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Abstract: Most notable emerging water desalination technologies and related publications,
as examined by the authors, investigate opportunities to increase energy efficiency of the process.
In this paper, the authors reason that improving energy efficiency is only one route to produce
more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used
to desalinate water plays an equally important role in its economic viability and overall emission
reduction. This paper provides a critical review of desalination strategies with emphasis on means
of using low-grade energy rather than solely focusing on reaching the thermodynamic energy
limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large
reached their engineering potential. They are now mostly limited by the fundamental process
design rather than process optimization, which has very limited room for improvement without
foundational change to the process itself. The conventional approach toward more energy efficient
water desalination is to shift from thermal technologies to reverse osmosis (RO). However, RO suffers
from three fundamental issues: (1) it is very sensitive to high-salinity water, (2) it is not suitable
for zero liquid discharge and is therefore environmentally challenging, and (3) it is not compatible
with low-grade energy. From extensive research and review of existing commercial and lab-scale
technologies, the authors propose that a fundamental shift is needed to make water desalination
more affordable and economical. Future directions may include novel ideas such as taking advantage
of energy localization, surficial/interfacial evaporation, and capillary action. Here, some emerging
technologies are discussed along with the viability of incorporating low-grade energy and its economic
consequences. Finally, a new process is discussed and characterized for water desalination driven
by capillary action. The latter has great significance for using low-grade energy and its substantial
potential to generate salinity/blue energy.

Keywords: capillary-driven desalination; energy grade; viable desalination; emerging technologies

1. Introduction

Energy and freshwater production are heavily interconnected, termed the “water-energy nexus” [1–7].
Majority of the water on earth is in the oceans with high salinity and otherwise captured in the icecaps
and glaciers [8], while most of human’s energy usage (~90%) originates from fossil fuels [9]. Water
desalination is the manifestation of the water-energy nexus with all the strategic considerations
regarding to the availability of the two (Figure 1) [4,10].
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Figure 1. Current availability of water and energy resources [2,4,9].

There are two groups of desalination currently in use: physical processes, such as reverse osmosis
(RO), and chemical processes, such as the newer zerovalent iron (ZVI) technology, discovered in 2010
and just starting to be commercialized [11–17]. Throughout this study, desalination has been mainly
reviewed as a purely physical process: the physical separation of salt and water [18–28]. In this sense,
water desalination is fundamentally a thermodynamic process with a minimum required work that is
intrinsic thereto. This is known as the minimum thermodynamic energy of separation (MTES); the
lowest possible energy that is required to separate the solute from water [29]. Attempts to minimize
energy consumption toward MTES are only beneficial if they are also economically viable [30].

Most researches are mainly focused on the energy and yield efficiency of desalination techniques,
with inadequate emphasis on industrial needs [31–33]. In the industry, all desalination systems are
designed to optimize the delivered full cycle cost to the consumer as opposed to energy consumption [34].
Despite intensive research in this area, the energy consumption of water, desalination technologies have
not substantially changed within the past decade [35]. The energy efficiency of most current desalination
technologies is controlled by the thermodynamics rather than the rate of the operation [36,37].
For instance, carbon nanotube membranes, with high permeability, increase the flux rate rather than
the energy efficiency [38,39]. Also, energy efficiency often serves in favor of reducing the final cost, but
in some cases this synergy is violated [35]. In the latter scenario, energy makes a major contribution
to the operational expenditure (OpEx) but not necessarily to the capital expenditure (CapEx) [35].
For instance, some RO strategies offer more energy efficiency at the cost of adding extra high-pressure
pumps, which leads to a higher levelized cost of water (LCOW) [35].

