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Abstract: In hydrogeological modelling, two approaches are commonly used for model calibration:
zonation and the pilot-points method. Zonation assumes an abrupt spatial change in parameter
values, which could be unrealistic in field applications. The pilot-points method produces smoothly
distributed parameters compared to the zonation approach; however, the number and placement of
pilot-points can be challenging. The main goal of this paper is to explore the effect of pilot-points
number and locations on the calibrated parameters. A 3D groundwater flow model was built for
the northern karst aquifer of Qatar. A conceptual model of this aquifer was developed based
on MODFLOW software (United States Geological Survey). The model was calibrated using
the parameter estimation and uncertainty analysis (PEST) package employing historical data of
groundwater levels. The effect of the number and locations of pilot-points was examined by running
the model using a variable numbers of points and several perturbations of locations. The calibration
errors for all the runs (corresponding to different configurations of pilot-points) were maintained
under a certain threshold. A statistical analysis of the calibrated parameters was then performed to
evaluate how far these parameters are impacted by the pilot-point locations. Finally, an optimization
method was proposed for pilot-points placement using recharge and observed piezometric maps.
The results revealed that the pilot-points number, locations, and configurations have a significant
effect on the calibrated parameter, especially in the high permeable regions corresponding to the
karstic zones. The outcome of this study may help focus on areas of high uncertainty where more
field data should be collected to improve model calibration. It also helps the placement of pilot-points
for a robust calibration.
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1. Introduction

In many hydrogeological modelling studies, models are calibrated using the zonation approach,
in which a model domain is discretized into a finite number of zones representing the variability of
a calibrated parameter, thus reducing the number of variables [1–3]. The problem with the zonation
approach is that the boundaries between zonation can cause an abrupt change in parameter values,
which could be unrealistic [4], and the structural error can be large [5]. The full parameterization of a
parameter at each node is an alternative to the zonation approach, but the computation cost is high [4].

De Marsily [6] introduced the pilot-points method as a means to reduce the computational
burden of the full parameterization approach. In the pilot-points approach, the hydraulic parameter
domain is represented by a finite number of points distributed over the model domain. The inverse
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problem solves for this parameter at these points and the results are interpolated (i.e., using kriging or
another interpolation method). The inverse problem requires an optimization process to minimize
the objective function at the calibration targets. After optimization, interpolation of the solution
obtained at pilot-points is done to cover the entire model domain. The calibration is then obtained and
checked against the threshold error. If the error value is above a pre-defined threshold value, then the
optimization process is repeated again until the error is accepted.

The pilot-points approach was later developed to increase its efficiency, especially in highly
non-linear models [7–9]. Many studies have used geostatistics with the pilot-points method for
fractured aquifer model calibration [10–12]. Lavenue and Pickens [13] used adjoint sensitivity to
identify the most sensitive areas of the hydraulic conductivity to place pilot-points. Lavenue and
de Marsily [12] used kriging with pilot-points to calibrate a highly heterogeneous conductivity field.
Doherty [8] incorporated regularization with the pilot-points method using the parameter estimation
software PEST [14], whereas Alcolea et al. [9] added prior information to the optimization problem to
minimize the objective function and to reduce the number of parameters. Regularization makes use of
information from data to reduce the number of parameters and makes calibration easier, especially
in complex problems [4]. Fienen et al. [15] explained how to constrain regularization and produce a
good calibration.

Although the pilot-points method eliminates the drawbacks of the zonation method, it has some
limitations. The pilot-points method neglects other sources of model error, such as noise in the data,
and can result in model over-parameterization [15,16]. One major problem of the pilot-points approach
is the choice of the number and locations of pilot-points [10]. While no rules exist for placing these
points, it is recommended to place them in a uniform pattern, avoiding large gaps between them,
and to use hydraulic properties characteristic of length as a guide for the separation distance [4].
De Marsily [6] recommended that the number of pilot-points should be less than the number of
observed data of the calibrated model, and the placement of pilot-points should be at high head
gradient locations. Some studies have suggested the use of the correlation length of a hydraulic
property to distribute the points [17,18]. Klaas and Imteaz [19] suggested a spatial distribution of the
pilot-points based on the spatial structure of the model grid. While most previous studies focus on the
number of pilot-points and how to select their locations, the main goal of this study is to explore the
number of pilot-points adequate for calibration, and the effect of pilot-points location and distribution
on the model results. In addition to that main goal, this study proposes a new methodology of the
optimization of pilot-points locations different than the ones in the literature.

