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Abstract: A spectrophotometric method for the determination of glyphosate based on the 
monitoring of a complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide 
was developed. The method showed a short response time (10 s), high selectivity (very low 
interference from other pesticides and salts), and high sensitivity (LOD 2.07 × 10−7 mol/L, LOQ 9.87 
× 10−7 mol/L, and a Kd from 1.75 × 10−6 to 6.95 × 10−6 mol/L). The Job plot showed that complex 
formation occurs with a 1:1 stoichiometry. The method was successfully applied in potable, urban, 
groundwater, and residual-treated water samples, showing high precision (0.34–2.9%) and 
accuracy (87.20–119.04%). The structure of the complex was elucidated through theoretical studies 
demonstrating that the nickel in the bis 5-phenyldipyrrinate forms a distorted octahedral molecular 
geometry by expanding its coordination number through one bond with the nitrogen and another 
with the oxygen of the glyphosate’ carboxyl group, at distances between 1.89–2.08 Å. 

Keywords: environmental analysis; glyphosate; pesticides; phenyldipyrrinate; spectrophotometry; 
water pollution 

 

1. Introduction 

Glyphosate (N-(phosphonomethyl)glycine) (glyp) (Figure 1c) is the most intensively used 
herbicide worldwide because of its high effectiveness against annual grasses and aquatic weeds 
[1,2], with a global annual production estimated to be over 825,804 tons in 2014 [3]. Its use is allowed 
in agricultural, urban, and domestic activities [4], with the agricultural application being the most 
intensive one. The physical and chemical properties of glyp allow its distribution in the 
environmental compartments [5–7]. Furthermore, its chelating ability and the absorption constant in 
soil allows for its accumulation in several types of soils, mainly clays [8]; it is considered a stable 
compound in a pH range between 4 and 9 for hydrolysis and photolysis [9,10]. Glyp pollution in 
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water, soil, and food samples are becoming a serious health concern [11–13]. In addition, its 
metabolite, aminomethylphosphonic acid (AMPA), also represents a potential danger to human and 
animal health [14,15]. Both compounds have been detected in groundwater and surface water in 
several countries [6,16,17]. As glyp has been labeled as a global pollutant [18,19], assessing its 
presence in several environmental matrices is a vigorous area of research [20–22]. 

There are some analytical methods to determine the presence of glyp and the metabolite AMPA 
in different media, such as water, urine, and serums. The official method to determine glyp in water, 
the EPA-547 [23], requires herbicide derivatization post-column with o-phathdialdehyde (OPA) [24]. 
Other methods employ high-performance liquid chromatography (HPLC) [25] coupled with mass 
spectrometry [26–29], fluorescence [30], or capillary electrophoresis [31]. However, these methods 
are complex, as they require pre-treatment steps for the samples and lengthy analysis times, by 
which it is not always possible to analyze massive samples in situ [32,33]. Recently, other methods 
have been reported as alternative tools for monitoring environmental samples in situ with the added 
benefit of short analysis times. Furthermore, some other analytical methods can have remarkably 
low detection limits, such as spectrophotometric [34–37], electrochemical [38–40], and 
Enzyme-Linked ImmunoSorbent Assay (ELISA) techniques  [17,41]. The development of new 
methodologies that are quick, sensitive, reproducible, and inexpensive represent a viable alternative 
to the current methods and instruments by allowing the analysis of a larger number of samples 
either on the field or at the lab [42–44]. 

Dipyrromethenes are chelators of bipyrrolic monoacids that can form stable complexes with 
metals due to their coordination chemistry and optic and fluorescent properties [45]. These ligands 
are structurally rigid, completely conjugated, and capable of functionalizing several positions of 
their structure (1, 5, and 9) (Figure 1a). Hence, the coordination with metallic ions of 
meso-substituted dipyrromethenes (position 5) has been applied to the design of sensors. For 
instance, there is a study based on fluorescent probes on a boron dipyrromethene functionalized 
with a group of phenylboronic acids (BODIPY-PBAs) that can detect several monosaccharides in a 
concentration range of 0.1–100 mM, with good reproducibility and photostability [46]. In another 
study, an electrochemical biosensor was developed using a dipyrromethene-Cu(II) to determine the 
oligomeric form of amyloid beta (Aβ16-23) with concentrations in the range of 0.001–1.00 µM, which 
induces the neuronal dysfunction associated with Alzheimer´s disease (AD) [47]. Another paper 
reported on the electroactive dipyrromethene-Cu biosensor to detect antibodies against avian 
influenza virus type H5N1 in hen sera [48]. 

