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Abstract: Common approaches to large flood management are Natural Water Retention Measures 

and detention basins. In this study, a Partial Least Squares-Path Model (PLS-PM) was defined to set 

up a relationship between dam wall heights and biophysical parameters, in critical flood risk zones 

of continental Portugal. The purpose was to verify if the heights responded to changes in the 

biophysical variables, and in those cases to forecast landscape changes capable to reduce the heights 

towards sustainable values (e.g., <8 m). The biophysical parameters comprised a diversity of 

watershed characteristics, such as land use and geology, surface runoff, climate indicators and the 

dam heights. The results have shown that terrain slope (w > 0.5), rainfall (w > 0.4) and sedimentary 

rocks (w > 0.5) are among the most important variables in the model. Changes in these parameters 

would trigger visible changes in the dam wall height, but they are not easily or rapidly modified by 

human activity. On the other hand, the parameters forest occupation and runoff coefficient seem to 

play a less prominent role in the model (w < 0.1), even though they can be significantly modified by 

human intervention. Consequently, in a scenario of land cover change where forest occupation is 

increased by 30% and impermeable surfaces are decreased by 30%, interferences in the dam heights 

were small. These results open a discussion about the feasibility to mitigate large floods using non-

structural measures such as reforestation. 

Keywords: flood risk attenuation; PLS-SEM; detention basin; mitigation strategies; landscape 

change 

 

1. Introduction 

One of the consequences of climate change is the increase of spatial and temporal water 

variability as well as extreme events, in frequency and intensity [1,2]. Floods are among the most 

destructive water-related hazards and are the greatest economic natural disaster that occur in Europe 

via damage property and infrastructure, as well as physical injury and loss of human lives [3]. 

Nowadays, technical means for controlling extreme floods remain limited, fosters a need for an 

ongoing paradigm shift in how to deal with floods [4]. These difficulties powered the necessity for 

effective action programmes driven by policy in Europe. According to these limitations, European 

Commission and the Council of the European Union prompted to put forward the Directive 

60/2007/EC, referred to as the Floods Directive [5]. Its purpose is to reduce the adverse effect of floods 
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to preserve human health, the environment, cultural heritage, economic activity and infrastructure. 

According to the directive, each member state has to draw up flood risk maps of the river basins and 

associated coastal areas at risk of flooding and establish flood risk management plans or each 

catchment [5]. 

In Portugal, floods are the second most common natural disaster that cause great damage or loss 

of life. The number of disastrous floods occurred from 1865 to 2010 was 1621 causing 1012 deaths and 

a partial of 522 victims [6]. In order to manage and mitigate these hazards, Portugal transposed this 

Directive into their own law (Decree-Law no. 115/22 October 2010) [7]. According to the Directive 

goals, the Portuguese Agency for the Environment (APA–Agência Portuguesa do Ambiente) 

identified 23 flood risk zones in many hydrographic basins of mainland Portugal [8]. After the critical 

flood risk zones were identified, the APA elaborated corresponding cartograms of flood hazard and 

risk maps [9]. Each map includes areas that may be affected by floods, with a return period equal or 

greater than 100-year and with a 10-year return period between high probability events [10]. Flood 

risk maps characterize the different areas by categories, ranging from non-existent risk to very high 

risk. Several studies were carried out with the aim of flood risk mitigation and flood management 

[11–15].  

In order to attenuate the most significant flood impacts, instead of preventing floods from fully 

occurring, Reference [16] developed a model based on retention basins, capable of eliminating the 

areas classified as risky or very risky from those maps. Flood Retention Basins (FRB) are essential in 

the effective flood management, allowing peak flow attenuation by temporarily storing a certain 

volume of stream water, and nowadays there exist at least six types of FRB with the purpose to assess 

flood-control potential beside other possible uses [17–19]. This work comprised the sequential use of 

engineering formulae and a zoning algorithm embedded in a Geographic Information System, 

resulting in a number of optimal places to install the detention basins within the critical zones, with 

a huge diversity of dam wall heights. These results could be influenced by differences in topography, 

land use, climate, geology or occupation by burnt areas among the sub-catchments [16]. In some 

critical zones, where the dam wall heights were rather low (<2 m), the attenuation of flood risk could 

be accomplished through the construction of sustainable flood detention basins [16]. Sustainable 

flood detention basins are characterized by low construction costs and landscape impact, and 

frequently can be used to create attractive leisure areas [18,19]. In other critical zones, flood risk 

attenuation could only be attained if dam walls were taller than 120 meters [16].  