This paper considered the groundwater flow model in the northern karst aquifer of Qatar as
a case study. This aquifer is the only natural source of fresh groundwater in the country and it is
highly heterogeneous as it comprises karstified limestone with lots of conduits and cavities. A 3D
finite-difference-based model was developed using MODFLOW. This model was calibrated using
the pilot-points approach and PEST software [14]. The calibration process relied on historical data
of groundwater level, representing steady state conditions. A statistical analysis was developed to
evaluate the impact of pilot-points number and locations on the estimated parameters. Two pilot-points
configurations were tested: randomly and uniformly placed pilot-points, with 20 perturbations of
points locations in each configuration.

The Study Area and Conceptual Model

The area of study is the northern karst aquifer of Qatar (Figure 1). Qatar is located in the Arabian
Peninsula, to the east of Saudi Arabia, with a total land area of 11,500 km2. The country is very arid,
with no surface water and barely 80 mm of average annual rainfall [20]. The area of study covers
approximately 4338 km2 and its geology comprises three layers of limestone and dolomite of Pliocene
and Eocene age, namely the Dam and Dammam Formation, Rus Formation, and Um Al-Radhuma
Formation (Figure 2). A thick layer of gypsum formation occurs within the Rus Formation and extends
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in many places over the southern aquifer. This has resulted in deterioration of the groundwater quality
in the southern aquifer, compared to the north.

Qatar generally has a flat topography, except for some areas in the south. The country has a
flat terrain as the topography varies between 0 near the coast to more than 100 m above the mean
sea level in the south-west. Many land depressions occur in the country and vary in size between a
few meters and more than one kilometer [21]. These land depressions are a result of land collapse
due to the dissolution of the evaporate layer (gypsum) in the sub-surface and also due to cracks in
the limestone at the top layer of geology. These land depressions are important for groundwater
recharge. Rainfall-runoff accumulates in land depressions after heavy storms, eventually recharging
the aquifer [22] and also enriching the soil by transporting fine sediments, making the depression
suitable for agriculture [21].

The main aquifer occurs in Rus and Um Al-Radhuma Formation and is recharged through local
rainfall. Thicknesses of the geological formations vary, as is shown in Figure 2, where thickness ranges
between 50 m for the Dam and Dammam Formation to more than 300 m for the Um Al-Radhuma
Formation [23]. A layer of gypsum (Evaporite unit) occurs within the Rus Formation, especially in the
southern part of the country (Figure 2), but this layer is absent in the north. This explains why the
groundwater quality is better in the north than the south.

The long term annual rainfall recharge is approximately 60 million m3 in the entire country [20,21,24].
Fresh groundwater occurs as lenses on the top of brackish and saline groundwater [25], especially in
the northern part of the country, which receives the highest rainfall.

The aquifer has been extensively pumped over the last three decades, which has resulted in a
significant drop in the water table and increase in salinity. Table 1 shows the groundwater abstraction
from the aquifer for the period between 1976 and 2009 [26].

Table 1. Groundwater abstraction for the period between 1976–2009 [26].