In this study, the chelating capacity of glyp was exploited to bind the metallic moiety of the 
compound bis 5-phenyldipyrrinate of nickel (II) (Ni(PhDP)2) (Figure 1b). Based on this molecular 
association, a method for glyp determination in several water samples is developed for the 
quantification of the complex formed between glyp and (Ni(PhDP)2). The resulting method is fast, 
sensitive, accurate, and useful for the quantification of glyp in drinking, urban, and ground waters, 
and residual-treated wastewater. 

 
Figure 1. Chemical structure of (a) dipyrromethene ligand, (b) (Ni(PhDP)2), and (c) glyp. 
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2. Materials and Methods 

2.1. Reagents and Chemicals 

Glyphosate, silica gel, pyrrole, trifluoroacetic acid (TFA), benzaldehyde, triethylamine (Et3N), 
and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were from Sigma-Aldrich (St. Louis, MO, 
USA). The methylene chloride (CH2Cl2), chloroform (CHCl3), hexane, and methanol (CH3OH) were 
from Fermont (Monterrey, Mexico), and ethyl acetate was purchased from JT Baker (Center Valley, 
PA, USA). All the used reagents are analytical grade. 

2.2. Apparatus 

Electronic absorbance spectra measurements were obtained using a Varian Cary 50 
spectrophotometer equipped with a xenon lamp (Australia). To perform electronic spectra 
measurements, quartz cuvettes (1 cm path length) were used. 

2.3. Synthesis of the (Ni(PhDP)2) 

The procedure used by Brückner et al. [49] was followed to synthesize (Ni(PhDP)2). First, the 
5-phenyldipyrrometane with benzaldehyde (1 mmol), pyrrole (1 mmol), and trifluoroacetic acid 
were synthesized. Then 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone  (1 mmol) was added and 
stirred for 30 min at room temperature. After that Et3N (0.5 mL) was added to the solution and 
stirred for another 30 min at room temperature. After the elimination of the solvent, the residue was 
dissolved in CH2Cl2, and the solution was filtered to remove precipitates. The solvent was removed, 
and the product was purified by short silica gel column chromatography using ethyl acetate as an 
eluent. The first eluted yellow fraction was evaporated to afford the crude product. Later, 2 mmol of 
5-Phenyldipyrromethene and 1 mmol of nickel sulfate hexahydrate were dissolved in a mixture of 
CHCl3 and CH3OH. The solution was agitated and heated under reflux for 6 h, and then 0.5 mL of 
Et3N were added and heated again under reflux for 4 h. The solution was evaporated in a rotary 
evaporator until a dark brown solid was obtained. The dried remainder was dissolved in CH2Cl2 and 
CH3OH (1:1), leaving it to slowly evaporate until crystals were obtained. 

2.4. The interaction between the (Ni(PhDP)2) Compound and Glyp 

The formation of the complex between (Ni(PhDP)2) and glyp (NiGlyp(PhDP)2) was followed by 
the changes in the electron absorption spectrum of (Ni(PhDP)2) (1.08 × 10−4 mol/L) after the addition 
of glyp, in 1 ml of a 99% methanol, 1% water solution. A calibration curve was developed, 
registering the absorbance changes of the new band at 362 nm at different glyp concentrations (5.9× 
10−7 to 1.1 × 10−5 mol/L). 