Some flood protection solutions have been proposed and the most usual measures of protection 

are traditionally engineered solutions such as dams, levees and floodwalls. These solutions are 

essential to safety in many locations, although they can be expensive and can alter flood risk to other 

locations [20]. A solution proposed instead of a large dam would be to decentralize this into multiple 

detention basins [17,21], which means small dams could be easily integrated into the natural 

landscape, with low environmental impact. However, in Reference [17], it was found that this 

approach may be impracticable, giving rise, instead of a high dam, to several dams of considerable 

height. Whether in fluvial or pluvial flood mitigation approaches, other proposals to complement the 

structural solution include green infrastructure investments or Natural Water Retention Measures 

(NWRM), such as reforestation, installation of grass and riparian buffers, green roofs, porous 

pavement, urban trees, constructed wetlands, stream restoration, and best-management practices for 

agriculture and forestry [1,14,22–24]. These types of solutions can contribute to a moderation of flood 

events by increasing the ability of the landscape to store water or by increasing the ability of channels 

to convey flood waters. Therefore, it is extremely important on a watershed level to have better forest 

and wetland management that harness the natural ability of ecosystems to retain water, slowing 

down and absorbing some of the storm runoff. Forests can also help to reduce flow velocity of flood 

waters, stabilize banks, land erosion and landslides, and migration of contaminants [25–32]. 

This study aims to identify "green" protection measures, like reforestation/afforestation or 

reduction of impermeable/urban areas, complementary to dam construction, that could help 

reducing the dam wall heights forecasted in the study of Reference [16]. As a way to test the reliability 

of these protection measures, a statistical model is used to associate the heights of the dams with the 
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variables of forest cover and impermeable surfaces in order to decrease the height of the dams. The 

multivariate statistical modeling is based on Partial Least Squares–Path Modeling (PLS-PM). The 

origin of PLS-PM was in the social sciences [33], but subsequent applications expanded the use of 

PLS-PM to other areas including the environmental sciences [34–40]. PLS-PM is derived from 

Structural Equation Models (SEM) which provide additional insights about the dataset’s structure, 

allowing us to comprehend direct as well as indirect interactions between numerous latent (groups 

of) variables [41]. The PLS-PM assesses the interactions through a combination of Multiple Linear 

Regression and Principal Component Analysis [42] and represents a substantial improvement of 

other multivariate statistical models also used in environmental analyses [43–46]. 

2. Materials and Methods  

2.1. Study Area 

The study area is part of the 23 critical flood risk zones identified by the Portuguese 

Environmental Agency in continental Portugal [47]. A previous investigation in each zone was 

focused on mitigating the risk of flooding in areas of high and very high risk, using sustainable 

holding basins according to the 100-year return period (Supplementary Material (Table S1)) [16]. The 

criterion for evaluating the detention basins was based on Reference [48], which considers as 

sustainable dam height of ≤8 m. Through this study, results were only obtained for 15 zones and 

indicated the possibility to install 27 sustainable and 75 non-sustainable detention basins in specific 

catchments within the critical zones’ contributing watersheds. As can be seen in Table 1, of these 15 

zones, eight had in their constitution non-sustainable flood detention basins (h > 8 m) [16]. 

Table 1. Minimum and maximum sub-basins heights distributed by Critical Zone. 

Critical Zone Minimum Height of Sub-Basins (m) Maximum Height of Sub-Basins (m) 

Ponte da Barca 22.8 76.3 

Esposende 0.5 116.5 

Coimbra 27.0 126.6 

Águeda 0.8 57.0 

Santarém 0.5 24.6 

Tomar 4.0 22.7 

Santiago do Cacém 11.7 41.0 

Tavira 3.2 36.6 

It was verified that the most worrying areas are Ponte da Barca, Coimbra and Santiago do 

Cacém, because these do not present any sub-basins with h ≤ 8 m.  

Therefore, this study focuses on these eight critical zones (Figure 1) and of these, only two are 

located in international rivers (shared between Portugal and Spain), which are Ponte da Barca, where 

it integrates with the Lima River, and Santarém, which includes the Tagus River. The remaining six 

zones are located in national rivers. 

These Critical Zones are geographically distributed, in a rather heterogeneous way, throughout 

continental Portugal and present very different characteristics between them, as depicted in Table 2. 



Water 2019, 11, 684 4 of 22 

 

 

Figure 1. Spatial distribution of flood risk critical zones of continental Portugal. 
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Table 2. Characterization of the eight Critical Zones. 

