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Abstract: The optimized design of water quality monitoring networks can not only minimize the
pollution detection time and maximize the detection probability for river systems but also reduce
redundant monitoring locations. In addition, it can save investments and costs for building and
operating monitoring systems as well as satisfy management requirements. This paper aims to
use the beneficial features of multi-objective discrete particle swarm optimization (MODPSO) to
optimize the design of water quality monitoring networks. Four optimization objectives: minimum
pollution detection time, maximum pollution detection probability, maximum centrality of monitoring
locations and reservation of particular monitoring locations, are proposed. To guide the convergence
process and keep reserved monitoring locations in the Pareto frontier, we use a binary matrix to
denote reserved monitoring locations and develop a new particle initialization procedure as well
as discrete functions for updating particle’s velocity and position. The storm water management
model (SWMM) is used to model a hypothetical river network which was studied in the literature
for comparative analysis of our work. We define three pollution detection thresholds and simulate
pollution events respectively to obtain all the pollution detection time for all the potential monitoring
locations when a pollution event occurs randomly at any potential monitoring locations. Compared
to the results of an enumeration search method, we confirm that our algorithm could obtain the
Pareto frontier of optimized monitoring network design, and the reserved monitoring locations are
included to satisfy the management requirements. This paper makes fundamental advancements of
MODPSO and enables it to optimize the design of water quality monitoring networks with reserved
monitoring locations.

Keywords: multi-objective discrete particle swarm optimization; water quality monitoring
network; optimized monitoring network design; reserved monitoring locations; storm water
management model

1. Introduction

River systems play a crucial role in the sustainable development of a community. Water quality is
influenced simultaneously by both anthropogenic and natural activities. However, overexploitation
and increasing pollution of this vital resource are threatening our ecosystems and even the life of future
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generations. In the most recent 50 years, with the rapid development of world economy, on the one
hand, we need more clean water, and on the other hand, industry and living activities create more and
more pollutants to freshwater sources. Wastewater treatment plants can only treat part of pollution
water [1,2]. It is estimated that 280 billion Yuan is lost each year in China for freshwater pollution
events [3]. Water quality monitoring has become one of the routine efforts for environmental protection
all over the world. There are many considerations when we design a water quality monitoring network,
such as monitoring locations, water quality parameters, monitoring frequency and identification of
monitoring objectives. Monitoring water quality remains a very complicated process [4]. The problem
of planning and optimizing water quality monitoring programs (WQMPS) has been addressed since
the 1940s, and many papers have been published on this subject [5–9].

The use of computer science and communication technology has significantly grown in recent
years. More water quality parameters can be remotely detected and transmitted by automatic
monitoring stations resulting in a much higher monitoring frequency, with more monitoring data and
better monitoring efficiency. However, the costs of building and operating an automatic monitoring
station are very high. The successful water quality monitoring relies on the availability of a low
cost and highly efficient monitoring network to collect appropriate and reliable data. Optimization
design of water quality monitoring networks can not only help us build a cost-effective and logistically
adaptable monitoring network, but also increase the pollution detection probability, decrease the
pollution detection time and save the construction and operating costs, which is essential for the
sustainable development of water quality monitoring networks. Different monitoring objectives
generally determine the level of detail, the cost, and the necessary approach used to design the
monitoring network [10]. So, the purpose of the water quality monitoring network should be identified
before determining the optimization objectives of a monitoring network.

Many researchers have studied the optimal design of water quality monitoring networks for river
systems. Quyang used a single objective genetic algorithm (GA) to design an optimal monitoring
network based on a geometric analysis and applied it to a hypothetical river system [11]. However,
only the spatial distribution of the monitoring stations was considered as an optimization objective in
this algorithm. Practical river systems are complex and other factors such as flow rate, river depth
and width should also be considered while designing the monitoring network. Telci argued that the
design of an optimal water quality monitoring network should mainly focus on two objectives of
minimum pollution detection time and maximum detection reliability [12]. The optimal placement of
monitoring devices was calculated using the GA under relatively simple discrete uniform distributions
on spill events. They also applied this methodology to the Altamaha river basin to identify the optimal
monitoring locations in the river system [13]. However, the Pareto frontier (seeing Section 3.2) of
the optimization results was not mentioned in this paper resulting in difficulties for evaluating all
the optimization results. Park used a stochastic discrete optimization via a simulation algorithm and
a penalty function with memory to obtain the optimal locations of a finite number of monitoring
positions [14]. The algorithm can minimize the expected detection time of a contaminant spill event
and guarantee a higher detection probability. However, the penalty value significantly increases the
detection time of a deployment solution when the pollution detection probability is less than 100%.
Chang selected seven criteria to evaluate the suitability of the water quality monitoring design and
used fuzzy theory to improve the objectivity in the data classification and ranking [7]. However, it is
difficult for researchers to collect detailed information and data (e.g., percentage of farmland and
built-up area, and green cover ratio) to satisfy all the criteria of the algorithm.

To the best of our knowledge, most of the literature tried to find the globally optimal solution
for water quality monitoring networks without the consideration of reserving particular monitoring
locations before optimizing. Some monitoring locations are definitely determined in advance whether
they are included in the optimal deployment solutions or not. For example, a stream junction at an
intersection of two cities is crucial for special management requirements. We should deploy monitoring
devices at theses stream junctions so that the government can evaluate the pollutant discharging
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between two cities and take economic sanction measures. However, current multi-objective evolution
algorithms cannot support this particular management requirement. There is no guarantee that these
particular monitoring locations can be included in the final optimal deployment solutions. Besides,
we argue that the priorities of monitoring locations should also be considered in the optimal design of
water quality monitoring networks.

In this paper, we revise the multi-objective discrete darticle swarm optimization (MODPSO)
algorithm and develop a novel optimization algorithm for the optimized design of water quality
monitoring network. Our algorithm can include all the reserved monitoring locations into the final
optimized monitoring network while still having maximum pollution detection probability, minimum
pollution detection time and maximum closeness centrality.

2. Related Technologies

2.1. SWMM

Hydrodynamic simulation analysis based on dynamic models is a scientific, objective and
supportive methodology for related strategy planning. The storm water management model (SWMM)
is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous)
simulation of runoff quantity and quality from primarily urban areas. It can track the quantity
and quality of runoff generated within each sub-catchment, and the flow rate, flow depth and quality
of water in each pipe or channel during a simulation period [15]. The latest version is SWMM 5, which
is extended to the simulation of low impact development utilities [16]. The SWMM is widely used for
dynamically simulating storm water runoff and drainage systems in urban areas. Here we use SWMM
to simulate the hydraulic model, pollution events and pollutants transporting along the river system.

2.2. Pareto Frontier

The main difficulty in considering multi-objective optimization is that there is no accepted
definition of optimum in this case, and therefore it is difficult to compare one solution with another
one [17]. In addition, the objectives to be optimized are generally in conflict with each other.
For example, assume we distribute some apples to children A and B. Each child wants all the apples. If
we give all the apples to child A, then it is a best solution to child A but a worst solution to child B.
We aim to find good trade-off solutions among the objectives. We define a multi-objective optimization
problem as follows [18].