RO is considered to be the gold standard desalination technique [40–49]. However, recent
attempts have not been successful to reduce the gap between the current RO technologies and MTES
significantly [35]. Moreover, only high-grade energy is applicable in RO desalination and additional
energy requirements for pre/post-treatments are disregarded in most energy analyses [31–33,50,51].
On the other hand, thermal desalination techniques are more agnostic to the salinity level of the
intake water, and high-grade energy can be replaced by low-grade energy for the most part [52–55].
However, low-grade energy (i.e., low- to medium-temperature heat, up to 400 ◦C) is harder to control,
dissipates faster, and has lower exergy; entropy generation is more significant in thermal desalination
plants [56–58]. One way to compensate for this energy inefficiency in thermal desalination is maximizing
the latent heat recovery within the design or coupling the thermal plant with other thermal or power
cycles, where heat is generated as a byproduct (e.g., power stations and supercomputer units) [59–62].
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In either case, the rejected thermal energy from thermal generators, or so-called waste/process heat,
is used to preheat the intake water or bring it to the saturation point [60–62]. The average byproduct
waste heat (33–56 ◦C) is far below the saturation point of water in common thermal desalination plants
(70–100 ◦C) [63]. This mismatch becomes less significant by lowering the saturation point of water
through novel designs and/or localized evaporation [6,20,64–66].

Unlike boiling, evaporation pertains to liquid surface, hence, energy can be concentrated on the
surface molecules to make evaporation more efficient [64]. However, bulk and surface molecules
are interconnected, and dissipation delocalizes the surficial molecular energy [64]. Inspired by trees,
capillary-driven water ascension (CDWA) [67] has been used in efficient energy generation, energy
harvesting, and capillary-driven desalination (CDD) [63,68,69]. In this technique, solar energy is
directly concentrated on the surficial molecules to optimize evaporation [64].

A wise choice of making an advantageous desalination plant also depends on the total dissolved
solids (TDS) of the input and output water (Figure 2) [70–75]. Desalination technologies yield freshwater
with much lower and brine with much higher salinity compared to the input [76,77]. However, with the
increase of environmental concerns, the zero liquid discharge (ZLD) approach has drawn substantial
interest among academics, industrial communities, and governments [78,79].
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Figure 2. Inputs and outputs of a typical desalination process. TDS, total dissolved salts; LD, liquid
discharge; ZLD, zero liquid discharge.

This review attempts to emphasize more on the fundamental strategies, which can fundamentally
and yet practically improve desalination processes (Table 1). Few emerging technologies and strategies
are discussed, which mainly increase the compatibility with low-grade energy via some fundamental
strategies. The economic impact of those strategies is highlighted in two case studies. Finally, the
newer CDD is introduced as a highly promising alternative to fundamentally improve desalination
process, as it not only enhances the potential of using low-grade energy, but also can be employed to
generate salinity energy.

Table 1. Fundamental strategies and their resulting impact in water desalination.

Fundamental Strategies Fundamental Impact

Surficial energy localization
• Increasing the vaporization efficiency
• Downgrading the input energy

Using degradable draw solution
• Transformation of reverse to forward osmosis
• Downgrading the input energy

Depressurized heating
• Downgrading the input energy
• Increase scaling

Pressurized heating
• Upgrading the input energy
• Decrease scaling

Lowering saturation temperature
• Downgrading the input energy
• Lowering the energy need
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Table 1. Cont.

Fundamental Strategies Fundamental Impact

Oversaturation
• Salt crystallization; beneficial only if heating and

vaporization chambers are separated

Capillary action
• Separating bulk and surface molecules
• Electric potential generation

Surface evaporation
• Minimization of energy loss in the bulk
• Downgrading the input energy

2. Thermodynamics of Desalination

Dissolution of most salts in water is enthalpically negative (∆H < 0) and entropically positive
(∆S > 0) and thus a spontaneous process (∆G < 0) [80–84].

∆G = ∆H − T∆S (1)

Desalination acts exactly in the opposite direction and the formerly released energy is the required
MTES to drive the process [29]. In a reversible process, the output work is maximum and the input
energy is minimum, and the input becomes the output, when the process is reversed [85–91]. Thus,
the MTES is equivalent to the maximum energy produced by a mixing process before reaching
equilibrium [85,88]. Following Raoult’s Law for desalination of an ideal solution [92–96], the MTES
(kJ/kg product) can be obtained for an aqueous solution with a steady flow from,

MTES =
RT
Mp

[
xsxw,p − xwxs,p

xwxs,b − xsxw,b

(
xs,bln

xs,b

xs
+ xw,bln

xw,b

xw

)
+ xs,pln

xs,p

xs
+ xw,pln

xw,p

xw

]
(2)