Critical Zone 

Hydrograp

hic Region 

(HR) 

Area 

(km2) 

Maximum 

Elevation 

(m) 

Slope 

(%) 

Average 

Temperature 

(ºC) 

Average 

Annual 

Rainfall 

(mm) 

Sedimentary 

Rocks (%) 

Igneous 

Rocks 

(%) 

Metamorphic 

Rocks (%) 

Forest 

Area 

(%) 

Agricultural 

Area (%) 

Ponte da Barca HR1 523 1401 21 12 2370 0 99 1 25 31 

Esposende HR2 1549 1513 17 13 2100 0 49 51 28 22 

Coimbra HR4 4925 1993 14 14 1214 9 52 39 49 29 

Águeda HR4 417 1043 19 14 1786 0 36 64 68 22 

Santarém HR5 19224 1988 9 15 856 44 41 15 38 42 

Tomar HR5 1044 394 8 17 1059 88 12 0 29 42 

Santiago do 

Cacém 
HR6 1416 360 3 16 662 54 45 1 24 71 

Tavira HR8 223 507 12 18 730 56 43 1 8 52 
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According to the classification of Köppen–Geiger, continental Portugal presents a 

Mediterranean climate. The precipitation is characterized by some frequency of very wet and dry 

years that affects the hydrological cycle and by consequence the river flows and water resources [49]. 

The annual average rainfall varies from over 2000 mm, in the northern mountains, to less than 700 

mm in the southern plains of Santiago do Cacém. In terms of land use, it is verified that most of the 

zones have a percentage of forest areas greater than 20% with the exception of Tavira with 8%. 

Regarding the agricultural areas, the majority presents a percentage greater than forest, except 

Esposende, Coimbra and Águeda. For decades, there is an increase of population and economic 

activity intensification in coastal and river areas, especially near the flood plains. Despite the 

economic value of these areas, they are exposed to frequent floods. During the 1865–2010 period the 

number of floods that produced negative impacts was 651, while the number of dead, injured or 

missing people was 546 (>3/year) and the number of evacuated or homeless people was 35,501 

(�250/year) [50]. According to Reference [51], 82% of the hydro-geomorphological events were 

floods; they were more frequent during the 1936–1967 period and occurred mostly from November 

to February.  

2.2. Workflow 

The workflow model unfolds in two steps, as can be seen in Figure 2. In Step 1, a range of 

variables is selected that influences the dam storage. This set of parameters comprises the 

characteristics of the hydrographical basins, climate indicators, surface runoff, geology and land use. 

Then, the relationship between these variables is defined using the Partial Least Squares-Path 

Modeling method (PLS-PM). 

 

Figure 2. Conceptual workflow. The detailed explanation is provided in the text. 

The rationale and inventory of variables used in PLS-PM followed the guidelines of an 

antecedent work [16]. In Step 2, the model equations derived from Step 1 were used to analyse 

scenarios of dam-height variation in response to anticipated land cover changes mostly related with 

forest spreading and reduction of impermeable surfaces. 

2.3. Partial Least Squares-Path Modeling 
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Partial Least Squares (PLS) models, originally developed by Herman [33,52,53] and Reference 

[54], are powerful tools for analysing multivariable data [55]. Considered as a soft modeling 

approach, Partial Least Squares-Path Modeling (PLS-PM) is a statistical model where no strong 

assumptions, with respect to the distributions, the sample size and the measurement scale, are 

required [56]. It is used to model causal paths among blocks of variables called latent variables (LV) 

[34,57]. A PLS-PM consists of two elements (Figure 3), the outer/measurement model, which 

describes the relationships between the measured variables (MV) and their respective LV (i.e., the 

loadings and weights), and the inner/ structural model, which describes the relationships between 

the LV (i.e., the path coefficients) [42,56]. The connections among LV are quantified thorough path 

coefficients (PC) while the connections between LV and MV are quantified through weights (w) [42]. 

For each regression in the structural model, the amount of variance in the dependent latent variable 

(also called endogenous) explained by its independent latent variables (exogenous), is indicated by 

the coefficient of determination (R2). The influence of exogenous on endogenous latent variables is 

represented by direct or indirect path coefficients, depending on the number of paths linking them 

[34]. As can be seen in Figure 3, LVb has just a direct influence on LVc, which is PCb−c, while LVa has 

direct (PCa−c) as well as indirect (PCa−b, PCb−c) influences. According to [58], the indirect influence is 

the product of corresponding direct influences (i.e., PCa−b × PCb−c) and the total influence is the sum 

of direct and indirect influences (i.e., PCa−c + PCa−b × PCb−c). 

 

Figure 3. Example of a PLS-PM Design. Symbols: MV—measured variables; LV—latent variables; 

w—weights; l—loadings; PC—path coefficients; R2—coefficient of determination. 