Year Abstraction (million m3) Year Abstraction (million m3)

1976 56.4 1993 179
1977 62 1994 209
1978 66.2 1995 240
1979 70.64 1996 258
1980 75 1997 265
1981 80 1998 260
1982 90.15 1999 263
1983 100.3 2000 272
1984 105 2001 255
1985 106.5 2002 250
1986 108.25 2003 248
1987 110 2004 249
1988 140 2005 248
1989 143.5 2006 237
1990 148 2007 238
1991 154 2008 239
1992 160 2009 248
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Figure 1. Qatar map showing the study area (the northern aquifer) and a regional map (inset). The 
red line shows the boundary of the north aquifer. 
Figure 1. Qatar map showing the study area (the northern aquifer) and a regional map (inset). The red
line shows the boundary of the north aquifer.
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Figure 2. Schematic geological cross-sections in the north aquifer of Qatar. 
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as the head-dependent flow boundary.  

The finite deference-based MODFLOW 2000 model was used to simulate the flow in the area 
[27]. The model grid contains 222 rows and 148 columns, with a regular grid size of 500 m in each 
direction. The model comprises one layer representing Rus and Um Al-Radhuma Formation. Top 
and bottom of the layers were identified based on structural contours of the geology [28] and bore-
logs [20,21]. 

The east, north, and west boundaries are the sea, which was considered as a constant head 
boundary, whereas the southern boundary was considered as a head-dependent flow boundary. The 
General Head Boundary GHB module in MODFLOW was used to simulate the flow along the 
southern boundary. Flow values were estimated based on contour maps and previous modelling 
studies [24]. During the calibration process, the conductance value of the GHB was adjusted to 
decrease the error in the water budget [4]. 

The aquifer is highly heterogeneous as hydraulic conductivity varies significantly from one 
location to another. In general, hydraulic conductivity may vary between 0.01 m/day up to more than 
100 m/day, due to the existence of fractures and conduits in the limestone [24]. The hydraulic 
conductivity values were later calibrated using the parameter estimation and uncertainty analysis 
software (PEST) with MODFLOW 2000 [14]. 

Groundwater recharge comes essentially from rainfall, which is too little. Despite the lower 
amount of rainfall, recharge occurs when heavy storms create enough runoff that accumulates in land 
depressions. Several studies have estimated rainfall recharge in Qatar [20–22,29,30]. From the 
previously-mentioned studies, it was found that rainfall recharge varies between 5 and 68 million m3 
per year. In this study, the recharge spatial distribution is based on Baalousha et al. [22]. 

2. Model Calibration: PEST and Pilot-Points 

The model was calibrated with PEST [14] using the truncated singular value decomposition 
“SVD-assist” [31], which is helpful in the case of high parameterization. By applying the SVD to the 
Jacobian matrix, super and sensitive parameters can be identified. Parameters with small eigenvalues 

Figure 2. Schematic geological cross-sections in the north aquifer of Qatar.

The conceptual model was built based on available data of groundwater levels [20] and a previous
modelling study [24]. The model area covers the northern part of the country and is bounded by
the Arabian Gulf from the east, north, and west. The southern boundary was considered as the
head-dependent flow boundary.

The finite deference-based MODFLOW 2000 model was used to simulate the flow in the area [27].
The model grid contains 222 rows and 148 columns, with a regular grid size of 500 m in each direction.
The model comprises one layer representing Rus and Um Al-Radhuma Formation. Top and bottom of
the layers were identified based on structural contours of the geology [28] and bore-logs [20,21].

The east, north, and west boundaries are the sea, which was considered as a constant head
boundary, whereas the southern boundary was considered as a head-dependent flow boundary.
The General Head Boundary GHB module in MODFLOW was used to simulate the flow along the
southern boundary. Flow values were estimated based on contour maps and previous modelling
studies [24]. During the calibration process, the conductance value of the GHB was adjusted to decrease
the error in the water budget [4].

The aquifer is highly heterogeneous as hydraulic conductivity varies significantly from one
location to another. In general, hydraulic conductivity may vary between 0.01 m/day up to more
than 100 m/day, due to the existence of fractures and conduits in the limestone [24]. The hydraulic
conductivity values were later calibrated using the parameter estimation and uncertainty analysis
software (PEST) with MODFLOW 2000 [14].