Definition 1 (Multi-objective optimization problem). Let F be a set of m objective functions { f1, f2, ..., fm},
fi : Rn → R, the MOP is defined as follows.

Minimize y = F(X) =
(

f1(X), f2(X), ..., fm(X)
)

x = (x1, x2, ..., xn) ∈ X ⊆ Rn

y = (y1, y2, ..., ym) ∈ Y ⊆ Rm,

(1)

subject to
g(X) =

(
g1(X), g2(X), ..., gk(X)

)
≤ 0 (2)

xL
i ≤ xi ≤ xU

i ∀i ∈ 1, 2, ..., n, (3)

where x is a vector of n decision variables, y represents an m-dimensional objective vector, xL
i and xU

i are the
lower and upper bound of xi. Constraint (3) represents bounds with 2n variables that help define the decision
variable space or decision space X . Objective functions constitute a multi-dimensional space called the objective
space, termed as Y . Vector g is composed of k constraint functions which shape the feasible region. Solutions
that do not satisfy constraint functions and/or variable bounds are called infeasible solutions, while solutions
that meet all constraints in (2) and (3) are feasible solutions. The set of all feasible solutions X f is known as
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the feasible region. The domain of each fi is X f . For each solution x ∈ X f there exists a point y in the objective
space. Thus, X f defines the feasible objective space Y f :

Y f = F(X f ) =
⋃

x∈X f

F(x) (4)

Many multi-objective optimization algorithms use Pareto dominance in order to compare
solutions. In a minimization context, the Pareto dominance relation over a set of objectives F ′ ⊆ F is
defined as follows.

Definition 2 (Pareto dominance relation).

≺F ′= {(x, x′)|x, x′ ∈ X f ∧ ∀ fi ∈ F ′, fi(x) ≤ fi(x′) ∧ ∃ f j ∈ F ′, f j(x) < f j(x′)} (5)

If (x, x′) ∈≺F ′ , it is said that solution x dominates solution x′ over F ′, denoted by x ≺F ′ x′.
If (x, x′) /∈≺F , it is said that solution x′ is non-dominated regarding x over objective set F ′, denoted
by x 6≺F ′ x′. In case that F ′ = F and x ≺F ′ x′, it is simply said that x dominates x′, denoted as x ≺ x′.

Definition 3 (Pareto optimality). A solution x ∈ X f is said to be non-dominated considering objectives
F ′ ⊆ F regarding a set Ω ⊆ X f , if and only if 6 ∃x′ ∈ Ω for which x′ ≺ F ′. If x is non-dominated regarding
X f considering F ′, it is called a Pareto optimal solution for the given subspace of objectives, while, if F = F ′ it
is said that it is a Pareto optimal solution of the problem or simply a Pareto optimal solution.

Pareto optimal solutions form the so-called Pareto set, defined as follows.

Definition 4 (Pareto set). For a given MOP with a set of objectives F, the Pareto set considering objectives
F ′ ⊆ F is defined as:

P∗F ′ = x ∈ X f | 6 ∃x′ ∈ X f such as x′ ≺F ′ x (6)

The corresponding vectors of P∗F ′ in the objective space defined by F ′ form the Pareto front,
termed as PF ∗F ′ . When F ′ = F , the sets P∗F and PF ∗F are called the Pareto set and the Pareto frontier
of the problem respectively.

Definition 5 (Pareto frontier). The corresponding objective vector set of the Pareto set is called the
Pareto frontier.

According to the definition of Pareto frontier, we can know that Pareto frontier is a set of
nondominated solutions, being chosen as optimal if no objective can be improved without sacrificing
at least one other objective. The Pareto frontier is usually used to evaluate the performance of
multi-objective algorithms and obtain the optimal solutions for particular optimization issues.

2.3. MOPSO Algorithm

Particle swarm optimization (PSO) is a heuristic search technique that simulates the movements
of a flock of birds which aim to find food [19]. The relative simplicity of the PSO is a natural candidate
to be extended for multi-objective optimization [20]. Consequently, lots of proposals of multi-objective
particle swarm optimization (MOPSO) were proposed in the literature and it has become one of
the popular evolution algorithms in recent years [21]. The Pareto frontier was used in MOPSO to
handle multi-objective functions to improve the PSO algorithm to be able to deal with multi-objective
optimization problems [20]. The algorithm uses a secondary repository of particles to guide their
flight and a particular mutation operator to enrich exploratory capabilities. Compared to other
multi-objective evolutionary algorithms known to date, MOPSO has a highly competitive performance
and can be considered as a viable alternative to solve multi-objective optimization problems [22].
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Literature research shows that it can cover the full Pareto frontier of all the potential solutions with
low computational time. The velocities and positions of particles during the computing iteration are
updated by the following equations:

Vi(t + 1) =wVi(t) + c1r1(pbest(i, t)− Pi(t))

+ c2r2(gbest(t)− Pi(t))
(7)

Pi(t + 1) = Pi(t) + Vi(t + 1) (8)

where V denotes the particle’s velocity, w is an inertia weight constant, r1 and r2 are uniformly
distributed random variables within range [0, 1], pbest(i, t) is the best position that the particle i has
had, gbest(t) is the best position in all current particles, and c1 and c2 are positive constant coefficients
for acceleration. The pseudocode of MOPSO is shown in Algorithm A1 in Appendix.

The classical MOPSO is a robust algorithm to get globally optimal results for continuous definition
domains. However, The MOPSO cannot be applied to discrete problems directly, which is a significant
limitation because many optimization problems are set in a space featuring discrete variables [23]. Some
attempts have been made to design multi-objective discrete particle swarm optimization (MODPSO)
algorithms, and several methodologies have been proposed [24–27].

2.4. Closeness Centrality

In river network simulations, graph theory and network analysis are usually used to model river
systems [28–30]. Centrality is one of the most important indicators in graph theory and widely used
in social networks, urban networks and so on [31,32]. It can identify the importance of vertexes in a
graph or network and summarize a node’s involvement in or contribution to the cohesiveness of the
network [10]. We can use the centrality to denote the priority of each monitoring location.

There are several measures to denote the centrality such as degree, betweenness, closeness and
eigenvector. Closeness is based on the length of the average shortest path between a node and all other
nodes in the network. It is widely used to denote the centrality of a connected network. As we know
that a river network is also a typical connected network. So, we use the closeness as an evaluation
criterion to represent the centrality of each location to all the other potential monitoring locations.
Equation (9) shows the definition of closeness for vertices x.

C(x) =

[
∑y d(y, x)

N − 1

]−1

(9)

where d(y, x) is the distance between vertices x and y. N is the number of nodes in the network.

3. Methodology

3.1. Main Process of Our Algorithm

The main process of our algorithm is shown in Figure 1. Firstly, we create a hypothetical river
network in SWMM. Secondly, pollution events with different pollution detection thresholds are
simulated and pollution detection time for each potential monitoring location are calculated. Thirdly,
we set several optimization objectives for water quality monitoring networks. Fourthly, we develop an
optimized algorithm based on the MODPSO and the optimization objectives we proposed. Finally,
we input the pollution detection time into our optimization algorithm to obtain optimized water
quality monitoring networks.
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Figure 1. Main process of our algorithm.