In Equation (2), R is the ideal gas constant, T is the temperature of the feed water intake, Mp is the
molar mass of the product water, and xs, xw, xs,p, xw,p, xs,b, xw,b are the mole fractions of the salt and
water in the feed water, product water, and brine, respectively [97]. This minimum energy depends
only on the concentration of solutes regardless of any specific technology, mechanism, or number
of stages [98,99]. Simple thermodynamic calculations reveal that the MTES is ideally 0.79 kWh/m3

for full and 1.09 kWh/m3 for 50% recovery of freshwater from typical seawater [100–105]. Using the
second law efficiency, this value jumps to 1.9 kWh/m3 [51]. In reality, the most efficient state-of-the-art
technologies run between 2.5 to 5 kWh/m3 [106]. The main goal of desalination is to minimize the
discrepancy between the current technologies and the second law efficiency (1.9 kWh/m3) [107–109].
This discrepancy is attributed to entropy generation in real systems that is governed by the irreversibility
of the process [58,110–114]. In contrast to energy, exergy is always destroyed within an irreversible
process, generating entropy [115–118]. The aforementioned MTES values are associated with a full
desalination of seawater with 35,000 ppm concentration of solutes [2,29,119–124].

Heat and work are considered low-grade (disordered) and high-grade (ordered) forms of energy,
respectively [125–128]. The quality difference can be assigned to the two forms of energy, in which
transforming one form to the other is more efficient than its opposite direction [129–134]. For instance,
work can be efficiently converted to heat, e.g., electric heater with near-100% efficiency, whereas maybe
only half of the input heat (50%) turns to work, e.g., heat engine [135–137].

W = Q
(
1−

Tc

Th

)
(3)

Based on Equation (3), heat (Q) can be transformed to work (W) more efficiently, when the
temperature difference between the hot (Th) and cold (Tc) sources is higher. Also, production and
storage of thermal energy is easier and cheaper, on the other hand electricity is often more environment
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friendly, i.e., less CO2 production [138–142]. Entropy generation (Sg) in a thermal-based process can be
evaluated from Equation (4) [58,110].

Sg = Q
(

1
Tc
−

1
Th

)
(4)

Entropy generation decreases as the process approaches the isothermal condition, i.e., Tc → Th .

Sg =
A
ρT

(∆p− ∆π)2 (5)

In a membrane-based process however, entropy generation, per unit area, per kg fresh water,
(Equation (5)) decreases as the process approaches the isobaric condition, i.e., hydraulic (p) and osmotic
(π) pressures have similar magnitude at the end and beginning of the device, ∆p→ ∆π [110,121,143–147].

3. Conventional Desalination Technologies

To treat large volumes of highly saline water, in locations where energy costs low or when a waste
heat source is available, thermal desalination is still the most practical technique [148–151]. Thermal
desalination commonly involve processes with large thermodynamic irreversibility [31,152,153]. High
energy consumption and CO2 production are two major downsides of this approach [34,142]. In a
thermal desalination process, water is vaporized and subsequently condensed in a separate vessel after
being circulated to release the extra thermal energy including the latent heat. Evaporation consumed
considerable energy but is in principle a reversible process, therefore, entropically favorable. Freeze
desalination crystallizes water to form ice and separates salts from the ice; it is often both energetically
and entropically unfavorable and thus less cost-effective with large irreversibilities [70,154–157].
However, in low temperature regions, freezing desalination eliminates the need for collecting and
storing heat, where lack thereof is desirable [157–160]. High-temperature desalination suffers from
two major risks: corrosion and scaling [161–164]. Over the decades, numerous thermal desalination
techniques have been developed to address these risks, as well as to increase the efficiency of the
process [103,165–170]. Those include multi-stage flash (MSF) distillation, multi-effect distillation
(MED), vapor compression (VC), and humidification–dehumidification (HDH) [171–184]. The main
difference between MED and MSF is the heat transfer and evaporation method; in the MED, seawater
comes in direct contact with the heat exchanger, whereas in the MSF, energy transfer occurs via heat
convection in seawater [167,185–190]. In both MED and MSF, the heat transfer between water and
vapor occurs in multiple steps in an attempt to recover the latent heat (Figure 3a,b) [191–193]. This is
done by compressing water vapor in a vapor compression (VC) device and passing hot air through
liquid water and ultimate separation of the two in HDH [111,177,184,194–199]. In an efficient VC
design, increasing the pressure of the vapor increases the condensation temperature, therefore, the
vapor serves as the heating source for feed water; no need for an extra heat exchanger [177,199].
This heat exchange occurs directly between air and vapor in HDH desalination [194,198].