Groundwater recharge comes essentially from rainfall, which is too little. Despite the lower
amount of rainfall, recharge occurs when heavy storms create enough runoff that accumulates in
land depressions. Several studies have estimated rainfall recharge in Qatar [20–22,29,30]. From the
previously-mentioned studies, it was found that rainfall recharge varies between 5 and 68 million m3

per year. In this study, the recharge spatial distribution is based on Baalousha et al. [22].

2. Model Calibration: PEST and Pilot-Points

The model was calibrated with PEST [14] using the truncated singular value decomposition
“SVD-assist” [31], which is helpful in the case of high parameterization. By applying the SVD to the
Jacobian matrix, super and sensitive parameters can be identified. Parameters with small eigenvalues
can then be truncated. Kriging was used for interpolation of the parameter values obtained at
the pilot-points.
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The PEST calibration tool uses the least square method to minimize the difference between the
model results and the observation measurements after applying weights to observations. The objective
function is the squared sum of weighted residuals. The weights are assigned based on the uncertainty
of field measurements; that is, measurements with high uncertainty have lower weights and vice versa.

The objective function φ of the inverse problem is based on the best fit between the linear
combination of input parameters p, as affected by the model inputs X compared to observations h, is
given by Doherty [14,32]:

φ = (h − Xp)tQ(h − Xp) (1)

where Q is a diagonal matrix of the squared observation and t indicates the transpose of the matrix.
The weights and given by:

Q =
m

∑
i=1

wiri (2)

where m is the number of observations (i.e., targets), w is the weight of an observation point, and r is
the residual. The weights vary depending on the relative importance of field data. In this study, all
observations have been assigned an equal weight of 1 as all have the same importance.

As the inverse problem is ill-posed, PEST uses several tools to make it more stable. Regularization
is one of these mathematical tools. PEST includes two types of mathematical regularization: one is
Tikhonov regularization and the other is singular value decomposition—or SVD.

The Tikhonov regularization approach uses more information with the ill-posed inverse problem,
such as suggesting a preferred value of the calibrated parameters. The SVD approach reduces the
dimensionality of the problem by subtractions of parameters. The readers can refer to [4,5] for more
details on regularization in PEST.

PEST minimizes the objective function until a pre-defined threshold error is achieved. The model
was calibrated for steady state conditions using historical data of groundwater level. The calibrated
parameter was the hydraulic conductivity. As the model has a steady state, the calibration targets
are the groundwater head measurements in 1958, which is the oldest available data for the area of
study (Figure 3). In this case, the threshold is the absolute mean residual head at any point that is
less than 0.5. This value is considered adequate for model calibration given the uncertainty in the
historical target heads values. It is assumed that the aquifer was in steady state conditions (or near
steady state) because groundwater abstraction at that time was very low, and groundwater abstraction
was little [24]. In the presumed steady state conditions in 1958, groundwater levels varied between
0.0 near the coastline to more than 13 m above the mean sea level in the central part of the aquifer.
For calibration, groundwater level data from 1958 was used as observation points covering the entire
model domain. As the uncertainty of this data is similar, all points had an equal weight in calibration.
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Figure 3. Piezometric map in 1958 used for calibration (modified after [21]), draped over the hill-shade
model in the background.

3. Number of Pilot-Points

Three calibration sets with two configurations each were examined with different numbers of
pilot-points. The number of pilot-points in the three runs was 112, 187, and 200 points, for the first,
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second, and third case, respectively. For each case, the model domain was divided into cells equal to
the number of points. It should be noted that these cells are for pilot-points, not to be confused with
the finite difference cells. Two configurations of pilot-points are considered: uniformly placed points
in the centre of cells and random configuration were one point is randomly placed in each cell.