3.2. Hydrodynamic Simulations

3.2.1. Hypothetical River Network

To compare our study results with the achievements given by the literature, we use the same
hypothetical river network introduced in [11–13] to simulate pollution events, which is as Figure 2
shows. It has eleven catchments numbered from A to K with six inlet locations of 1, 3, 5, 8, 10 and
11, five intermediate locations of 2, 4, 6, 7 and 9, as well as one outlet location of 12. To obtain steady
water flows when a pollution event occurs, we simulate water flows with a constant flow rate of
283.168 L/s for each inlet location, which is the same as in Telci’s paper. As we know that pollution
events can occur at any locations randomly. We assume that pollution events at inlet locations have
a same pollutant concentration of 10 mg/L and last for one hour resulting in a total of 10.19 kg of
pollutant spilling for each pollution event. The characteristics of the hypothetical river network are
shown in Table 1, which is the same as Telci [12] used.

Figure 2. Hypothetical river network.

Table 1. Hydraulic characteristics of the river network.

Catchment Width Channel Manning’s Length Flow Rate
(m) Slope Coefficient (m) (L/s)

A 3.048 0.0001 0.02 609.6 283.168
B 3.048 0.0001 0.02 609.6 283.168
C 3.048 0.0001 0.02 609.6 283.168
D 3.048 0.0001 0.02 609.6 283.168
E 3.048 0.0001 0.02 304.8 283.168



Water 2019, 11, 713 7 of 25

Table 1. Cont.

Catchment Width Channel Manning’s Length Flow Rate
(m) Slope Coefficient (m) (L/s)

F 3.048 0.0001 0.02 609.6 283.168
G 3.048 0.0001 0.02 914.4 566.336
H 3.048 0.0001 0.02 1219.2 566.336
I 3.048 0.0001 0.02 609.6 849.504
J 3.048 0.0001 0.02 914.4 849.504
K 3.048 0.0001 0.02 1524 1699.008

3.2.2. SWMM Simulations

To confirm whether different pollution detection thresholds can affect the design of water quality
monitoring networks or not, we set the pollution detection threshold to 0.01 mg/L, 1 mg/L and 2 mg/L
respectively and run hydraulic simulations in the SWMM. Tables 2–4 show the simulation results of
pollution detection time for each potential monitoring location. The ‘_’ in tables represents an infinite
value, which means the pollution event cannot be detected at a monitoring location. For example,
the first row in Table 2 demonstrates a scenario that a pollution event occurs at location 1 and can be
detected at locations 1, 2, 4, 6 and 12. The pollution detection time for these locations is 0 (detected
immediately), 27, 81, 118 and 198 min, respectively. However, the pollution event cannot be detected
at locations 3, 5, 7, 8, 9, 10 or 11 because the polluted water flow cannot reach these locations.

Table 2. Pollution detection time with a detection threshold of 0.01 mg/L.

Pollution Locations
Pollution Detection Time (min) for Potential Monitoring Locations

1 2 3 4 5 6 7 8 9 10 11 12

1 0 27 _ 81 _ 118 _ _ _ _ _ 198
2 _ 0 _ 40 _ 75 _ _ _ _ _ 152
3 _ 27 0 81 _ 118 _ _ _ _ _ 198
4 _ _ _ 0 _ 23 _ _ _ _ _ 96
5 _ _ _ 28 0 62 _ _ _ _ _ 139
6 _ _ _ _ _ 0 _ _ _ _ _ 62
7 _ _ _ _ _ 38 0 _ _ _ _ 113
8 _ _ _ _ _ 79 27 0 _ _ _ 157
9 _ _ _ _ _ 111 57 _ 0 _ _ 190

10 _ _ _ _ _ 133 78 _ 10 0 _ 213
11 _ _ _ _ _ 156 99 _ 27 _ 0 236
12 _ _ _ _ _ _ _ _ _ _ _ 0

Table 3. Pollution detection time with a detection threshold of 1 mg/L.

Pollution Locations
Pollution Detection Time (min) for Potential Monitoring Locations

1 2 3 4 5 6 7 8 9 10 11 12

1 0 44 _ 112 _ 165 _ _ _ _ _ 253
2 _ 0 _ 61 _ 110 _ _ _ _ _ 199
3 _ 44 0 112 _ 165 _ _ _ _ _ 253
4 _ _ _ 0 _ 42 _ _ _ _ _ 131
5 _ _ _ 47 0 97 _ _ _ _ _ 186
6 _ _ _ _ _ 0 _ _ _ _ _ 90
7 _ _ _ _ _ 62 0 _ _ _ _ 152
8 _ _ _ _ _ 116 47 0 _ _ _ 205
9 _ _ _ _ _ 153 82 _ 0 _ _ 242

10 _ _ _ _ _ 181 108 _ 20 0 _ 269
11 _ _ _ _ _ 208 134 _ 44 _ 0 297
12 _ _ _ _ _ _ _ _ _ _ _ 0
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Table 4. Pollution detection time with a detection threshold of 2 mg/L.

Pollution Locations
Pollution Detection Time (min) for Potential Monitoring Locations

1 2 3 4 5 6 7 8 9 10 11 12

1 0 50 _ 124 _ _ _ _ _ _ _ _
2 _ 0 _ 69 _ _ _ _ _ _ _ _
3 _ 50 0 124 _ _ _ _ _ _ _ _
4 _ _ _ 0 _ _ _ _ _ _ _ _
5 _ _ _ 55 0 _ _ _ _ _ _ _
6 _ _ _ _ _ _ _ _ _ _ _ _
7 _ _ _ _ _ _ 0 _ _ _ _ _
8 _ _ _ _ _ _ 55 0 _ _ _ _
9 _ _ _ _ _ _ 92 _ 0 _ _ _

10 _ _ _ _ _ _ 119 _ 24 0 _ _
11 _ _ _ _ _ _ 146 _ 50 _ 0 _
12 _ _ _ _ _ _ _ _ _ _ _ _

We can see from Tables 3 and 4 that when the pollution detection threshold is increased from
0.01 mg/L to 1 mg/L and 2 mg/L separately, the pollution detection time for each potential monitoring
location is also increased. It is because higher pollution concentration requires more time in pollution
events. When we set the pollution threshold to 2 mg/L (Table 4), some pollution events (e.g.,
pollution events at locations 6 and 12) cannot be detected. It is because diluted by the upstream
water flows, the pollution concentrations at some downstream locations are smaller than the pollution
detection threshold. For example, due to the dilution of upstream water flows, when a pollution
event occurs at location 6 (or 12), the maximum pollution concentration at location 6 (or 12) is only
1.67 mg/L. It is smaller than the pollution detection threshold of 2 mg/L and cannot be detected at
any monitoring location.