The measured (e.g., LVm, Equation (1)) and predicted (e.g., LVp,c; Equation (2)) scores of an LV 

are calculated as follows: 

��� = �(��� × ��)

�

���

 (1) 

���,� = ���,� × ����� + ���,� × ����� (2) 

The PLS-PM models can be reflective, formative or MIMIC (a mixture of the reflective and 

formative) [56]. A path model is considered reflective if in the path diagram the arrows go from the LV 

(factor) to the MV, in other words the LV are considered as the cause of the MF. On the other hand, in 

a formative model the arrows go from the observed measures to the LV, which means that the MV are 

considered to be the cause of the LV [36,58,59]. In the present study, PLS-PM was used as MIMIC model, 

being implemented in the SMART-PLS software [60]. 

2.4. Data Preparation 
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The PLS-PM input data came from an Excel worksheet comprising n rows and p columns, where 

n represents the number of sub-basins and p the number of measured variables. Following the results 

obtained by the work of Reference [16], 75 non-sustainable sub-basins (n) were selected. These sub 

basins were delineated using the ArcHydro [61] software and defined according to the Reference [18] 

classification, which uses height (h) as a key classification variable of flood detention basins, where 

the structure is sustainable when h < 8 m and non-sustainable when h > 8 m. A summary of the 

Measured Variables usage and sources of information is depicted in Table 3. The data for the Excel 

worksheet was prepared in ArcMap [62] computer package, used in numerous environmental studies 

(e.g., References [63–80]). 

Table 3. List of measured variables used as source data for Partial Least Squares–Path Modeling (PLS-

PM). Besides identification of variables, their measurement units and description, the table contains 

indications about usage in the PLS-PM models and on the data sources. 

Measured 

Variable 
Units Description Source 

Maximum 

Elevation 
m 

Maximum elevation obtained from 

analysis of a Digital Elevation Model 

(DEM) 

http://www.dgterritorio.pt/ 

Slope % 
Hillside slopes obtained from analysis 

of a Digital Elevation Model (DEM) 
http://www.dgterritorio.pt/ 

Temperature  °C Average Annual Temperature http://www.apambiente.pt 

Rainfall mm/year Total annual precipitation http://www.apambiente.pt 

R  Precipitation Erosivity http://www.apambiente.pt 

Drainage 

Density 
km/ km2 

The drainage index explains the 

complexity and degree of 

development of a watershed’s 

drainage system. 

http://geo.snirh.pt/AtlasAgua/ 

Surface Flow m3/s Annual Average Values http://geo.snirh.pt/AtlasAgua/ 

Curve Number 

(CN) 
Dimensionless 

Empirical parameter used in 

hydrology for predicting direct runoff 

or infiltration from rainfall excess 

http://geo.snirh.pt/AtlasAgua/ 

IMD  Dimensionless 

Imperviousness ratio - Relationship 

between the percentage of change soil 

sealing and the basin area (more 

information is provided as 

Supplementary Material (Table S2)). 

https://www.copernicus.eu/ 

Surface Runoff mm 

Quantity of water in the hydrographic 

network - precipitation-drainage 

model according to Temez model. 

http://geo.snirh.pt/AtlasAgua/ 

Sedimentary 

Rocks 
km2/km2 

Percentage of sedimentary rocks in 

the basin. 
http://www.apambiente.pt 

Igneous Rocks km2/km2 
Percentage of igneous rocks in the 

basin. 
http://www.apambiente.pt 

Forest  km2/km2 
Percentage of area covered with forest 

land uses. 
http://www.dgterritorio.pt/ 

Agricultural km2/km2 
Percentage of area covered with 

agriculture land uses. 
http://www.dgterritorio.pt/ 

Shape 

coefficient (Kf) 
Dimensionless 

Relationship between the mean width 

of the basin and its axial length. 

Equations (2) and (3) and 

related data 

Compactness 

coefficient (Kc)  
Dimensionless 

Relationship between the Perimeter P 

and the circumference of an equal 

area circle A, with radius r of the 

basin. 

Equations (2) and (3) and 

related data 

Dam Height m Calculated dam wall height. [16] 

For each sub-basin, the mean values of the measured variables were calculated. In the cases that 

the variables were collected as raster files from the original sources, the calculation of mean values 
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resorted to the Zonal Statistics as Table (ZST) tool of ArcMap program. The variables land use 

(agricultural and forest areas) and geology (sedimentary and igneous rocks) were intersected with 

the sub-basins' shapefile to obtain the coverage of each use and geology in percentage of sub-basin 

area using the Tabulate Intersection (TI) tool. The percentage of conflict area in each sub-basin was 

directly incorporated into the Excel worksheet skipping the use of ZST tool. The shape coefficient (Kf) 

and the compactness coefficient (Kc) were calculated according to the following equations, 

respectively: 

⎩
⎪
⎨

⎪
⎧ �� =

�

��

         �� = 0.28 × �
�

�
�
�

�
 (3) 

where A (km²) is the sub-basin area, L (km) is the sub-basin length measured along the main water 

course, and P (km) the sub-basin perimeter. 