Statistical results of the three cases are shown in Table 2. As expected, when the number of
pilot-points increases, so does the number of variables and the solution takes a longer time to be
achieved (Equation (1)). In all cases, the threshold error (mean head residual < 0.5) was achieved, but
the sum of squared weighted residuals varied. In the first case, random configuration (i.e., pilot-points
= 112), the points were randomly placed in a grid of eight rows and 14 columns distributed over
the model domain, thus the density was one pilot-point for every 72.8 km2. On the other hand, the
uniform configuration of the first case implies placing the 112 points in the centres of the 112 cells.
Given the low density of the points, the convergence was not easy, as fewer points were used for
interpolation of the entire model domain. The sum of the squared weighted residual was 1370.

Table 2. Statistics for the calibrated model with 112, 187 and 200 points randomly and uniformly placed.

Statistics
112 Points 187 Points 200 Points

Random Uniform Random Uniform Random Uniform

Mean residual head −0.02 0.08 0.08 −0.01 0.00 0.00
Mean absolute residual head 0.65 0.50 0.41 0.38 0.37 0.32

Root mean squared residual head 0.84 0.68 0.55 0.48 0.49 0.44
Mean residual flow 0.00 0.00 0.00 0.00 0.00 0.00

Absolute residual flow 0.00 0.00 0.00 0.00 0.00 0.00
Root mean squared residual flow −0.04 0.16 0.00 0.00 0.01 0.00

Mean weighted residual (head and flow) 1.27 0.98 0.89 0.71 0.72 0.62
Root mean squared weighted residual

(head and flow) 1.64 1.33 1.05 0.92 0.96 0.86

Sum of squared weighted residual
(head and flow) 1370 900.3 782.34 421.04 473.57 379.99

Mean Residual—Average error for the observations. This can be misleading because the positive
and negative errors can cancel each other out. The root mean squared residual is calculated by
calculating the square root of the average of the square of the errors for the observations. This tends to
give more weight to cases where a few extreme error values exist.

In the second case (pilot-points = 187), the model domain was divided into a grid of 17 rows
and 11 columns, thus the density of pilot-points is one point per 43.55 km2. As with the first case,
uniformly distributed pilot-points produced less error than the randomly-distributed case. Although
the mean residual head shows improvement from case 1, the sum of the squared weighted residual is
significantly lower.

In the third case, the model domain was divided into a grid of 20 rows and 10 columns.
The pilot-points density, in this case, is one per 40.8 km2. Obviously, this case shows much improvement
compared to the previous two cases, as the number of pilot-points is higher. However, this came at a
price of higher computational expenses.

4. Calibration Results

Based on the results shown in Table 2, it was clear the number of pilot-points of 187 (uniformly
placed) is adequate for the calibration, as it converges easily with an error below the threshold value
of 0.5 m. Therefore, 187 pilot-points were used to calibrate the model. As explained above, the
pilot-points were defined using a grid of 17 rows and 11 columns created over the model domain. Each
cell in this grid is 6700 m wide and has a height of 6500 m. The pilot-points were placed in the center
of the defined cells (not to be confused with the finite-difference grid). Figure 4 shows the calibrated
groundwater level for the steady state solution, with pilot-points and targets. The sum of squared
weighted residual is 421 for the entire model area. The individual residuals at target points are within
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the acceptable threshold (i.e., the mean absolute residual of head at any point is less than 0.5 m), as
shown in Table 2.Water 2019, 11, x FOR PEER REVIEW 9 of 18 

 
Figure 4. Calibrated groundwater level (meters above mean sea level) reproducing the piezometer 
map of 1958, pilot-points (red diamonds), and observations (black dots). 

As depicted in Figure 5, values of the calibrated hydraulic conductivity vary between 0.001 and 
191 m/day. While the majority of the model area shows low values (less than 10 m/day), a high 
hydraulic conductivity up to 191 m/day occurs in some locations. These locations occur in the east, 
north-west, south, and centre of the model area, as appears in Figure 5. This reveals the high 
heterogeneity of the aquifer due to karst features in some places. 

Figure 4. Calibrated groundwater level (meters above mean sea level) reproducing the piezometer
map of 1958, pilot-points (red diamonds), and observations (black dots).