In membrane-based desalination, water is separated from its solute by membrane, a selective
barrier which allows the separation of solvent and solute using a combination of diffusion and
sieving [200–208]. Diffusion of chemicals from a lower to a higher concentration (chemical potential)
causes osmotic pressure [209]. This diffusion can be reversed if a pressure higher than osmotic pressure
is exerted to overcome the chemical potential flow [38,50,210–212]. In this sense, membrane designs
which encourage sieving over diffusion are less energy intensive [202,203]. In other words, selectivity
of new membrane designs should be of higher importance compared to their permeability.
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Figure 3. Typical scheme of thermal-based desalination modules; (a) multi-stage flash (MSF)
distillation, (b) multi-effect distillation (MED), (c) vapor compression (VC), and (d) humidification–
dehumidification (HDH).

RO is a single-phase desalination technique (Figure 4a), which almost entirely requires high-grade
energy [213–215]. RO is hard to go off-grid; significant (often economically unreasonable) number
of solar panels is required, which makes it economically unviable [216–218]. Moreover, RO is better
designed for continuous operation, while renewable energies fluctuate over time [219,220]. The lower
recovery limit of RO is governed by the osmotic pressure and the upper limit by the chemical
composition (scaling) and energy consumption [213,215,221]. Most researches have been conducted
in designing new membranes with desired permeability [219,220,222]. However, a breakthrough
to resolve the aforementioned issues cannot only be achieved within membrane developments [35].
Commonly, about one third of the cost of a RO process is energy consumption, 40% CapEx, 25% OpEx
such as labor, maintenance, consumables, membrane replacement, and so on. Major engineering
and construction cost include: 22% high-pressure pump and high alloy steel, 21% material, 18%
civil engineering, 17% other services, 8% pretreatment, 7% intake and outfall, and 7% membrane
and pressure vessels [152,223–227]. Accordingly, reducing the number of high-pressure pumps and
the amount of high alloy steel cut the final cost more significantly compared to further membrane
improvements. In RO, 40% of the flow energy stays in the brine, which can be recovered by pressure
exchangers with very high efficiency [228]. Most of the energy loss occurs as the water passes
through the membrane, i.e., large pressure drop [215,229]. Another issue regarding the energy loss
or entropy generation is that the applied pressure has to increase within the device to overcome
the osmotic pressure [230–232]. When the upper limit is set to ensure the water flow, pressure thus
the entropy generation will be higher in most of the device than what it ought to be (hydraulic
pressure >> osmotic pressure) [121,145,233,234]. As already mentioned, adding more pumps with
different pressures throughout the device is one solution for this issue, though usually economically
unfavorable [35]. Electrodialysis (ED) is another commercialized membrane-based desalination
technique (Figure 4b) [235–241]. Electrodialysis moves salts through charged membranes and traps
them in alternating channels, using electric potential [242–245]. This technology is less energy
intensive and more compatible with renewables, while less applicable for large scale and high salinity
desalination [50,76,246,247].
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Figure 4. Typical scheme of membrane-based desalination modules; (a) reverse osmosis (RO),
(b) electrodialysis (ED).