2.5. Scenario Analysis 

Flood Risk Management Plans (FRMP) have planned to manage flood risk through prevention, 

preparation, protection, recovery and learning measures. The first working scenario in this study fits 

in the protection measures, which fall within the scope of reducing the magnitude of the flood, 

sometimes by attenuating the flood flow or by reducing the height or flow velocity [22]. Contrarily 

to structural measures (e.g., construction of dike and dams capable of damping the flood 

hydrograph), non-structural measures termed green infrastructures (Natural Water Retention 

Measures–NWRM) are a priority. In this first scenario, the forest area will be increased in order to 

restore and maintain the aquatic and riparian ecosystems, to promote infiltration and reduce the 

surface runoff, and expectedly to decrease the height of the dams. Another scenario of land use 

change is proposed, where the intention is to analyse how the dam height responds when the 

percentage of agricultural areas is changed. This scenario relates to the public concern about the 

anthropogenic occupation of floodplains, which has already triggered political decisions for the 

medium and long terms, involving the relocation of infrastructures, control in the occupation of these 

areas, and increase of their resilience to floods [22]. According to these alternatives, the second 

scenario changes land use and occupation in the sub-basins by reducing their imperviousness index 

(IMD). Therefore, it is intended to verify if the decrease of impermeable zones, which boost runoff, 

influences the dam height in a significant way. 

3. Results 

3.1. General Description of Spatial Data 

The spatial distributions of all measured variables are illustrated in the maps of Figures 4–7. The 

watershed characteristics are illustrated in Figure 4. The CN values (Figure 4a), which predict direct 

runoff or infiltration from rainfall excess, tend to be large in all sub-basins, and in some zones can be 

larger than 75. The drainage density (Figure 4b), which measures the complexity and development 

of the watershed's drainage system, is high in all zones and their sub-basins (CN > 3.5 km/km2), 

meaning that they are exceptionally well drained. As can be seen in Figure 4c, the slope in the 

northernmost areas of the country is higher. Coimbra is quite heterogeneous because it comprises 

sloping areas such as the Serra da Estrela and flat areas such as Santa Comba Dão. Santarém presents 

a considerable slope due to its proximity to the Serra da Estrela. The slopes are less pronounced to 

the south of Portugal, except in Tavira where the proximity to the Caldeirão Mountains makes the 

sub-basins steeper. The maximum altitudes (Figure 4d) are higher in the northern areas of mainland 

Portugal and decrease to the south, except for the region between Santarém and Coimbra where the 

Serra da Estrela is located. The Kc values in Figure 4e are higher than 1.5, which means that all sub-

basins are moderately flood-prone. The values of Kf can be seen in Figure 4f. Central Portugal is 
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characterized by lower Kf, while basins with smaller shape factors have a lower tendency to originate 

floods. 

The spatial distributions of land use and geology are illustrated in Figure 5. The values of IMD 

ratio (Figure 5a) are lower in the more urban impermeable areas. As regards the use for agriculture 

or occupation by forest (Figure 5b,c) the areas are both small in Ponte da Barca and Esposende. In 

Águeda and Coimbra, the percentage of agricultural area is low but the percentage of forest area is 

considerable. In Santarém, the forest area is larger than the area used for agriculture, while in Tomar 

the situation is reversed. Santiago do Cacém and Tavira, in general, present a large percentage of 

agricultural area and low percentage of forest area. As regards geology (Figure 5d,e), the sedimentary 

rocks prevail in zones closer to the coast, namely Tomar, Santiago do Cacém and Tavira. The Igneous 

Rocks are well represented in the centre and south zones of the country. 

 

Figure 4. Spatial distribution of Watershed Characteristics. Only the variables used in the PLS-PM 

analyses are represented, namely: (a) CN – curve number; (b) drainage density; (c) terrain slope; (d) 

maximum watershed elevation; (e) Kc – compactness coefficient; (f) Kc – shape coefficient. 
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Figure 5. Spatial distribution of Land Use and Geology parameters. Only the variables used in the 

PLS-PM analyses are represented, namely: (a) IMD – Imperviousness ratio; (b) percentage of 

agricultural area in the watershed; (c) percentage of forest area in the watershed; (d) percentage of 

sedimentary rocks in the watershed; (e) percentage of igneous rocks in the watershed. 