As depicted in Figure 5, values of the calibrated hydraulic conductivity vary between 0.001 and
191 m/day. While the majority of the model area shows low values (less than 10 m/day), a high
hydraulic conductivity up to 191 m/day occurs in some locations. These locations occur in the
east, north-west, south, and centre of the model area, as appears in Figure 5. This reveals the high
heterogeneity of the aquifer due to karst features in some places.
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(m/day).

5. Effect of Pilot-Points Locations

Two cases of pilot-points configurations were considered to investigate the effect of pilot-points
locations on the calibrated hydraulic conductivity. These configurations are: randomly and
uniformly spaced.

5.1. Random Perturbation

The same grid defined previously was used to generate the pilot-points (17 × 11 cells). Therefore,
the total number of pilot-points is 187. In each square of this grid, one pilot-point was randomly placed,
similar to Latin hypercube sampling. This results in stratified locations of pilot-points locations, which
converges faster than random sampling [33–35] and covers the entire sampling domain.
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5.2. Uniform Perturbation of Pilot-Points

As per the random placement, the model domain was divided into 17 rows and 11 columns.
In each square, one pilot-point was placed at the same location within the square (same x and y within
the square). The locations have been changed 20 times for the 20 runs of the model, keeping the
distance increments between points constant.

6. Result and Discussion

To examine the effect of the locations of pilot-points on the estimated parameters, 20 runs
were performed for each configuration of pilot-points locations (random and uniform distribution),
respectively. Statistical analysis of the results was conducted, as well as a comparison between the
uniform and random perturbation.

6.1. Random Placement

Twenty runs were performed using random realizations of the pilot-points in each run,
as described above. In each run, the hydraulic conductivity was calibrated. In all cases, the calibrated
absolute residual error was below the threshold value (<0.5). After all runs were completed, descriptive
statistics of calibrated hydraulic conductivity were obtained to explore the effect of pilot-point locations
on model calibration.

Figure 5 shows the calibrated model results, with 187 pilot-points centered at 187 cells.
The calibrated hydraulic conductivity varies between 0.001 and 191.0 m/day. Figure 6 shows the
mean value contour maps of the calibrated hydraulic conductivity and the coefficient of variation
map resulting from the 20 runs. The coefficient of variation was used to show how the hydraulic
conductivity values spread around the mean. It was obtained by dividing the standard deviation by
the mean map. The mean value of the hydraulic conductivity resulting from these iterations varies
between 0.001 and 118.8 m/day, which is lower than the initial results of the model (Figure 5). While
the vast majority of the model domain has low conductivity (less than 10 m/day), areas of relatively
higher hydraulic conductivity occur in the east and north-western area. Table 3 shows descriptive
statistics of the mean and coefficient of variation of the hydraulic conductivity maps. The mean and
median values of hydraulic conductivity are 9.58 and 1.4 m/day, respectively. The low median of the
hydraulic conductivity is in line with the results of the pumping test [20], which show low values,
except at some locations, where fractures/conduits occur.

The coefficient of variation values of the hydraulic conductivity of the 20 runs vary between 0
and 3.5, as shown in Table 3 and Figure 7. Unlike the mean hydraulic conductivity distribution, high
values of the coefficient of variation occur in the middle of the model.

Table 3. Descriptive statistics of the mean and the coefficient of variation maps of the hydraulic
conductivity from 20 runs using randomly placed pilot-points.