In the past decade, the dominance of RO over other desalination techniques has been due to its
high scalability and relatively low energy requirement, neglecting the extra energy required for any
additional treatment and the quality of this energy (Figure 5) [248–250]. In the following section, the
merits of this dominance are investigated.
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4. Emerging Technologies

There are many concerns related to desalination technologies, namely, energy consumption
and quality, environmental and technological compatibility, and more importantly economic
considerations [251–258]. To address energy concerns, significant interest surrounds using waste
heat, which in turn suffers from three major risks: (1) it requires capital investments for recuperators,
(2) design modifications to account for heat load or temperature differences, and (3) low exergetic
efficiency [31,32,35,259–263]. The first two can be managed by applying strategies in which hot and
cold sources come into direct contact [66,264–268]. The third issue is more fundamental and can only
be addressed if the desalination technique itself or some outside operational conditions provide a way
to increase the potential of using waste heat [58,184,269]. Another step towards energy efficiency is to
modify the plant to use ubiquitous renewable energies [65,237,238]. In addition to the above challenges,
renewables are very dilute and intermittent [217,262]. To resolve the latter two, renewables should
be harvested and stored in a most compatible and economical way [57,197,249,261]. In this sense,
generating and storing low-grade energy from renewables is more compatible with thermal-based
desalination [52,54,77,269]. Batch and semi-batch plant designs are other strategies to cope with
intermittency of the renewables, both more compatible with thermal desalination [29].

Brine disposal and greenhouse gas production are two main environmental concerns [142,265].
Research on zero liquid discharge (ZLD) aims at eliminating brine disposal and can be better utilized
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in thermal desalination (Figure 6) [78,255]. In term of greenhouse gas production, membrane-based
desalination is a cleaner technology in general, however, a well-designed combination of thermal
desalination and a waste heat generating industry can be even cleaner [63,269]. Increasing compatibility
with renewables is another step toward cleaner desalination [55,77,124,270–273]. The followings are a
few innovative thermal-based and hybrid strategies, in most of which the ultimate goal is reconciliation
between desalination and low-grade energy.

Figure 6 represents a distillation strategy that addresses the problems associated with traditional
distillation: (1) scaling, (2) heat loss. Scaling reduces thermal conductivity and thus increases the
amount of energy required to heat seawater up to saturation point [55,274,275]. It also results in serious
maintenance issues that are costly and time consuming [276–279]. One strategy to address the issue
of salt scaling is to utilize a pressurized chamber to prevent boiling and slow the formation of solid
deposits scaling. Under pressure, seawater can be heated to very high temperatures. Maintaining
pressure at 7 × 105 psi allows seawater to be heated to 300 ◦C without boiling and thus reducing scaling.
This is done by separating the heating of the water from vaporization of the water. Once heated to
300 ◦C, the seawater is released through a nozzle into a flash chamber, where a portion of water turns
into steam. The sudden decrease of pressure causes the hot seawater to separate into steam brine and
salt. The brine and salt crystals fall to bottom of the chamber, where the salt crystals are separated
from the brine and removed. This manages the scaling problem but does not solve the issue of the
loss of thermal energy. To address the issue of thermal efficiency, a vapor compressor can be used to
compress and heat the steam, so it condenses at higher temperature. The compressed hot steam enters
a heat exchanger and provides majority of the thermal energy required to heat the seawater in the
heating chamber. After exchanging heat with the seawater, the vapor condenses to warm distilled
water. The second heat exchanger is added to heat the seawater and cool the distilled water [280].
Such strategies are best for places such as California, where environmental regulations and concerns
about marine ecosystems withstand large-scale desalination as a solution to its water crisis [281].Water 2019, 11, x FOR PEER REVIEW  9 of 30 
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Using chemicals in water purification is of a great importance, especially for feed water that
contains microorganisms and organic pollutants [282–288]. Variety of chemicals are used for different
purposes, such as antimicrobial, degradative, coagulative, (photo-)catalysis, azeotrope breaking, and
hydrophobic/hydrophilic agents [65,160,289–303]. Figure 7 however, represents a method to use
chemicals in water desalination as a draw solution. Any high contaminated water sample can be used
as a draw solution for a less contaminated sample (e.g., seawater for brackish water) in a forward
osmosis (FO) process. FO can be used as a pretreatment to decrease the salinity of water without
direct energy input. In the hybrid design shown in Figure 7a, ammonia and carbon dioxide gases are
dissolved in water to create the draw solution. The advantage of using such a draw solution is that
both gases can be recovered with the aid of low-grade heat at the final step (Figure 7b, phase 2) to
obtain freshwater [35,304,305].
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Figure 7. Hybridization of thermal- and membrane-based desalination; (a) whole plant,
(b) draw solution.