In Figure 6 the climate indicators can be visualized. Regarding rainfall erosion (Figure 6a), the 

most affected areas are Ponte da Barca, Esposende, Águeda and Tavira. With regard to total annual 

precipitation (Figure 6b), the trend is to decrease from north to south of the country. The temperature 

(Figure 6c) increases from north to south, except for some sub-basins of Coimbra and Tomar that 

present values similar to the zones of the south. 
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Figure 6. Spatial distribution of climate indicators. Only the variables used in the PLS-PM analyses 

are represented, namely: (a) rainfall erosivity; (b) annual rainfall; (c) mean annual temperature. 

Runoff (Figure 7a,b) follows the downward trend from north to south. The spatial distribution 

of the dam heights is illustrated in Figure 8. The figure shows that the areas with the greatest heights 

are Esposende and Coimbra, where dam heights can exceed 80 m. Ponte da Barca also presents some 

sub-basins with heights between the 60 and 80 m. In Águeda and Santiago do Cacém the heights do 

not exceed 60 m while in the remaining zones the heights are ≤40 m. 
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Figure 7. Spatial distribution of Surface Runoff. Only the variables used in the PLS-PM analyses are 

represented, namely: (a) Surface flow expressed as total surface discharge (m3/s); (b) surface runoff 

expressed as surface discharge normalized by catchment area. 

 

Figure 8. Spatial distribution of dam wall height. 
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3.2. Results of Partial Least Squares-Path Modelling 

The PLS-PM model for the eight Critical Zones, more specifically the 75 sub-basins with dam 

height >8 m is provided as Supplementary Material (Table S3) and was compiled from the previous 

work by Reference [16]. This model relates the MVs to their LVs through the MIMIC approach, i.e., 

through a mixture of reflective and formative models [56]. The reflective model requires an 

assessment of reliability and validity to support the inclusion of construct measures in the path model 

[57]. Reliability was measured by the Dillon–Goldstein Rho, which must be larger than 0.7 [56]. 

Validity was confirmed by the Average Variance Extracted (AVE), which must be larger than 0.5 [57]. 

The formative model requires an assessment of multi collinearity among measured variables through 

analysis of variance inflation factors (VIF), which must be lower than 5 for predictive purposes [58]. 

The reliability, validity and VIF constraints were confirmed in this study. The PLS-PM model is 

portrayed in Figure 9. The variances explained by the model are high for the endogenous LV "Surface 

Runoff" (R2  0.9) but relatively low for the LV "Dam Height" (R2  0.3). Despite the low score of LV 

"Dam Height" the model is robust and reliable because the sample is large. All the path coefficients 

expose positive causal effects with the LV "Dam Height", except the LV “Climate Indicators” which 

are negative. The weights of most MVs are positive, which means that the LVs increase for increasing 

values of their formation variables. The negative weights mean that the increase of correspondent 

MVs contribute to the decrease of dam height.  

 

Figure 9. PLS-Path Model used in the present study to set up causal effects between watershed 

characteristics, surface runoff, climate indicators, land use and geology and dam wall height. 

The imperviousness index (w = 0.349) and sedimentary rocks (w = −0.541) are the MVs 

contributing stronger to the formation of LV “Land use and Geology”, due to their larger weights. 

Slope (w = 0.584), Surface Flow or Runoff (w = 0.516 and w = 0.505) and Rainfall (w = 0.442) are other 

measured variables that contribute strongly to the formation of their respective LVs. The Equations 

(4)–(8) describe the outer model for “Watershed Characteristics”, “Land Use and Geology”, “Runoff”, 

“Climate Indicators” and “Dam Height”, respectively. 

������ℎ�� �ℎ�������������

= �� × (0.028) + �������� ������� × (0.247) + ��  × (−0.235)
+ �� × (0.008) + ���. ��������� × (0.371) + ����� × (0.584) 

(4) 
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���� ��� ��� �������

= ������������ × (−0.286) + ������ × (−0.027) + ��� × (0.349)

+ ������� �.× (0.305) + ����������� �.× (−0.541) 

(5) 

������ = ������� ���� × (0.516) + ������� ������ × (0.505) (6) 

������� ����������

= �������� ��������� × (0.325) + ����������� × (−0.369)

+ �������� × (0.442) 

(7) 

��� ����ℎ� ��������� = ��� ����ℎ� × (1.000) (8) 

Equations (9) and (10) describe the inner model for “Runoff” and “Dam Height”.  

������ = ������ℎ�� �ℎ������������� × (−0.020) + ������� ���������� × (0.987) (9) 

��� ����ℎ� ���������

= ������ℎ�� �ℎ������������� × (0.209)

+ ���� ��� ��� ������� × (0.494) + ������ × (0.648)

+ ������� ���������� × (−0.796) 

(10) 

3.3. Forecasted Dam Heights–Scenarios 

Among the protection measures outlined in the Portuguese Hydrographic Region Management 

Plans (https://www.apambiente.pt/), actions are present that rely on structural interventions (for 

example, construction of dams with damping capacity of the flood hydrograph), but other solutions 

are also indicated that are based on green measures (Natural Water Retention Measures–NWRM). 

