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Abstract: Estimation of large floods is imperative in planning and designing large hydraulic 

structures. Due to the limited availability of observed flood data, estimating the frequencies of large 

floods requires significant extrapolation beyond the available data. This paper presents the 

development of a large flood regionalisation model (LFRM) based on observed flood data. The 

LFRM assumes that the maximum observed flood data over a large number of sites in a region can 

be pooled together by accounting for the at-site variations in the mean and coefficient of variation. 

The LFRM is enhanced by adding a spatial dependence model, which accounts for the net 

information available for regional analysis. It was found that the LFRM, which accounts for spatial 

dependence and that pools 1 or 3 maxima from a site, was able to estimate the 1 in 1000 annual 

exceedance probability flood quantile with consistency, showing a positive bias on average (5–7%) 

and modest median relative errors (30–33%). 

Keywords: large floods; spatial dependence; GEV; regional flood frequency analysis; ungauged 

catchments 

 

1. Introduction 

The estimation of rare to very rare floods is needed for many engineering applications, such as 

planning and designing large hydraulic structures, dam spillways, and flood control levees. Due to 

the limited availability of observed flood and rainfall data, the estimation of rare to very rare flood 

frequencies remains a challenging task. All methods used to estimate rare to very rare floods involve 

significant extrapolation beyond recorded flood and rainfall data. The term ‘rare’ flood(s) refers to 

floods with annual exceedance probabilities (AEPs) of 1 in 50 to 1 in 100 [1]. Floods in the AEP range 

from 1 in 100 to the ‘credible limit of extrapolation’ (AEP in the order of 1 in 2000) are referred to as 

‘very rare’ floods, while floods from the credible limit of extrapolation to the probable maximum 

flood (PMF) are termed ‘extreme’ floods. Due to knowledge and data limitations and the uncertainty 

involved in extrapolating beyond available data, the errors in final estimates can be quite high. The 

average size of recorded flood data series for Australian small to medium sized catchments is about 

33 years [2]. 

To make better use of the available flood data and to be able to transfer this information to 

ungauged catchments, regional estimation methods are used, such as the index flood method [3,4]. 

The basic idea is that if a region is relatively homogenous, then the estimation of large to rare flood 

quantiles at a given site may be improved by using the larger observations at other sites as well (i.e., 

a trade-off between space and time). Some studies both in the past and present, and on an 
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international scale, have looked at the advantages and disadvantages of different regional models for 

rare, very rare, and extreme floods (e.g., [5–10,11]). 

A new probabilistic model (PM) was introduced by [11] specifically for this sort of analysis. 

Majone and Tomirotti [11] originally calibrated the PM for Italian rivers, and extended the method 

using 7300 historical series of annual maximum flows observed at gauging stations belonging to 

different geographical areas around the world. This model is based on the assumption that the 

standardised maximum values (Qmax) of the annual maximum flood series (AMFS) from a large 

number of individual sites in a region are independent and can be pooled. The PM concept is identical 

to the basic concept of station-year methods: observed data from an assumed homogenous region are 

pooled and a non-parametric flood frequency curve is fitted on a probability plot. The traditional 

approach in the station-year methods is to achieve an acceptable degree of homogeneity within the 

region by standardising by the at-site mean or median values. The novel aspect of the PM’s 

standardisation is to take into account not only the at-site mean, but also the at-site coefficient of 

variation (CV) values of the time series data. This unique form of standardisation allows the pooling 

of more data from many stations compared to the standard index methods. It is known that the 

station-year method suffers from problems associated with inter-site dependence. In the PM 

technique presented by Majone and Tomirotti [11], it was assumed that the individual values in the 

standardised and pooled data series are independent. This assumption may be valid if the data being 

pooled comes from stations that are spread over a very large region, as with Majone and Tomirotti 

[11]. 

The ‘large flood regionalisation model’ (LFRM) described by [12] is a modified version of the 

PM technique that was applied to a large set of catchments in Australia. Detailed examination showed 

that the values in the pooled LFRM data series used in this study tended to cluster in some years, 

with very few events in other years. This appears to violate the assumption of independent 

distribution of the events in time and indicates that some of the events occurring in the same year 

might have resulted from the same hydro-meteorological events. The testing of the LFRM by [12] has 

demonstrated that if the Australian LFRM data series is assumed to be independent, the LFRM tends 

to underestimate the at-site flood frequency estimates. 