3.3. Optimization Objectives

Currently, most of the literature only considered optimization objectives such as maximum
pollution detection probability and minimum pollution detection time in the design of water quality
monitoring networks and tried to obtain globally optimal solutions [11–13,33,34]. However, we argue
that reserving some particular monitoring locations in advance to satisfy management requirements is
also essential and should be achieved in the optimization algorithm. Furthermore, we use the closeness
centrality in graph theory to denote the priority of each monitoring location. Four optimization
objectives are simultaneously considered in our algorithm.

3.3.1. Minimum Pollution Detection Time

Assume that n monitoring devices will be deployed out of m potential monitoring locations
(n ≤ m) in a river system. It means that n particular monitoring locations will be selected to deploy
monitoring devices from m potential monitoring locations. The total number of potential deployment
solutions T is:

T = Cn
m (10)

where m is the number of potential monitoring locations, n is the number of available monitoring
devices. For a given optimized deployment solution Sk = [sk1, sk2, ski, ..., skn], where ski is the index
of a selected monitoring location, k ≤ T and ski ≤ m. Let dj

i(Sk) be the pollution detection time at
monitoring location i when a pollution event occurs at location j. The minimum pollution detection
time for location j is:

dj(Sk) = min{dj
1(Sk), dj

2(Sk), ..., dj
n(Sk)} (11)

where j ≤ m. For a definite optimized deployment solution S, the set of minimum pollution detection
time for all potential locations is d(Sk) = [d1(S), ..., dm(Sk)]. Let d(Sk) be the mean value of all
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minimum pollution detection time at all m potential monitoring locations for a given solution Sk,
d(Sk) is:

d(Sk) =
1
m

m

∑
j=1

dj(Sk) (12)

Let d(S) be the minimum mean pollution detection time for all potential deployment solutions, we can
get the following equation:

d(S) = min{d(S1), d(S2), ..., d(ST)} (13)

where T is the total number of deployment solutions shown in Equation (10). The first optimization
objective is to find a deployment solution which has the minimum mean pollution detection time as
Equation (13) shows.

3.3.2. Maximum Pollution Detection Probability

Let R(Sk) be the ratio of successful pollution detection scenarios to all potential detection scenarios
for a given deployment solution Sk. The pollution detection probability R(Sk) is:

R(Sk) =
1
m

m

∑
i=1

ri (14)

where k ≤ T, m is the number of potential monitoring locations, ri = 1 if the pollution event at location
i can be detected by the deployment solution Sk, or ri = 0 if the pollution event cannot be detected.
Let R(S) be the maximum pollution detection probability of all the potential deployment solutions:

R(S) = max{R(S1), R(S2), ..., R(ST)} (15)

where T is the total number of potential deployment solutions. The second optimization objective
is to find a deployment solution which has a maximum pollution detection probability as
Equation (15) shows.

3.3.3. Maximum Closeness Centrality of Monitoring Locations

Let d(i, j) be the length from potential monitoring location i to potential monitoring location j and
m be the total number of potential monitoring locations. We can get the closeness centrality C(i) for a
potential monitoring location i according to the closeness definition in Equation (9).

C(i) =

[
∑m

j=1 d(i, j)

m− 1

]−1

(16)

The total of closeness centrality for a potential deployment solution Sk is as follows.

C(Sk) =
n

∑
i=1

C(Ski) (17)

where n is the number of monitoring devices deployed in a river network, Ski is a monitoring location
in a deployment solution Sk.

The third optimization objective is to maximize the total closeness centrality of optimized
deployment solutions shown in Equation (18).

C(S) = max{C(S1), C(S2), ..., C(ST)} (18)

where T is the total number of potential deployment solutions.
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3.3.4. Reservation of Monitoring Locations

For the sake of management requirements, some particular monitoring locations should be
determined beforehand whether they are in the optimal deployment solution or not. On the contrary,
some monitoring locations should be excluded in advance because of the difficulty for deployment,
little worth of monitoring and so on. It is easy to exclude these particular monitoring locations from
the set of potential monitoring locations beforehand. However, current optimization algorithms
cannot support the reservation of monitoring locations. One of the most important criteria which
is used to evaluate an optimization algorithm in the literature is whether the algorithm can obtain
globally or approximate globally optimal solutions or not. There is no guarantee to include all the
reserved monitoring locations in final optimization solutions. Therefore, a special approach should
be developed to satisfy the requirement of including the reserved monitoring locations in the final
optimization results.

Let I be the set of reserved monitoring locations and E be the set of excluded monitoring locations.
Our fourth optimization objective is to include all the reserved monitoring locations in set I in the final
optimized deployment solutions while excluding all the monitoring locations in set E.

I ∩ E = ∅

E ∩ Sk = ∅

I ⊂ Sk

(19)

where Sk is the set of final optimal monitoring locations defined in Equation (11).

3.4. Improved Algorithm of MODPSO

On the one hand, we can find from Equation (10) that when we increase the value of m and/or n,
the number of potential deployment solutions will also be increased exponentially. Assume we will
deploy 20 monitoring devices within 100 potential monitoring locations, the number of deployment
solutions is about 1030. It is hard to obtain optimal deployment solutions within a reasonable time
by an enumeration search method. On the other hand, these optimization objectives above usually
conflict with each other, which means we aim to find some good trade-off solutions among these
objectives [15,21]. So, an optimization algorithm should be used here to save the computing time
and converge to optimal results within a reasonable period. We integrate the four optimization
objectives proposed above into the algorithm of MODPSO. Furthermore, some procedures of the
MODPSO such as particle initialization and velocity updating are redesigned and improved to satisfy
the optimization requirements.

3.4.1. Particle Design and Swarm Initialization

Assume we select n locations out of m potential monitoring locations along a river network
(n ≤ m) to deploy water quality monitoring devices. Each potential monitoring location is named
from 1 to m respectively resulting in a location set S = {1, 2, 3, ..., m}. Each particle in a swarm denotes
a deployment solution with n monitoring locations. Therefore, each particle has n positions and each
position represents a monitoring location in set S. Particle P can be defined as a vector with n positions
shown in Equation (20).

P = [p1 p2 ... pi ... pn]

subject to n ≤ m & 1 ≤ pi ≤ m
(20)

where pi represents the number of a monitoring location.
Assume we will create k initial particles. n positions of each particle are initialized by random

integer values from 1 to m generated by a random integer function. The initial velocity of each position
is set to 0. The initialization procedure is as Algorithm A2 in Appendix shows.
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3.4.2. Velocity and Position Updating

We can know from Equations (7) and (8) that each position in a particle has its velocity. When the
velocity of a position is changed during computing iterations, the value of the position is also updated,
which means we get a new monitoring location. When all positions in the particle are updated, we
can get all new positions for the particle. It means we obtain a new monitoring solution for further
evaluation by a cost function (seeing Section 3.4.4).

Equations (7) and (8) show that the original velocity and position in the MOPSO are both real
values. However, we use integers to denote monitoring locations in a particle. Algorithm A3
in Appendix A shows a new function we developed to update particle’s velocities and positions
with integers.