2.5. Complex Stoichiometry 

The Job method of continuous variation [50] was used to determine the stoichiometry of 
(NiGlyp(PhDP)2). Two equimolar stock solutions were prepared and mixed in a way that the total 
concentration was kept constant (5 × 10−5 and 1 × 10−4 mol/L for two different assays). The absorbance 
at 362 nm was measured after mixing for 10 s in a 1 mL reaction mixture (99% CH3OH–1% water). 

2.6. Determination of the Dissociation Constant (Kd) 

To determine the dissociation constant, a curve was constructed, in which the absorbance 
changes at 362 nm of (Ni(PhDP)2) (3.6 × 10−5 and 1.08 × 10−4 mol/L for two different assays) were 
monitored at different concentrations of glyp (5.9 × 10−7 to 2.3 × 10−4 mol/L), until its saturation was 
reached. The binding between the glyp and the (Ni(PhDP)2) can be represented as Glyp + 
(Ni(PhDP)2) → (NiGlyp(PhDP)2). 
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The absorbance changes at 362 nm of the (Ni(PhDP)2) complex at different concentrations of 
glyp were transformed to a percentage of change and adjusted to the one-site binding model [51] 
(Equation (1)) to determine Kd: 

∆AG= ∆Amax × Kd/G0 (1) 

where ΔAG is the percentage of absorbance change at 362 nm upon adding each glyp concentration, 
ΔAmax is the maximum percentage of change (100%) when the (Ni(PhDP)2) is saturated with glyp, 
and G0 is the total concentration of glyp. The reported values are the mean of the three replicates. 
The data were fit to the Hill equation using an iteration procedure following the Marquardt–
Levenberg nonlinear least-squares algorithm, using Origin 8.0 software (Originlab Corporation, 
Northampton, MA, USA). 

2.7. The analysis in Water Samples 

Four different water samples were analyzed to assess the potential of the methodology: potable, 
treated wastewater, urban, and groundwater, with each of them containing concentrations of glyp 
(4.1 × 10−6 and 5.9 × 10−6 mol/L) added intentionally. The analyses were carried out, in 1 mL of a 99% 
methanol, 1% water solution. Treated wastewater was filtered to remove suspended solids. The four 
water samples were stored at 4 °C until used and physicochemically characterized by following 
conventional methods: pH, specific conductance, Chemical Oxygen Demand (COD), and 
Biochemical Oxygen Demand (BOD). Several anion and cation analyses were performed as well: 
Ca2+, Fe2+, SO42−, Mg2+, NO3−, NO3-N, PO43−, P2O5, and free chlorine. 

2.8. Interfering Factors 

To identify possible interfering factors, various salts were added at the maximum 
concentrations found in the environmental water samples: FeCl3·6 H2O (6.6 × 10−4 mol/L showed 34 
µs/cm), CaCl2·2 H2O (9.8 × 10−4 mol/L showed 240 µs/cm), NaNO3 (1.2 × 10−2 mol/L showed 140 
µs/cm), and MgCl2·6 H2O (4.9 × 10−5 mol/L showed 8 µs/cm), as well as the phosphate salts 
Na2PO4·H2O (140 µs/cm), Na2HPO4·7 H2O (140 µs/cm), and (NH4)2HPO4 (146 µs/cm) at a 
concentration of 4.1 × 10−6 mol/L. Furthermore, other organophosphorus pesticides were tested: 
parathion (0.85 µs/cm), dimethoate (0.82 µs/cm), and diclophention (0.80 µs/cm), at a concentration 
of 4.1 × 10−6 mol/L for each one. The effect of the mix of salts (420 µs/cm) and pesticides (0.88 µs/cm) 
was also evaluated. For these studies, the assay time was 10 s, the glyp concentration of 4.1 × 10−6 
mol/L (0.81 µs/cm) and the (Ni(PhDP)2) concentration of 1.08 × 10−4 mol/L were set. 

All the experimental assays were made in triplicate to assess the repeatability of the results. The 
statistical analysis of the data was performed using Origin Software V 8.0. 