Diffusion-driven desalination (DDD) process is a unique technology, which provides the means
for low-temperature, low-pressure desalination and operates off of waste heat (Klausner et al. 2004,
2006, Khan et al. 2010; Alnaimat and Klausner 2012; Alnaimat et al. 2013). A schematic diagram of the
DDD process and system is shown in Figure 8. The process includes three fluid circulation systems:
freshwater, air/vapor, and saline water. Low pressure condensing steam heats the saline intake water
in the saline water system. Afterwards, the heated feed water is transferred to the top of the diffusion
tower. The feed water partially evaporates and diffuses into air. In the diffusion tower, the evaporation
depends on the bulk air and concentration gradient at the vapor/ liquid interface. Consequently, the
water is collected in a packed bed in the diffusion tower and a thin film of saline water forms over the
packing material. The upward flowing air comes into contact with the water film through the diffusion
tower and partially evaporates it, and the unevaporated water will be discharged. Low humidity cold
air enters the bottom of the diffusion tower in the air/vapor system, being humidified and heated by
the saline water as it moves upward through the tower. After leaving the diffusion tower, saturated
air/vapor mixture comes into a direct contact with condenser, where it is dehumidified and cooled
by cold water. The discharged water from the condenser will be cooled in a heat exchanger by the
entering saline water that in the freshwater system.
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5. Economic Analysis on Two Case Studies

In this section, economic analyses are represented for two case studies based on: (1) in situ
data from Marshal Islands, [307–312] (2) thermodynamic analysis for a novel desalination idea,
designed by the authors. In economic terms, the contribution of each component (energy, CapEx,
and OpEx) should be considered (in some analyses, energy and OpEx are in the same category).
A cost breakdown for each component is shown in Figure 9, [152,224,313,314] as well as the energy
quality spectrum from the lowest grade (low temperature heat) to the highest (electromagnetic) [315].
In membrane-based technologies, CapEx usually is the main contributor [316–318]. In thermal-based
technologies, especially the traditional ones, cost of energy is the dominant component [250,319–322].
Using Equations (6)–(8), Table 2, and considering available waste heat, typical LCOW is calculated
for MED and RO technologies. Table 2 shows that without using waste heat MED is ~2.5 times more
cost-intensive than RO. However, if MED is coupled with a source of waste heat, this ratio turns to
MED’s benefit, while energy consumption never drops and only the quality of energy changes.
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Table 2. Input variables for the LCOW evaluation of MED and RO techniques.

MED RO

Electricity demand (kWh/m3) 1.50 4.3
Electricity cost (USD/kWh) 0.2–0.5 0.2–0.5

Heat demand (kWh/m3) 52.6 N/A
Fuel price (USD/lit) 1.0–2.0 N/A

CapEx (USD/m3/day) 1700 2320
OpEx (except electricity, USD/m3) 0.3 0.3

Lifetime (years) 25 25
LCOW (USD/m3) 4.5–8 1.7–3

LCOWWH (USD/m3) 0.98–1.45 N/A

In Equations (8)–(10), I0 is the investment in USD, At is the annual total costs in USD/annum, Mel
is electricity output in kWh per year, i is the interest rate, n is the economic lifetime in years, and t is
year of operation (1, 2, . . . , n) [312].

LCOE =
I0 +

∑n
t=1

At
(1+i)t∑n

t=1
Mel

(1+i)t

(6)

LCOW =
I0 +

∑n
t=1

At
(1+i)t∑n

t=1
Mw

(1+i)t

(7)

At = OpEx + LCOE (8)