To explore all the domain space, the step of velocity should be constrained in each iteration.
We let MaxVel be the maximum velocity during calculation. A round function is used to calculate
a new integer value of velocity for each particle based on particles of gbest and pbest. Because the
new velocity may be out of the boundary of [−MaxVel,+MaxVel], we use max and min functions to
restrict the velocity scope. Figure 3 shows the velocity updating process. When particle’s velocities
are calculated, the particle’s positions will be updated based on the new velocities. As we know that
particle’s positions should be restricted in [1, m]. If the previous velocity and position are too large or
too small, the particle’s position may also be out of boundary. In case of that, the velocity’s direction
will be reversed to update the position in a backward direction next time. The max and min functions
are also used to restrict the position boundary.

Figure 3. Velocity updating process.

3.4.3. Reserved Monitoring Locations

As we mentioned in Section 3.3.4, one of the optimization objectives is including all the reserved
monitoring locations in final optimized deployment solutions. In a real deployment environment,
the reserved monitoring locations for particular management requirements are usually not globally
optimal monitoring locations. However, the MODPSO is a heuristic algorithm, and the particle’s
velocity and position are updated automatically during the computing iterations based on Equations (7)
and (8). Particles with reserved locations are usually dominated by other particles with globally optimal
monitoring locations and will be automatically eliminated from the Pareto frontier during optimization
iterations. Current algorithms have no guarantee to obtain final optimized solutions with all the
reserved monitoring locations. We develop a new approach to guide the update of particle’s positions.

A binary matrix is defined here to denote the reserved monitoring locations. We use “0” to
indicate a non-reserved location and “1” to identify a reserved location. For example, the matrix
M = [0 0 0 1 0 1 0 0 0] means that there are totally nine potential monitoring locations in a river
network, and locations 4 and 6 should be reserved as monitoring locations beforehand. During the
velocity computing procedure, if a position in a particle is reserved in the binary matrix, it means that
this position should be reserved in the final optimized deployment solutions. We set the velocity of
this position to 0, which means the position will not be changed in subsequent computing iterations.
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We improve the initialization procedure to let all initial particles contain reserved monitoring locations.
Algorithm A4 in Appendix A shows the new initialization procedure.

When the binary matrix M is defined, we can obtain the amount and location number of reserved
locations from the binary matrix M before particle initialization. Then, these location numbers are
used to initialize the values of the first few positions in each particle. At last, we initialize the remain
positions in each particle with random integers between 1 to m. We can see from the new initialization
procedure that all the reserved locations are included in initial particles.

To keep reserved locations in particles during iterations of computing new velocities and positions
for each particle, we slightly improve the velocity and position updating procedure. When the new
velocities of a particle are calculated, we ignore all the reserved locations at first few positions of a
particle based on the reserved location matrix M, and only the other positions are calculated and
updated. By this way, all the reserved locations are retained during the iterations. Algorithm A5 in
Appendix A shows the detailed procedure.

3.4.4. Dominance Evaluation

As we mentioned above, four optimization objectives should be simultaneously considered.
However, the objective of reserved monitoring locations can be achieved by using the binary matrix.
So, only three optimization objectives of maximum pollution detection probability, minimum pollution
detection time and maximum closeness centrality of monitoring locations should be calculated in the
cost function for dominance evaluation.

Assume we deploy n monitoring devices in the hypothetical river network shown in Figure 2.
It means that each particle is composed of n different positions and each position represents a
monitoring location. The main procedure of the cost function is: first, we decompose a particle
into n separate integers, which represent the number of n monitoring locations respectively. Second,
we search each row in the pollution detection time table and get the minimum pollution detection
time for each potential pollution event. Then, we calculate the mean pollution detection time and the
pollution detection probability for this particle. Third, we calculate the centrality of these monitoring
locations. However, the MODPSO always uses the minimum value to calculate the Pareto frontier.
So, the cost function will return a matrix with three elements of minimum pollution detection time,
the reciprocal of maximum pollution detection probability and the reciprocal of maximum centrality
for monitoring locations. As the centrality of each location is determined by the structure of the river
network. We can calculate centrality for all the potential monitoring locations based on Equation (16)
in advance and save in the matrix Centrality[m]. After the calculation of pollution detection time,
pollution detection probability and centrality, the cost function can return a matrix as follows:

Cost = [time probability centrality] (21)

where time is the pollution detection time, probability is the pollution detection probability and
centrality is the closeness centrality. The matrix Cost will be used to evaluate the dominance of each
particle (seeing Algorithm A1) in Appendix A.

The pseudocode of the cost function is as Algorithm A6 in Appendix A shows. It should be noted
that in the cost function, if a pollution event cannot be detected in a deployment scenario (detectTime
= ‘_’), we will not count it into the mean pollution detection time but will calculate it into the pollution
detection probability, which is different from Telci’s paper. They use a penalty value for a non-detection
scenario which significantly increase the final pollution detection time when the pollution detection
probability is less than 100%.

4. Simulations and Analysis

To make a deep understanding about how optimization objectives and dynamic characteristics
of a river network affect the optimized design of water quality monitoring networks, we carry out
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several simulations in this section. We assume that only three monitoring devices will be deployed
out of twelve potential monitoring locations showed in Figure 2. In addition, an enumeration search
method is also developed to verify the correctness of our algorithm.

4.1. Simulation with Two Objectives of Maximum Pollution Detection Probability and Minimum Pollution
Detection Time

To compare our algorithm to the literature and confirm its correctness, we only consider two
optimization objectives of maximum pollution detection probability and minimum pollution detection
time in this simulation, which is the same as Telci’s paper. We run our algorithm several times based
on the pollution detection time in Table 2. Simulation results show that though the main particles are
quite different from each other, their Pareto frontiers are the same. Figure 4 shows four Pareto frontiers
with eight non-dominated particles in four different sub-diagrams. The mean pollution detection time,
pollution detection probability and optimized monitoring locations for non-dominated particles are
shown in Table 5.
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Figure 4. Pareto frontier with three monitoring nodes and a detection threshold of 0.01 mg/L.
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Table 5. Pollution detection time and pollution detection probability in Pareto frontier with a detection
threshold of 0.01 mg/L.