2.9. Theoretical Structure of the (NiGlyp(PhDP)2) Complex 

All calculations were performed using Density Functional Theory (DFT) [52,53] implemented in 
Gaussian 16 [54]. Geometry optimizations and frequency analysis were done in a vacuum with 
B3LYP functional and LANLD2Z basis sets. The local minima were identified with zero number of 
imaginary frequencies (NIMAG = 0). All calculations were made with no symmetry constraints. 

3. Results and Discussion 

3.1. Synthesis and Characterization of the (Ni(PhDP)2) Compound 

The (Ni(PhDP)2) was successfully synthesized according to the procedure reported by Brückner 
et al. [49], and then it was characterized by UV-Vis (λ nm): 330, 480, and by mass spectrometry 1H 
NMR spectroscopy based on the structural symmetry by signals for the aromatic protons. Xue et al. 
[55] characterized the Ni(PhDP2) with 1H NMR to have (500 MHz, CDCL3) δ = 9.426 (s, 4, α-dipyrrin), 
7.500 (d, J = 2.5 Hz, 6H, Ar-H), 7483–7.331 (m, 8H, Ar-H, β-dipyrrin), 6.741 (d, J = 3.5 Hz, 4H, 
β-dipyrrin), which corresponds with what was reported. 
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3.2. The Interaction between Glyp with (Ni(PhDP)2) 

As mentioned, the electronic absorption spectrum of (Ni(PhDP)2) showed a characteristic band 
at 480 nm, indicative of double-bond electron transition metals (Figure 2, line), which significantly 
increased in the presence of glyp (1.1 × 10−5 mol/L); in addition, a new band at 362 nm was observed. 
The change in absorbance at 480 nm, as well as the formation of a new absorption band, is attributed 
to the formation of a complex between both species, with measurable characteristics in the 
ultraviolet-visible boundary region. The complex formation was almost instantaneous, and no 
additional changes in the absorbance were detected after mixing and measuring immediately 
(average time 10 seconds). 

 

Figure 2. The electronic absorption spectrum of (Ni(PhDP)2) (1.08 × 10−4 mol/L) in the absence (solid 
line) and the presence of glyp (1.1 × 10−5 mol/L) (dotted line). Reaction conditions: 99% CH3OH–1% 
water. 

Changes in the pH of the glyphosate solution, or the (Ni(PhDPD)2) concentration, did not lead 
to improved results. Therefore, the pH of the water was kept at pH 7.0, (Ni(PhDPD)2) of 1.08 × 10−4 
mol/L, and incubation time of 10 s. 

As the purpose of the present study is the quantification of glyp in water samples, the 
dependence of the absorbance change on glyp concentration was determined. As can be seen in 
Figure 3, the absorbance at 362 nm was dependent on the glyp concentration, with a linear range 
from 5.9 × 10−7 to 1.1 × 10−5 mol/L of glyp. 

 
Figure 3. Calibration curve for the detection of glyp (5.9 × 10−7–1.1 × 10−5 mol/L) based on the 
interaction with the compound (Ni(PhDP)2) (1.08 × 10−4 mol/L). Reaction conditions: 99% CH3OH–1% 
water. 
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Equation (2) describes the relationship between the two variables, where A is the absorbance at 
362 nm, and G is the concentration of glyp (mol/L). The linear regression model fits the data very 
well, with a correlation coefficient higher than 0.99. Also, other statistical results (analysis of 
variance and dynamic graphs, i.e., normal probability plot of the standardized residuals, scatter 
plots of the standardized residual against the predictor variable, and the index plot of the 
standardized residuals) support the quality of the linear model. 