Statistics Mean Value Map Coefficient of Variation Map

1%-tile 0.00087142857 0.361400126
5%-tile 0.00160609005 0.390555544

10%-tile 0.00735375552 0.577452325
25%-tile 0.07488993856 0.901789639
50%-tile 1.42516687096 1.308467642
75%-tile 10.8043032033 1.869557044
90%-tile 33.5103849654 2.48930949
95%-tile 46.5985896143 2.929098095
99%-tile 79.3751707193 3.415084443

Minimum 0.00087142857 0.234135821
Maximum 118.804007194 3.594438155

Mean 9.58889186912 1.44362254
Median 1.42653173771 1.308554766
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6.2. Uniform Placement of Random Points

In the second case, another 20 runs were performed using uniformly placed pilot-points.
In each run, pilot-points were distributed in a way that their locations are different, but the spacing
between them is constant. Figure 8 shows the mean value map of the calibrated hydraulic conductivity
using 187 pilot-points (the same number as in random placement). The map shows the mean of 20
runs using different perturbations of pilot-points and a uniform spacing between points. As with
previous examples, the same threshold error was used. Descriptive statistics of both the mean and
the coefficient of variation, in this case, are shown in Table 4. The hydraulic conductivity values vary
between 0.001 and 162 m/day, with high values in the middle of the aquifer and in the north-west
area. The coefficient of variation varies between 0.0 and 2.6.

Comparing the data in Tables 3 and 4, while the median values are very similar in both cases,
the mean of the uniformly distributed case is higher. From the minimum and maximum values, the
uniform case data covers a wider range compared to the random case.

The statistics of the coefficient of variation maps show more similarity than the mean.
The maximum values of the coefficient of variation are 3.6 and 3.4 for the random and uniform
case, respectively. However, the uniform case shows less variance as the 99% tile is 2.6 compared with
3.4 in the case of random points. The mean and the median of the coefficient of variation are much
lower in the case of uniform points than random points. Figures 6 and 7 clearly show the similarity
of the coefficient of variation in both cases, where high variations occur in the same areas. Unlike
the random case, it is obvious that the coefficient of variation and the mean values in Table 4 are
not similar.
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Table 4. Descriptive statistics of the mean and the coefficient of variation of hydraulic conductivity
from 20 runs using uniformly placed pilot-points.

Statistics Mean Value Map Coefficient of Variation Map

1%-tile 0.002551672 0.14411592
5%-tile 0.011559237 0.214720068

10%-tile 0.025869756 0.274042945
25%-tile 0.15722327 0.410987028
50%-tile 1.422487888 0.641652186
75%-tile 8.846138456 0.945805985
90%-tile 36.22542187 1.338662571
95%-tile 66.85036233 1.793603543
99%-tile 131.2969591 2.558159718

Minimum 0.001391747 0.051191822
Maximum 162.747114 3.416383341

Mean 11.61371474 0.753418919
Median 1.423859795 0.641672875
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6.3. Parameter Sensitivity Analysis

As part of PEST calculation, the Jacobian matrix is calculated as at least the number of calibration
iterations plus one. The PEST calculates sensitivity with respect to each calibrated parameter.
The Jacobian matrix contains the derivative of model output to the hydraulic conductivity in this case.
Each column in the Jacobian matrix contains the derivative of the model output with respect to the
calibrated parameter at each observation point. PEST calculates the composite sensitivity, which is the
normalized magnitude of the Jacobian matrix columns with respect to the observation points. For any
parameter i, the composite sensitivity (Si) is given by Doherty [14]:

Si =
(

JtQJ
)1/2

ii /m (3)
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where J is the Jacobian matrix, Jt is the transpose of the Jacobian matrix, m is the number of observations,
and Q is the weight matrix. In this study, Equation (3) calculates the sensitivity of the parameter value
at each pilot-point normalized by the number of observation points (or targets) m. Figure 8 shows the
mean composite sensitivity in the case of random and uniform pilot-points. While the general trend in
sensitivity is similar in both figures, some differences exist. The random case shows a higher sensitivity
magnitude than the uniform case. This is consistent with the high coefficient of variation for the case
of randomly placed pilot-points. Composite sensitivity maps show that the model is more sensitive to
parameter changes at pilot-points uniformly rather than randomly placed, with a maximum sensitivity
of 0.048 and 0.073 for the random and uniform case, respectively.
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6.4. Optimization of Pilot-Points Locations

Spatial interpolation depends on values at sampling points (in this case the pilot-points) and
the spatial correlation between these points (in kriging). It is important to focus pilot-points at areas
where the changes in the parameter under consideration are high (in this case high dk/dn, where n is
the flow direction). In the steady state simulation, groundwater head is fixed. When calibrating both
hydraulic conductivity and recharge, different solutions can be as long as the ration between recharge
and hydraulic conductivity remains the same [36,37]. It is possible to estimate hydraulic conductivity
if the recharge is well-known and vice versa [36].