Figure 10 represents a novel desalination design to treat high salinity water in locations where
water carries an initial pressure, such as fracking water [323–325]. This pressure can be used to run the
water through different filters against gravity and push it all the way up to the top of distillation tower.
Thereafter, by opening the upper faucets and blocking the adjustable sieving filter, the disposal pond
is filled up to a certain level and a strong vacuum is made at the top of the tower without using any
extra energy. This vacuum serves two purposes: (1) azeotrope breaking, (2) lowering the saturation
point of water allowing the use of low-grade energy. At this point, volatile gases (if there is any) can
be separated by increasing the temperature just several degrees Celsius. By setting up the maximum
temperature at the saturation point of water (40–50 ◦C), nonvolatile substances will be left behind.
Altering the temperature, volatile gases and water vapor can be separated using the lower pumps.
At this stage, most salts have been already separated by the filters, and the brine collector trap the
leftover salts. These traps can be cleaned when needed, leaving the re-vacuum operation for the upper
pump. Whenever water level falls below a certain point the lower faucets will automatically open
and fill up the pond again. The second phase is for further purification (if needed) takes advantage of
interfacial evaporation on the surface of membrane. There is a cold and warm water stream on the
top and bottom of the membrane, respectively, to trigger the interfacial evaporation. This interfacial
evaporation is based on the thermal difference of the water streams on two sides of the membrane at
each point, rather than the bulk temperature. Making the disposal pond right around the drilling well
minimizes the gas leakage and pressure drop that is needed for the water elevation. Eventually the
brine, including salts and nonvolatile substances, is collected in the pond and the brine tank.
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salinity water in medium scale.

The calculated values for the LCOW demonstrate the economic flexibility that is achieved by
coupling this process with low-grade/waste energy (Table 3). In this estimation, only the first phase
(distillation tower) is considered and the benefits of azeotrope breaking is neglected.

Table 3. Operational parameters for the proposed design in comparison with conventional distillation.

Water Back
Pressure Tower Height Saturation

Temperature
Saturation
Pressure LCOE LCOW

~2 atm 33 ft 40–50 ◦C 0.12 atm ~60% 50–90%

6. Capillary-Driven Desalination

Capillary effect can be used to avoid most of energy dissipation by separating the bulk and
surface molecules [64,68]. This capillary action is generated by using microchannels with low
thermal conductivity (insulating) and high hydrophilicity, which optimizes mass transfer and
energy dissipation [63,64]. At each step, surficial water molecules are transferred through capillary
microchannels to an absorptive and hydrophilic evaporation plate, where a low-grade energy source,
such as sunlight or waste heat, provides sufficient energy for the phase change [64,68,326–329]. This idea
was initially introduced by Ghasemi et al. to generate solar steam by heat localization (Figure 11) [64].
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Figure 11. (a) A schematic structure and temperature distribution of a capillary-driven water ascension
(CDWA) system. (b) The double layer structure consisting of capillary channels and evaporation plate,
both being hydrophilic to drive the capillary ascending of water to the surface. (c) Enhanced steam
generation under the solar illumination [64].

Traditionally, bulk water is uniformly heated up to a high temperature for vapor generation [64,68].
However, evaporation is a surface process, in which the high-energy salt water molecules at the surface
are easily transported into the vapor phase. The conventional bulk-heating approach, therefore, leads to
large amount of heat loss to the unevaporated part of water [64,68]. Bulk heating introduces a large lag
and response time because of its large thermal inertia [63,64,69], but surface evaporation has minimal
thermal inertia and responds very quickly to the change in the energy input, and allows for tighter
process control for water quality and reducing energy consumption [64,68,330]. However, developing
materials for long-term solar desalination through heat localization remains an open challenge due
to fouling of the structure after a short period of time [64,68,269]. A porous polymer skeleton with
embedded graphite flakes and carbon fibers has shown anti-fouling characteristics in the capillary
micro-channels [68]. This cost-effective and durable material with easy fabrication procedure provides a
path toward large-scale efficient solar desalination. Also, low-grade heat capillary-driven desalination
is an efficient and environmentally friendly technology [64,68]. It has been demonstrated that, this
strategy can not only be used in desalination and energy harvesting, but also in energy generation
from the difference in salinity of water (saline energy) at the two ends of capillary microchannels
(Figure 12) [331].
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Table 4 summarizes the efficiency of CDD/CDWA systems made of different materials for capillary
channel and evaporating plate, some of which being used for saline energy generation [331,332].

Table 4. Efficiency of CDD/CDWA systems.