A = 0.0128G + 0.3629 (2) 

Using Equation (2), the detection limit (LOD) and the quantification limit (LOQ) were 
calculated. The LOD and the LOQ are numerically equal to 3 and 10 times the standard deviation of 
the mean absorbance of (Ni(PhDP)2) without glyp (blank absorbance). Substituting these values in 
Equation (1), a LOD of 2.01 × 10−7 mol/L (34.98 µg/L) and an LOQ of 9.87 × 10−7 mol/L (166 µg/L) were 
determined. These values are good enough for glyp determination in drinking water in the USA, as 
the EPA Maximum Contaminant Level (the highest level of a contaminant that is allowed in 
drinking water) of 700 µg/L has been set [56], and, in principle, should be higher for environmental 
water samples. A study by Botta et al. [57] reported concentrations of glyp of 4.4 × 10−7–5.32 × 10−7 
mol/L (75–90 µg/L) in surface water. Therefore, it is possible to find high concentrations of glyp in 
environmental water that are within the LOD and LOQ obtained in this work. However, an 
improvement in detection is needed for application of the method in European countries, where the 
maximum level of glyp must not be higher than 0.1 µg/L [58]. In addition, our LOD and LOQ values 
are within the range of other alternative methods to detect the herbicide in a water sample (Table 1), 
with the advantages that the response time is shorter and there is no need for derivatization or the 
addition of reaction precursors. 

Table 1. Comparison between other glyp determination in water. 

Method LOD (mol/L) LOQ (mol/L) Remarks 

This method 2.01 × 10−7 9.87 × 10−7 
Rapid, effective, selective, facile, and 

sensitive 
Spectrophotometry with 

multi-pumping flow system [59] 
1 × 10−6 3 × 10−6 Rapid, effective and selective, but 

needs pre-treatments 
Fluorescence resonance energy 

transfer [60] 6 × 10−7 1 Rapid, effective and selective, but 
needs expensive equipment 

Electrochemical sensing [43] 2 × 10−6 1 

Rapid, effective and selective, but 
needs expensive equipment and 

reagents 

Colorimetric sensor [35] 6 × 10−7 1 Effective and sensitive, but it requires 
complex synthetizing steps 

Note: 1 Not reported. 

3.3. Stoichiometry 

For the complex stoichiometry, determination of the absorbance changes was plotted as a 
function of the mole fraction of the Glyp or (Ni(PhDP)2) (Figure 4) at two total concentrations. The 
Job plots show a triangular shape, which according to literature suggests a strong molecular 
interaction between the compounds; also, the maximum point in the curves takes place at 0.5 mole 
fraction, indicating that the molecular association occurs with stoichiometry 1:1 [50,61]. 
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Figure 4. Job plot indicating the 1:1 stoichiometry for the (NiGlyp(PhDP)2) complex, with a total 
concentration of (a) 5 × 10−5 mol/L and (b)1 × 10−4 mol/L. 

3.4. Dissociation Constant 

The Kd was determined by fitting the data to the one-site binding model using nonlinear 
regression analysis (Figure 5). The obtained Kd values were 1.75 × 10−6 and 6.9 × 10−6 mol/L at two 
(Ni(PhDP)2) concentrations (3.6 × 10−5 and 1.08 × 10−4 mol/L), which account for the affinity of the 
dipyrrinate ligand to glyphosate. According to Chenprakhon et al. and Pan et al. [51,62], a small Kd 
value refers to a high binding affinity of the ligand to its target. Although the affinity values are three 
orders of magnitude lower compared to the antibody-antigen system, the dipirrinate ligand has the 
advantage that the analytic response does not need additional steps for separation and 
quantification, as in the immunoassay format. 

 

Figure 5. One site model fitting at (a) 1.08 × 10−4 mol/L of (Ni(PhDP)2) and (b) 3.6 × 10−5 mol/L of 
(Ni(PhDP)2) in the presence of glyp (5.9 × 10−7 to 2.36 × 10−4 mol/L). 