Therefore, in order to explore the possibility to reduce the dam wall heights, three land-use-change 

scenarios were tested that predicted forest + agriculture area increase and imperviousness (IMD ratio) 

decrease. The scenarios were formulated according to the possibility to retain a part of runoff, 

increasing the retention capacity of catchments by enlarging the forested and agricultural areas or 

reducing imperviousness in the urban areas. The detailed scenario analysis is presented in Table 4. 

The results show that in response to increasing forest and agricultural areas, the heights of the dams 

decrease, but not substantially because the heights remained very high, hampering the possibility of 

using green measures as a complement to the structural measures. The same happens with 

imperviousness. When it decreases the heights also decrease but residually. On average, the heights 

decrease 0.37% in the forest first scenario, 1.4% in the forest second scenario, 0.3% in the IMD third 

scenario, 0.9% in the fourth IMD scenario, and finally the heights decrease �7% in the fifth scenario. 

This last scenario is only hypothetical and theoretical because it may not be possible to make it real. 

4. Discussion 

The Floods Directive (Directive 60/2007/EC) encouraged the EU member states to evaluate areas 

at risk of flooding, to map the flood extent, assets and human lives at risk in these areas, and to take 

adequate and coordinated measures to reduce flood risk. Some reports assure that climate change 

may result in sea-level rises, which are expected to induce more extreme weather events and 

increased flood risks as a consequence [2,3]. Therefore, it is important for EU member states to take 

into consideration climate change as well as sustainable land use practices in flood risk management 

[81]. Bearing in mind this concern, the prime objective of this research was to develop a statistical 

model that establishes a relationship between biophysical parameters of catchments and dam wall 

height. This relationship aimed to find a route to reduce the dam wall height through changes in 

potentially modifiable parameters such as land use in rural areas and imperviousness in urban 

centers. A successful relationship would allow controlling floods with sustainable (small height) 

detention basins.  
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Table 4. Results of scenario analysis in the 75 sub-basins of the eight critical flood risk zones. 

Critical 

Flood 

Risk 

Zones 

No of 

Sub-

basins 

Average Height 

Predicted by the Model 

(m) 

1st Scenario 

(+30% of Forest Areas) 

2nd Scenario 

(+100% of Forest Areas) 

3rd Scenario 

(−30% of Impermeable 

Areas) 

4th Scenario 

(−100% of Impermeable Areas) 

5th Scenario  

(−50% of Slope) 

Minimum 

Height 

(m) 

Maximum 

Height 

(m) 

Minimum 

Height 

(m) 

Maximum 

Height 

(m) 

Minimum 

Height 

(m) 

Maximum 

Height 

(m) 

Minimum 

Height 

(m) 

Maximum 

Height 

(m) 

Minimum height 

(m) 

Maximum 

Height 

(m) 

Minimum 

Height 

(m) 

Maximum 

Height 

(m) 

Águeda 9 39.77 60.93 39.51 60.56 38.91 59.71 39.76 60.79 39.74 60.48 37.09 55.01 

Coimbra 30 31.09 114.61 31.02 114.26 30.85 113.45 31.09 100.43 31.08 67.35 28.74 110.8 

Esposende 4 44.33 61.44 44.16 61.31 43.76 61.00 44.32 61.39 44.30 61.26 40.94 56.49 

Ponte da 

Barca 
10 46.56 68.38 46.54 68.27 46.50 68.00 46.48 68.12 46.31 67.53 43.52 61.62 

Santarém 1 48.44 48.44 48.21 48.21 47.68 47.68 48.44 48.44 48.44 48.44 44.49 44.49 

Santiago 

do Cacém 
13 11.51 36.33 11.48 36.30 11.42 36.21 11.36 35.57 11.02 34.73 11.06 35.42 