Monitoring Locations Detection Time (min) Detection Probability

6, 9, 12 45.8 100%
2, 6, 9 26.6 91.7%
2, 7, 9 14.8 66.7%
2, 5, 9 13 58.3%
2, 8, 9 13 58.3%
1, 7, 9 10.7 50%
3, 7, 9 10.7 50%
5, 7, 9 10.7 50%
1, 5, 9 7.4 41.7%
1, 8, 9 7.4 41.7%
3, 5, 9 7.4 41.7%
3, 8, 9 7.4 41.7%
5, 8, 9 7.4 41.7%
7, 8, 9 7.4 41.7%
7, 9, 11 7.4 41.7%
1, 9, 11 2.5 33.3%
5, 9, 11 2.5 33.3%
8, 9, 11 2.5 33.3%
1, 5, 10 0 25%
1, 5, 11 0 25%
3, 5, 8 0 25%
3, 5, 10 0 25%
3, 8, 10 0 25%
5, 8, 10 0 25%
5, 8, 11 0 25%

5, 10, 11 0 25%
8, 10, 11 0 25%

Table 5 indicates that if we deploy three monitoring devices at locations 6, 9 and 12 respectively,
all the pollution events can be detected, which is the same as the result in Telci’s paper. If monitoring
devices are deployed at locations 2, 6 and 9, the pollution detection probability will be slightly
decreased to 91.7% while the mean pollution detection time is also reduced from 45.8 min to 26.6 min.
It is the second best solution in the Pareto frontier. However, the second highest detection probability
in Telci’s paper is 83%, and the monitoring locations are 4, 7 and 9, which also can be found in Figure 4.
However, it is not a non-dominated particle in our algorithm. Based on this observation, we confirm
that our algorithm can get a better Pareto frontier and more detailed optimized deployment solutions
than the GA algorithm used in the literature.

Telci used a penalty for non-detected pollution scenarios resulting in a much higher pollution
detection time for scenarios with non-100% pollution detection probability. We argue that it is not
reasonable, because the mean detection time represents how long the pollution event will be detected
if it is detectable by the current monitoring network. On the contrary, if a pollution event cannot be
detected, the detection probability will be decreased to denote this non-detected scenario. So these
non-detected pollution events are not considered in our algorithm when calculating the mean pollution
detection time, which results in a smaller mean pollution detection time than in Telci’s paper.

Compared Table 5 to Figure 4, we find that there are 27 different monitoring deployment solutions
mapping to eight non-dominated particles. It is because some deployment solutions have the same
mean detection time and detection probability, and they map to the same non-dominated particle in
Figure 4.

We also develop an enumeration search method to get three optimized monitoring locations
within 12 potential locations based on the pollution detection time in Table 2. Figure 5 shows the
Pareto frontier of enumeration search results. We can find from Figures 4 and 5 that the enumeration
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search method gets more particles than the MODPSO. It is because the enumeration search method
lists all the combination solutions. However, both the MODPSO and the enumeration search method
get the same Pareto frontier with eight Pareto particles. Based on this observation we can confirm that
the MODPSO can get the full Pareto frontier and is suitable to be used for the optimized design of
water quality monitoring networks.
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Figure 5. Enumeration search results.

To understand the effect of dynamic hydrodynamic parameters of a river network to the optimized
design of monitoring networks, we set the pollution detection threshold to 1 mg/L and 2 mg/L,
respectively, and get optimized monitoring locations shown in Tables 6 and 7. Compared Table 5 to
Table 6 we can find that when we increase the pollution detection threshold from 0.01 mg/L to 1 mg/L,
the selected monitoring locations and pollution detection probabilities are almost the same but the
pollution detection time is slightly increased. When we increase the pollution detection threshold
to 2 mg/L, some pollution events cannot be detected (seeing pollution detection time for locations 6
and 12 in Table 4), and the selected monitoring locations and detection probabilities are also changed.
Based on this observation, we confirm that the pollution detection threshold can affect the optimized
design of water quality monitoring network. We should consider the actual requirement of pollution
detection threshold carefully before designing a water quality monitoring network.

Table 6. Pollution detection time and pollution detection probability in Pareto frontier with a detection
threshold of 1 mg/L.

Monitoring Locations Detection Time (min) Detection Probability

6, 9, 12 68.4 100%
2, 6, 9 42.6 91.7%
2, 7, 9 24.9 66.7%
2, 5, 9 21.7 58.3%
2, 8, 9 21.7 58.3%
2, 3, 9 18 50%
2, 9, 11 18 50%
1, 8, 9 12.8 41.7%
3, 5, 9 12.8 41.7%
3, 8, 9 12.8 41.7%
5, 8, 9 12.8 41.7%
7, 8, 9 12.8 41.7%
3, 9, 11 5 33.3%
5, 9, 11 5 33.3%
8, 9, 11 5 33.3%
1, 2, 3 0 25%
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Table 6. Cont.

Monitoring Locations Detection Time (min) Detection Probability

1, 3, 8 0 25%
1, 5, 10 0 25%
1, 5, 11 0 25%
1, 8, 11 0 25%
3, 5, 8 0 25%
3, 5, 10 0 25%
3, 8, 10 0 25%
3, 8, 11 0 25%
5, 8, 11 0 25%

5, 10, 11 0 25%
8, 10, 11 0 25%

Table 7. Pollution detection time and pollution detection probability in Pareto frontier with a detection
threshold of 2 mg/L.

Monitoring Locations Detection Time (min) Detection Probability

4, 7, 9 50.1 83.3%
4, 8, 9 49.6 75%
2, 4, 9 28.6 66.7%
2, 7, 9 28.6 66.7%
2, 5, 9 24.9 58.3%
2, 8, 9 24.9 58.3%
2, 9, 11 20.7 50%
1, 5, 9 14.8 41.7%
1, 8, 9 14.8 41.7%
3, 8, 9 14.8 41.7%
5, 8, 9 14.8 41.7%
7, 8, 9 14.8 41.7%
1, 9, 11 6 33.3%
3, 9, 11 6 33.3%
5, 9, 11 6 33.3%
8, 9, 11 6 33.3%
1, 8, 10 0 25%
1, 8, 11 0 25%

1, 10, 11 0 25%
3, 8, 10 0 25%
3, 8, 11 0 25%

3, 10, 11 0 25%
5, 8, 11 0 25%

5, 10, 11 0 25%
9, 10, 11 0 25%

4.2. Simulation with Three Objectives of Maximum Pollution Detection Probability, Minimum Pollution
Detection Time and Maximum Centrality

In this section, we verify the impact of the maximum centrality to the optimized design of
water quality monitoring networks. We still use the pollution detection time in Table 2 and consider
three objectives of maximum pollution detection probability, minimum pollution detection time and
maximum centrality simultaneously. For the simplicity of calculation, we let the catchment E, which
has the shortest length in Table 1 be the standard measurement unit of 1. We obtain a length matrix
V = [2 2 2 2 1 2 3 4 2 3 5] for all these catchments. Based on the length matrix V, Equations (16) and
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(17), we calculate the centrality of the hypothetical river network in Figure 2 and obtain a closeness
centrality vector for all the potential monitoring locations as Equation (22) shows.

Centrality = [
11

104
11
84

11
104

11
66

11
86

11
62

11
68

11
88

11
92

11
102

11
112

11
112

]

(22)

We can find from the centrality matrix that the closer to the center of the river network, the higher
centrality value the monitoring location has. For example, the monitoring location 6 in Figure 2 is
the center point of the graph. Its centrality value is 11/62, which is the highest value in the matrix.
However, the MODPSO uses minimum value to calculate the Pareto frontier. So we use a reciprocal of
the original centrality value for the optimization computing but convert again to the original value
when we obtain the final optimization results. Figure 6 and Table 8 show the Pareto frontier of
this simulation.
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Figure 6. Pareto frontier with three optimization objectives.
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Table 8. Pollution detection time, pollution detection probability and centrality in Pareto frontier.