3.5. Method Selectivity 

The interference caused by other components that are usually present in water was determined 
to know the potential applicability of the method. It is well known that glyp can form strong 
coordination bonds with metal ions Fe2+, Ca2+, and Mg+2 [63,64]. The results showed that the presence 
of individual cations and its mixture did not interfere significantly in the complexation of glyp with 
(Ni(PhDP)2). The same set of experiments were carried out with other organophosphorus pesticides, 
which are continuously used in agriculture, such as parathion [65], dimethoate [66], and 
diclofenthion [67], as well as their mixtures. The absorbance values of the (NiGlyp(PhDP)2) complex 
in the presence of the organophosphorus pesticides and its mixtures did not show an interference 
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greater than 10% and thus are discarded as interferents. A mixture was tested between 
(NiGlyp(PhDP)2) and AMPA because AMPA is frequently detected in water together with glyp 
[68,69]. Interestingly, the metabolite showed no additional change in the detection of glyp. Finally, 
different phosphate salts were tested, as it is already known that the phosphate ion may form 
complexes with nickel and other metals [70–72], which also showed no interference. All the assays 
suggest a good selectivity of the method (Table 2). 

Table 2. Effects of the added salts, organophosphorus pesticides, and phosphates on the method 
selectivity. 

Compounds Absorbance at 362 nm Standard Deviation Interference (%)1 
None 

(NiGlyp(PhDP)2) 
0.42 0.012 0.0 

Salts 
FeCl3·6H2O 0.43 0.008 2.57 
CaCl2·2H2O 0.41 0.008 0.19 

NaNO3 0.42 0.007 0.78 
MgCl2·6H2O 0.44 0.008 3.66 

Mixture of salts 0.45 0.010 5.49 
Organophosphorus pesticides 

Parathion 0.42 0.012 1.47 
Dimethoate 0.45 0.011 4.28 

Diclofenthion 0.43 0.002 0.22 
Mixture of pesticides 0.46 0.002 7.51 

Phosphates 
Na2PO4 ·H2O 0.41 0.003 2.57 

Na2HPO4·7H2O 0.41 0.003 2.75 
(NH4)2HPO4 0.42 0.008 0.81 

Mixture of phosphates 0.43 0.005 0.67 
Metabolite of glyp 

AMPA 0.42 0.12 0.0 
1 The percentage of interference was calculated, taking the absorbance of 0.42 obtained from the 
complex (Ni(PhDP)2) 1.08 × 10−4 mol/L and glyp 4.1 × 10−6 mol/L as 0% of interference, minus the 
absorbance of the complex in the presence of interference between the absorbance of the complex, 
multiplied by one hundred. 

3.6. Analysis of Spiked Water Samples 

Table 3 shows the results of the physicochemical parameters of the four water matrices used to 
check the applicability of the proposed method. The parameter values are indicative of the different 
sources; as expected, treated wastewater shows the highest COD and BOD. The amount of dication 
metals was determined because of their possible interference behavior. No glyp was detected using 
the commercially available ELISA method (PN 500086) (Abraxis LLC, Warminster, PA, USA). 
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Table 3. Physicochemical analysis of the different water matrices. 

Parameters 
Water Matrix 

Potable Urban Groundwater Treated Wastewater 
pH 7.00 7.00 7.00 7.00 

Specific conductance (µs/cm) 0.05 424.00 523.00 1448.00 
Temperature (°C) 25.00 25.30 25.30 24.70 

COD (mg/L) 2.00 152.70 97.20 651.38 
BOD (mg/L) 0.73 76.48 42.00 320.62 
Ca2+ (mg/L) 20.00 75.00 115.00 145.00 
Fe2+ (µg/L) 51.00 68.00 67.50 178.50 

SO42− (mg/L) 0.00 27.50 40.00 90.00 
Mg2+ (mg/L) 0.00 10.00 30.0 10.00 

NO3-N (mg/L) 1.10 1.65 18.35 24.00 
NO3− (mg/L) 5.00 82.75 99.45 104.00 
PO43− (mg/L) 0.10 4.80 0.94 40.20 
P2O5 (mg/L) 0.08 4.53 0.67 31.00 

Free chlorine (mg/L) 0.07 0.35 0.007 0.10 

Then, the samples were spiked with glyp (4.1 × 10−6 and 5.9 × 10−6 mol/L) and added to the 
(Ni(PhDP)2) solution. The glyp concentrations in the samples were calculated using Equation (2). 