For any given groundwater head, the spatial changes in hydraulic conductivity (dk/dn) are
directly proportional to the spatial changes in the hydraulic head. The spatial changes in hydraulic
conductivity (dk/dn) can be estimated from the piezometric map (Figure 3), and recharge R, using the
continuity equation in both x and y directions:

KxB
d2h
dx2 + KyB

d2h
dy2 = R (4)
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where B is the thickness of the aquifer and h is the piezometric level. For the isotropic aquifer, Equation
(4) can be rewritten as follows:

K =
R

B d2h
dx2 + B d2h

dy2

(5)

Raster maps were prepared using ArcGIS for the derivative of piezometric maps, aquifer thickness,
and recharge. Using Equation (5), the derivative of estimated hydraulic conductivity (K) was obtained
as shown in Figure 9. Although these maps are just an estimation, they provide a good indication of
areas that need more pilot-points.

Pilot-points were redistributed on areas of high spatial variation of the estimated hydraulic
conductivity. A total of 180 points were used, with a high density at a high spatial variation of the
calibrated parameter and lower density elsewhere. Statistical analysis of the model calibration results
using this configuration of pilot-points is shown in Table 5.

Comparing the data in Tables 2 and 5, it is obvious that the optimized pilot-points produced
much better calibration.
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Table 5. Statistics of the calibrated model, using optimized locations of pilot-points.

Statistics Value

Mean residual head 0
Mean absolute residual head 0

Root mean squared residual head 0
Mean residual flow 0

Absolute residual flow 0
Root mean squared residual flow 0

Mean weighted residual (head and flow) 0.03
Root mean squared weighted residual (head and flow) 0.56

Sum of squared weighted residual (head and flow) 319.54
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7. Conclusions

The northern aquifer of Qatar has a high variability in hydraulic conductivity as the aquifer is
karst, but has a lower hydraulic conductivity in general. The calibrated hydraulic conductivity varies
between 0.001 and 200 m/day. This study investigated the effect of pilot-points number, locations, and
distribution on the model calibration results. It also explored the optimization of pilot-points locations
for a steady state flow model.

Three calibration sets were performed using three different densities of pilot-points: one point per
72.8 km2, one point per 43.55 km2, and one point per 40.8 km2. It was found that the pilot-point density
of one per 40.8 km2 provided the sought solution below the pre-defined threshold error, without
over-parameterizing the inverse problem.

Two different perturbations of pilot-points were used; randomly and uniformly placed points,
keeping the number of points constant in both cases (187 points or one per 43.55 km2). A total of
40 model calibrations were performed to test both configurations of pilot-points. The mean and the
coefficient of variation of 20 runs for each case were obtained, with descriptive statistics.

Results show that the uniformly placed pilot-points perform better than the randomly placed
points, given the same number of points. The randomly placed points solution has a higher coefficient
of variation from the mean. This is because the interpolation between points is better when points
are uniformly placed. The range of the calibrated parameter is higher in the case of uniform points.
The uniformly placed points provide a good and unbiased coverage of the model area compared to
randomly placed points. In both cases, high uncertainty (i.e., high coefficient of variation) occurs in the
same areas.

In this study, and as the model represents a steady state, the relationship between hydraulic
conductivity and recharge provided a means to estimate changes in hydraulic conductivity.
This estimation can be used as a guide to place pilot-points at high variations of the hydraulic
conductivity. Results demonstrated the usefulness of this method to optimize the pilot-points locations.
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