Monitoring Locations Detection Time (min) Detection Probability Centrality

6, 9, 12 45.8 100% 0.0414
6, 7, 12 54.8 100% 0.0455
4, 6, 9 34.9 91.7% 0.0500
2, 6, 7 36.4 91.7% 0.0514
4, 6, 7 44.6 91.7% 0.0561
4, 7, 9 29.4 83.3% 0.0487
2, 4, 7 34.3 83.3% 0.0505
2, 7, 9 14.8 66.7% 0.0451
2, 4, 9 14.9 66.7% 0.0455
2, 5, 9 13 58.3% 0.0420
5, 7, 9 10.7 50% 0.0447
7, 8, 9 7.4 41.7% 0.0444
2, 4, 5 10.8 41.7% 0.0466
5, 9, 11 2.5 33.3% 0.0379
2, 3, 5 6.75 33.3% 0.0401
5, 8, 10 0 25% 0.0399

Subgraphs (a) and (b) in Figure 6 show that all the other main particles are under the surf of the
Pareto frontier particles. Subgraph (c) shows that particles with slightly higher centrality values have
larger pollution detection time. It is because if a particle’s centrality is higher, the monitoring locations
will locate in the middle of the graph resulting in a higher pollution detection time than those particles
uniformly distributing monitoring locations through the river network. From subgraph (d) we can find
that the objectives of minimum pollution detection time and maximum pollution detection probability
collide with each other.

4.3. Simulation with All Four Optimization Objectives

In this section, we consider all the four optimization objectives mentioned above. We assume
the reserved monitoring locations are 4 and 5 respectively and we still use the pollution detection
time in Table 2. The Pareto frontiers are shown in Figure 7 and optimization results are shown in
Tables 9 and 10 respectively.
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Figure 7. Pareto frontier with four optimization objectives.
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Table 9. Pollution detection time, pollution detection probability and centrality in Pareto frontier with
reserved monitoring location 4.

Monitoring Locations Detection Time (min) Detection Probability Centrality

4, 7, 12 46.1 100% 0.0447
4, 6, 12 62.3 100% 0.0458
4, 6, 9 34.9 91.7% 0.0500
4, 6, 7 44.6 91.7% 0.0561
4, 7, 9 29.4 83.3% 0.0487
2, 4, 7 34.3 83.3% 0.0505
2, 4, 9 14.9 66.7% 0.0455
2, 4, 8 13.7 50% 0.0462
2, 4, 5 10.8 41.7% 0.0466

Table 10. Pollution detection time,probability and centrality in Pareto frontier with reserved monitoring
location 5.

Monitoring Locations Detection Time (min) Detection Probability Centrality

5, 6, 12 70.9 100% 0.0423
5, 6, 9 44.4 91.7 0.0458
2, 5, 6 54.1 91.7% 0.0474
5, 6, 7 54.1 91.7% 0.0509
4, 5, 6 65.4 91.7% 0.0514
4, 5, 7 46.3 83.3% 0.0500
2, 5, 7 35 75% 0.0462
4, 5, 9 29.9 66.7% 0.0451
5, 7, 9 10.7 50% 0.0447
4, 5, 8 33.7 50% 0.0458
5, 8, 9 7.4 41.7% 0.0414
2, 4, 5 10.8 41.7% 0.0466
5, 9, 11 2.5 33.3% 0.0379
1, 2, 5 6.8 33.3% 0.0401
5, 8, 10 0 25% 0.0399

We can find that the Pareto frontier in Figure 7a is quite different from the Pareto frontier in
Figure 7b. When location 4 is reserved, we can obtain a 100% pollution detection probability with
monitoring locations of 4, 7 and 12. The pollution detection time is 46.1 min and the closeness centrality
is 0.0447 (Table 9). If we want a deployment solution with higher centrality, we can deploy monitoring
devices at locations 4, 6 and 12, which still has a 100% pollution detection probability while the
pollution time is increased to 62.3 min. If a slightly lower pollution detection probability is acceptable,
then monitoring locations 4, 6 and 9 are the best locations with a much higher centrality of 0.05 and
much lower pollution detection time of 34.9 min. When the reserved location is 5, we can also obtain a
100% pollution detection probability. However, the monitoring locations are changed to 5, 6 and 12
with a higher pollution detection time of 70.9 min and a lower centrality of 0.0423.

Compared Table 5 to Tables 9 and 10 we find that with a reserved monitoring location, though we
can get a 100% pollution detection probability, the pollution detection time is increased respectively.
It is because, without reserved monitoring locations, we can obtain a globally optimized solution with
higher pollution detection probability and lower pollution detection time. However, we argue that the
reservation of monitoring locations is essential for the design of water quality monitoring networks.
Due to special management requirements, some particular monitoring locations should be included in
the monitoring network in advance whether they are globally optimized monitoring locations or not.
So, we should optimize the water quality monitoring network based on reserved monitoring locations.



Water 2019, 11, 713 20 of 25

4.4. Computational Time Analysis with More Potential Monitoring Locations

To confirm the feasibility of using the proposed algorithm to design a real water quality monitoring
network, we expand the monitoring network and insert a potential monitoring location every 152.4 m
(500 feet) along the river network. Figure 8 shows all the potential monitoring locations numbered
from 1 to 57. The red dots along the river network are extra potential monitoring locations. We set
the same simulation condition in Section 4.1 and run the simulation for ten times in Matlab2014a
with a hardware platform of i5 CPU, 4G memory and 256G SSD. Results show that when we only
consider two optimization objectives of minimum pollution detection time and maximum pollution
detection probability with a pollution detection threshold of 0.01 mg/L, the computational time for
each simulation varies from 5.18 s to 5.46 s and the mean computational time is 5.34 s. It is because the
MODPSO is a heuristic algorithm and the dominated particles produced during each simulation are
different. So the computational time for each simulation is also slightly different. That is why we use
the mean computational time to evaluate the computational time for each simulation. Table 11 shows
that when the pollution detection threshold is increased to 1 mg/L and 2 mg/L respectively, the mean
computational time is decreased to 5.29 and 5.11 s separately. It is because a higher pollution detection
threshold means a lower detection probability when a pollution event occurs, which results in less
non-dominated particles and saving the computational time.

However, from a mathematical point of view, we can know there are only 220 combinations
when we select three optimized locations out of 12 potential monitoring locations. The number of
combinations is significantly increased to 29,260 when we select three optimized locations out of
57 potential monitoring locations, which is 133 times that of 220 combinations. Compared to their
computational time in Table 11 we can know that the computational time for 57 potential monitoring
locations is only about three times that of 12 potential monitoring locations. Based on this observation
we can know that our algorithm is flexible to be applied for a real monitoring network design, especially
when the number of potential monitoring locations is too large to be computed by the enumeration
search method.

Figure 8. Hypothetical river network with more potential monitoring locations.
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Table 11. Computational time for different simulations.