The percentages of recovery vary between 87.20–119.04% (Table 4), which indicates good 
accuracy of the methodology. Furthermore, a high precision was obtained, as reflected by the 
coefficients of variation (0.34–2.89%). Overall, it seems that the presence of several salts and metals at 
different concentrations did not affect the detection, and the method may be applied for different 
water sources. It is important to note that the LOD and LOQ reported here suggests that the method 
may be used for screening purposes in heavily polluted water samples, such as those in agricultural 
lands or treatment facilities, where the pollutants are concentrated. Regarding urban or 
groundwater, where pollutants are in lower concentrations, a preconcentration step should be 
necessary, as it is usually carried out with other methods. 

Table 4. Detection of glyp in spiked water samples. 

Water Matrix Glyp Added 
( × 10−6 mol/L) 

Glyp Determined 
( × 10−6 mol/L) 

Coefficient 
of 

Variation 
(%) 

Recovery 
(%) 

Potable 
4.10 3.72 2.89 89.58 
5.90 5.14 0.34 87.20 

Urban 
4.10 3.66 2.09 88.64 
5.90 5.32 0.61 89.97 

Groundwater 4.10 4.02 2.38 96.49 
5.90 6.32 0.82 106.99 

Treated wastewater 
4.10 4.90 1.31 118.67 
5.90 7.03 0.99 119.04 

3.7. Theoretical Results 

To predict the possible complex between (Ni(PhDP)2) and glyp quantum (QM), calculations 
were undertaken, starting the geometry optimization of probable compounds at the DFT level. 

The structure complex shown in Figure 6 is the most probable compound found for the reaction 
of (Ni(PhDP)2) with glyp, where the nickel in the (NiGlyp(PhDP)2) complex expands its coordination 
number from 4 to 6 with a nitrogen and an oxygen atom of the glyp’ carboxyl group, at distances 
between 1.89–2.08 Å in a distorted octahedral molecular geometry. The calculated bond distances 
are reported in Table 5. As can be seen, the distance values are similar to those reported in 
experimental conditions in the literature [55,70]. 
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Figure 6. Optimized structure of the (NiGlyp(PhDP)2) complex. 

The oxygen atoms of phosphonic did not interact with the nickel atom because during the 
optimization this complex is not stable. Although it is known that the glyp could coordinate to nickel 
in a tridentated fashion, it appears that a heptacoordinate compound, in this case, is not stable. The 
shorter distance of the oxygen of the carboxyl group indicates a stronger interaction of the glyp with 
the title compound. 

Table 5. Bond distances (Å) for the coordination atoms of the optimized structure (NiGlyp(PhDP)2). 
Experimental values of (Ni(PhDP)2) fragment (a) and Ni(Glyp)2 (b) from the literature are provided 
for comparison [55,70]. 

(NiGlyp(PhDP)2) (Ni(PhDP)2) (a) and Ni(Glyp)2 (b) 

Bond Distance (Å) Bond Distance (Å) 

Ni-N(1) 1.93 Ni-N (a) 1.88 

Ni-N(2) 1.93 Ni-N (b) 2.01 

Ni-N(3) 1.94 Ni-O (b) 2.05 

Ni-N(4) 1.90   

Ni-N(5) 2.08   

Ni-O 1.89   

4. Conclusions 

It has been possible to detect glyp by complex formation with stoichiometry 1:1, achieving a 
LOD of 2.07 × 10−7 mol/L and an LOQ of 9.8 × 10−7 mol/L. The method developed assures data 
repeatability, high sensitivity, and quick detection (10 s). 

The method was applied to determine known concentrations of glyp (4.1 × 10−6 and 5.9 × 10−6 
mol/L) in potable and urban water, as well as groundwater and treated wastewater. The recovery 
percentages and the coefficients of variation obtained show good precision and accuracy of the 
method to be applied in environmental samples. The presence of the salts, other organophosphorus 
pesticides, and phosphates, as well as their mixtures in the water, do not interfere with glyp 
detection. The theoretical results show that the nickel of (Ni(PhDP)2) forms coordination bonds with 
the nitrogen and oxygen atoms of glyp in a distorted octahedral molecular geometry. 
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