q and S become bigger, the differences
of conditional probabilities are getting smaller under various given water stages, especially for PS|Z
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(Figure 8b). In addition, the conditional probability PQ|Z is more sensitive than PS|Z on condition of
various water stages at Waizhou station. Those results can give us quantitative information about
temporal variation of flood variables under the changing environments in the Ganjiang River basin.
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5. Conclusions

This study employs time-varying copula model to investigate the evolution of the relationships
of Z-Q and Z-S depending on main channel elevation (MCE) and forest coverage ratio (FCR) in the
Ganjiang River basin during 1964–2013. The main conclusions are presented as follows:

1. It is obvious that both the mean and variance of S have significantly decreased, while only the
mean has reduced for Z, particularly in the recent decades. Furthermore, Gamma distribution
with location parameter expressed as a function of MCE is best fitted distribution for Z, and
Gamma with parameters of location and scale expressed as functions of FCA is for S, while the
best fitted distribution of Q is the Gamma with constant parameters.

2. It is found that the most fitted bivariate copulas for both Z-Q and Z-S are Frank copula,
the parameters of which are expressed as the function of MCE. Therefore, riverbed down-cutting
at Waizhou station plays the dominant role in strengthening dependences of both Z-Q and Z-S
from 1964 to 2013.

3. The results of joint probability and conditional probability show that the corner of contour lines
enhanced more greatly due to the strengthening dependences over time, especially for the lower
probability. In addition, it can be seen that values of Z and S fall rapidly in the last ten years due
to the decreasing mean of these two variables.
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