Ref Capillary Channel Evaporator Irradiation/
Temperature Efficiency

[64] Carbon foam Exfoliated graphite 10 kW·m−2 85%
[69] Porous NiO disc TiAlON-based 1 kW·m−2 73%

[333] Nano porous filter paper Gold plasmonic nanostructure 2.3 kW·m−2 87%
[269] NiO wick Naval brass 34 ◦C 65%
[68] Rayon carbon fiber Exfoliated graphite 1 kW·m−2 63%

[330] Cellulose fiber Au/Ag-PFC 1 kW·m−2 86%
[334] Polytetrafluoroethylene Graphene-based film 1 kW·m−2 79%
[335] Cotton rod-polystyrene Graphene oxide 1 kW·m−2 85%
[78] Cellulosic filter paper Graphene oxide (lifted) 0.82 kW·m−2 78%

[336] Basswood Graphene oxide 12 kW·m−2 83%
[337] ((Functionalized-)Chemically reduced-)Graphene oxide 1 kW·m−2 38–48%
[338] Hierarchical graphene foam Graphene nanoparticles 1 kW·m−2 93%
[339] Polyacrylonitrile CB-PMMA 1 kW·m−2 72%
[331] Nafion membrane Carbon nanotube 1 kW·m−2 75%
[340] Pristine draft paper Pencil-drawn-paper 1 kW·m−2 80%
[67] Basswood Carbonized wood 10 kW·m−2 87%

[341] GO/NFC CNT/GO 1 kW·m−2 86%
[332] Carbon cloth Graphene 1 kW·m−2 83%

7. Conclusions

Taken together, there is no single universal remedy to resolve the problems in the current
desalination technologies. Full consideration of physicochemical, geographical, and economical
parameters is required to choose one approach over the others. However, recent researches imply
that CDD has made a good compromise between water production and energy consumption, and
with more industrial intuitions it could alleviate the barriers hindering its wide-scale implementation.
In this article we argued that most attempts aimed at lowering energy consumption toward MTES will
not lead to commercially more viable desalination as they have not within the past decade. Instead,
the main emphasis should be on increasing the ability of the system to use low-grade energy that is
cheap and omnipresent. A successful strategy does not necessarily decrease the energy consumption,
rather, it enables the system to take advantage of low-grade energy. This can require fundamental
transformations to in the foundation of desalination technologies. Our economic analyses, as well as
those of others, demonstrate that the main influence of using low-grade energy is not improvements in
energy consumption but pronounced in the final cost of freshwater. This also has the major benefit
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of compatibility with low-grade energy from renewable energy source such as industrial waste heat.
These can vastly impact renewable energies penetration, water production, and industrial efficiency,
otherwise referred to as the water-energy nexus.
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Abbreviation

A Surface Area n Economic Life Time in years
At Annual Total Cost in USD/Annum OpEx Operational Expenditure
CapEx Capital Expenditure P Pressure
CDD Capillary-Driven Desalination Q Heat
CDWA Capillary-Driven Water Ascension R Ideal Gas Constant
Cel Cost of Electricity RO Reverse Osmosis
DDD Diffusion-Driven Desalination Sg Entropy Generation
DOE Department of Energy SWRO Seawater Reverse Osmosis
ED Electrodialysis t Year of Operation
FO Forward Osmosis T Temperature
G Gibbs Free Energy (Exergy) Tc Temperature of Cold Source
H Enthalpy Change TD Thermal Desalination
HDH Humidification Dehumidification TDS Total Dissolved salts
i Interest Rate Th Temperature of Hot Source
I0 Investment in USD VC Vapor Compression
LCOE Levelized Cost of Electricity W Work
LCOW Levelized Cost of Water WH Waste Heat
LD Liquid Discharge xs Mole Fraction of Salt in Feed Water
MD Membrane Desalination xs,b Mole Fraction of Salt in Brine
MED Multi-Effect Distillation xs,p Mole Fraction of Salt in Product
Mel Electricity Output in kWh/Year xw Mole Fraction of Water in Feed Water
MSF Multi-Stage Flash xw,b Mole Fraction of Water in Brine
Mp Molar Mass of Product Water xw,p Mole Fraction of Water in Product

MTES
Minimum Thermodynamic Energy of
Separation

ZLD Zero Liquid Discharge

MVC Mechanical Vapor Compression πi Osmotic Pressure
Mw Produced Water/Year
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