Optimization Objectives
Number of Number of Pollution

Simulation Time (s)Potential Deployment Detection
Locations Locations Threshold (mg/L)

Maximum detection probability
Minimum detection time

12 3 0.01 5.34
12 3 1 5.29
12 3 2 5.11

Maximum detection probability
Minimum detection time

57 3 0.01 14.75
57 3 1 14.13
57 3 2 8.03

5. Conclusions and Future Work

We presented an improved MODPSO algorithm for the optimized design of water quality
monitoring networks with four optimization objectives of minimum pollution detection time,
maximum pollution detection probability, maximum closeness centrality and reserved monitoring
locations. We first considered two optimization objectives and got optimized monitoring locations.
Results were verified by an enumeration search method to confirm the correctness of our algorithm.
A binary matrix was used to denote reserved monitoring locations, guide the particle initialization and
make sure that the reserved location’s velocities and positions in particles will not be changed during
computing iterations. Simulation results in Section 4.1 showed that our algorithm could obtain a better
Pareto frontier than GA. It was also verified that reserved monitoring locations had a significant effect
on the optimized design of water quality monitoring networks. The computational performance and
flexibility of our algorithm for a complex water quality monitoring network were also confirmed.

It should be noted that there were several assumptions such as the same pollutant concentration
for each pollution event and the constant channel width for each segment. However, the hypothetical
river network was only used to obtain pollution detection time at each potential monitoring location.
We further used the set of pollution detection time to verify the correctness of our algorithm. When we
change the hydraulic parameters, we will obtain a different set of pollution detection time as well as a
different optimized monitoring network. So, the assumptions will not affect the correctness verification
of our algorithm. However, when we apply our algorithm to design a real water quality monitoring
network, professional hydraulic and pollution simulation tools should be used to obtain more accurate
pollution detection time as well as a better optimized monitoring network.

Unlike other global optimization algorithms in the literature, our approach is a constrained
optimization algorithm. It seeks the optimized monitoring solutions based on reserved monitoring
locations, and the final results may not be global optimization results but the best results when the
reserved locations are included in the monitoring network. When the binary matrix is empty (no
reserved monitoring location), our approach becomes a global optimization algorithm and can obtain
global optimization results. So it can not only be used to design a new monitoring network with
reserved locations or add additional monitoring locations into an existing monitoring network but also
can be applied to design a global optimization monitoring network (let the binary matrix M be empty).

In the future, this novel approach will be applied to a real water quality monitoring network to
optimize the network design. Further research is planned to explore the feasibility of redesigning
the velocity and position calculation procedure to prevent a particle with the same positions, which
can further improve computational performance. Another future work is to regard define reserved
monitoring locations as optimization constraints for optimization algorithms to verify if these reserved
monitoring locations can be optimized as a resulting optimal design.
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Appendix A

Algorithm A1 Pseudocode of MOPSO

procedure MOPSO
Step 1. Initialization

(1) Initialize all parameters (e.g., size of population and repository, maximum number of

iterations, lower and upper bounds of search space)
(2) For each particle do

(a) Initialize the particle’s position randomly
(b) Initialize pbest with its initial position
(c) Initialize particle’s velocity Vi = 0

(3) Calculate non-domination particles using cost function
(4) Initialize gbest with a particle selected from non-domination particles using a roulette wheel

selection.
Step 2. Repeat until the termination criteria is satisfied or to the maximum number of iterations

(5) For each particle do
(a) Calculate particle’s new velocity using Equation (7)
(b) Calculate particle’s new position using Equation (8)
(c) Update particle’s pbest
(d) Calculate non-domination particles using cost function
(e) gbest = a particle selected from non-domination particles using a roulette wheel selection.

Step 3. Output non-domination particles.
end procedure

Algorithm A2 Pseudocode of MODPSO initialization

procedure INITIALIZATION(Integer k)
for i=1 to k do

particle(i).position = [ ];
particle(i).velocity = [ ];
for j=1 to n do

particle(i).position(j)⇐ randomi(1, m);
particle(i).velocity(j)⇐ 0;

end for
end for

end procedure

Algorithm A3 Pseudocode of velocity and position updating

procedure VEL_POS_UPDATING(int k)
MaxVel = round((m− 1)/10);
for i = 1 to k do

for j = 1 to n do
particle(i).velocity(j) = round(w ∗ particle(i).velocity(j)
+c1 ∗ r1 ∗ (particle(i).pbest.position(j)− particle(i).position(j))
+c2 ∗ r2 ∗ (gbest.position(j)− particle(i).position(j)));
particle(i).velocity(j) = min(max(particle(i).velocity(j),−MaxVel),+MaxVel);
particle(i).position(j) = particle(i).position(j) + particle(i).velocity(j);
if particle(i).position(j) < 1 or particle(i).position(j) > m then

particle(i).velocity(j). f lag = −particle(i).velocity(j). f lag;
particle(i).position(j) = min(max(particle(i).position(j), 1), m);

end if
end for

end for
end procedure
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Algorithm A4 Pseudocode of MODPSO initialization with reserved locations

procedure INITWITHRESERVEDLOCATIONS(int k)
R_locations[ ]⇐ f ind(M == 1);
R = R_location.length;
for i = 1 to k do

particle(i).position = [ ];
particle(i).velocity = [ ];
for t = 1 to R do

particle(i).position(t)⇐ R_locations(t);
end for
for j = R + 1 to n do

particle(i).position(j)⇐ randomi(1, m);
particle(i).velocity(j)⇐ 0;

end for
end for

end procedure

Algorithm A5 Pseudocode of velocity and position updating with reserved locations

procedure NEW_VEL_POS_UPDATING(int k)
R_locations[ ]⇐ f ind(M == 1);
R = R_location.length;
MaxVel = round((m− 1)/10);
for i = 1 to k do

for j = R to n do
particle(i).velocity(j) = round(w ∗ particle(i).velocity(j)
+c1 ∗ r1 ∗ (particle(i).pbest.position(j)− particle(i).position(j))
+c2 ∗ r2 ∗ (gbest.position(j)− particle(i).position(j)));
particle(i).velocity(j) = min(max(particle(i).velocity(j),−MaxVel),+MaxVel);
particle(i).position(j) = particle(i).position(j) + particle(i).velocity(j);
if particle(i).position(j) < 1 or particle(i).position(j) > m then

particle(i).velocity(j). f lag = −particle(i).velocity(j). f lag;
particle(i).position(j) = min(max(particle(i).position(j), 1), m);

end if
end for

end for
end procedure
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Algorithm A6 Pseudocode of cost function

procedure COST(Particle p)
Array loc← devide particle p into n integers;
meanTime← 0;
count← 0;
centralvalue← 0;
probability← 0;
for each row in Table2 do

detectTime← In f ;
for each l in loc do

detectTime← min(detectTime, row[l]);
end for
if detectTime 6= In f then

meanTime← meanTime + detectTime;
count← count + 1;

end if
end for
for each l in loc do

centralvalue← centravalue + Centrality[l];
end for
centralityvalue← 1.0/centralityvalue;
meanTime← meanTime/count;
probability← row.length/count;
return [meanTime probability centralvalue];

end procedure
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