Tavira 6 15.61 43.32 15.57 43.32 15.47 43.31 15.59 43.14 15.54 42.70 13.21 40.04 

Tomar 2 21.32 22.30 21.21 22.28 20.96 22.24 21.32 22.25 21.32 22.12 19.22 20.16 
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Examples of runoff or flood peak reductions in response to forestation are numerous in recent 

scientific literature. For example, vegetation cover in the upper Du watershed in China was 

significantly improved after the implementation of the Grain-for-Green project [82]. An analysis of 

variance indicated that reforestation resulted in a significant reduction in runoff and sediment 

transport. Another study in the Chao Phraya River Basin and based on numerical models [83] showed 

that specific non-structural measures (reforestation, wetlands, and the combination of both) had 

considerable potential to reduce peak discharges and flood volumes. Indeed, it was suggested that 

integration of these proposed non-structural flood countermeasures with the existing 

countermeasures in the Chao Phraya River Basin would be the most practical way to cope with the 

challenges of future flood disasters. Bearing in mind these results, an expectable outcome from our 

modeling exercise would be a substantial reduction of dam wall heights in response to changes in 

land use of catchments. However, that did not occur. In most critical zones of continental Portugal, 

the flood control based on structural measures relied on construction of medium to large structures, 

namely dams with 9 to 127 m high walls. In order to reduce these values and convert these 

engineering structures into sustainable detention basins, all variables that influence flood volumes 

were studied through a PLS-PM statistical model. The results have shown that Slope (w > 0.5), Rainfall 

(w > 0.4) and Sedimentary Rocks (w > 0.5) are the most weighted measured variables in the model. 

These results mean that these measured variables are the ones contributing most to the dam wall 

height variation, but these variables cannot be easily changed, at least by human intervention. On the 

other hand, the measured variables Curve Number, Kf and Forest seem to play a less prominent role 

in the model (w < 0.1), in spite of their probable modification by man. In order to achieve our objective, 

the first scenarios added 30% to forest areas and reduced 30% of impermeable zones, but the PLS-PM 

model indicated that these measured variables barely interfere in the decrease of the heights. In a 

second round, unrealistic values such as doubling the forest areas or eliminating the impermeable 

surfaces were tested, but reduction of the heights was not enough to bring them to sustainable values 

according to Reference [48]. Finally, when slope, rainfall or flow have changed, which are variables 

that humans can barely interfere, the heights have dropped moderately (e.g., �7% for 50% of slope 

decrease). 

Some studies have already suggested that land cover is apparently ineffective at regulating 

floods larger than the 10-year flood [84]. In a study in North Carolina spanning the 1930–2000 period, 

Lecce and Kotecki [85] found no relation between human-induced land cover changes and flood 

severity in their analysis of relations among river flow, population growth, number of housing units, 

and area under cultivation. On the other hand, catastrophic floods in China have led to investments 

in costly reforestation projects, with little evidence of their effectiveness in reducing floods [86]. Large 

floods seem to be determined by other large-scale drivers such as precipitation and temperature [87], 

being inherently linked to the return period concept in the case of precipitation. Various authors 

suggest that natural and anthropogenic features can alter flood characteristics, but these influences 

decrease as flood-return period increases [88,89]. For example, while working in a small watershed 

in Georgia, Magilligan and Stamp [90] reconstructed past land cover and modelled hydrologic 

alterations derived therefrom, recognizing greater temporal variability among two-year floods than 

among 100-year floods. Two studies carried in forested watersheds [91,92] found no evidence of 

reduced peak runoff volumes for the 100-year flood. Therefore, large floods may not be managed 

effectively by manipulating landscape structure, for example through reforestation [84]. For large 

floods, the solution may inevitably require the installation of flood detention basins and may even 

need to disperse the big flood into many small floods through simultaneous control of stream flow 

at various river sections within the watershed [19,93,94]. Eventually, the conjunctive management of 

floods using structural and non-structural measures is the best route to follow in most cases, as 

proposed in this study. 

5. Conclusions 

A previous study was carried out on the 23 critical flood risk zones of continental Portugal, 

where structural measures, namely detention basins, were proposed for installation in 15 of them. In 
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eight of these zones the dams were rather high (>8 m); all variables that could influence the dam 

height were assembled and studied in the present research. A PLS-PM model was developed, 

whereby a relationship was established between these measured variables and the dam-wall heights. 

The aim was to verify if changes in specific catchment variables, such as forest occupation or 

imperviousness of urban areas, would result in lower heights. With a 30% increase in forested areas, 

the heights fell, but insignificantly. On average, the heights dropped about 0.2 m. The same happened 

when impermeable zones were reduced by 30%. In this case the heights decreased 0.2 m on average. 

Even when the tested scenarios were unrealistic (for example, double the forest areas), the heights 

did not fall significantly and remained very high. Finally, even when the predictions were based on 

variables that can barely be changed through human intervention (for example, reducing average 

catchment slope) the heights did not go down to values of sustainable detention basins (e.g., ≤8 m). 

These results open a discussion on whether large floods can be effectively managed by manipulating 

landscape structure, for example through reforestation. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 – dam wall 

heights required to minimize high and very high flood risks in critical zones of continental Portugal, estimated 

by [16], Table S2: Data on Imperviousness ratio (relationship between the percentage of change soil sealing and 

the basin area), Table S3: PLS-PM data. 
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