On the basis of these findings from the initial application, the LFRM was further developed by 

(i) coupling it with a spatial dependence model ([13,14]) that reflects the reduction in the net 

information due to spatial dependence (e.g., [15–20]); (ii) pooling more data by taking the top 3 

maximum values in a region; and (iii) combining it with Bayesian generalised least squares (BGLSR) 

[21] and the region of influence (ROI) approach to develop regional prediction equations, so that the 

LFRM can be applied to ungauged catchments. In the ROI approach, a separate region can be formed 

for each of the gauged catchments by drawing an appropriate number of nearby stations. The 

advantages of the ROI approach are discussed in more detail in [21] and [13,22,23]. 

Points (i), (ii), and (iii) above are, in essence, the main innovations of the LFRM model being 

presented in this paper. An advantage of the LFRM proposed in this paper is that it offers an 

alternative to traditional approaches of rare flood estimation methods based on rainfall runoff 

models, where time and resource constraints may not permit the development of detailed rainfall-

based methods. Moreover, there is no guarantee that rainfall-based methods provide the best possible 

estimates. 

The remainder of the paper is organised as follows: Section 2 presents the data used in the 

development of the LFRM and the spatial dependence model. The methodology, concept, and results 

of the spatial dependence models are given in section 3. In section 4, the results of the LFRM and the 

results of the enhanced LFRM in the light of spatial dependence are also provided. Section 4 also 

details the results associated with the use of the enhanced LFRM for ungauged catchment estimation. 

Conclusions are drawn in section 5. 

2. Data Description 

A total of 654 gauging stations in Australia with reasonable record lengths (19 to 96 years with 

a mean of 34 years) suitable for regional flood frequency analysis (RFFA) were assembled as a part 
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of Australian Rainfall and Runoff (ARR) revision ‘Project 5 Regional Flood Methods’ [2]. The selected 

654 sites are shown in Figure 1. The streamflow data of these sites were prepared following stringent 

procedures, as described in [24]. Streamflows at these sites are essentially unregulated and have not 

been affected by major land use changes. The catchment areas range between 0.1 and 7406 km2 (mean: 

350 km2). One does expect that the useful information for RFFA increases with the increasing number 

of stations in the region; however, the net information does not increase proportionally with the 

increasing number of stations within a given region, due to spatial dependence between data at 

gauging stations. While the shorter record lengths in this study (<25 years) would introduce notable 

uncertainty in parameter estimation for at-site frequency analysis, they were included, as they still 

contain useful additional information for the pooled data set of large flood events. From the 654 

stations, two datasets for the LFRM were established: (a) 626 stations with reasonable concurrent 

record lengths were selected for use in the development of the LFRM and constant spatial 

dependence model. (b) The remaining 28 stations (6 from each of the states of New South Wales 

(NSW), Victoria (VIC), Queensland (QLD), Western Australia (WA), and 4 from Tasmania (TAS)) 

located around Australia were put aside for testing and validation with the LFRM. All 626 catchments 

were used to develop the prediction equations for the model parameters (i.e., mean and CV) of the 

LFRM (for ungauged catchments) using the BGLSR and the ROI approach. 

With AMFS data, large errors are often associated with the highest flows in the data set because 

of the nature of the rating curve extrapolation errors. As will be discussed in the methodology section, 

the LFRM uses the largest 1 to 3 observed maxima values from each station in the region. Therefore, 

any errors in these observations can introduce significant error into the LFRM final quantile 

estimates. As can be read in [24], a rating ratio check was introduced and used to cull stations with 

significant rating curve error. 

 

Figure 1. Geographical distribution of the selected 654 stations from all over Australia. 

3. Methods 

3.1. Identification of A Suitable Parent Distribution 

The LFRM concept is primarily non-parametric, and therefore an assumption regarding a 

particular distribution is not required. However, a probability distribution is fitted to the AMFS in 

order to derive a generic relationship for the effective number of stations Ne, which is used to adjust 

the plotting position of the LFRM points. By comparing a range of methods and distributions, it was 

found that the generalised extreme value (GEV) distribution is quite appropriate to approximate the 

AMFS in Australia based on (i) L-moments ratio diagram, the L-moment goodness-of-fit test, and (ii) 
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the Anderson Darling goodness-of-fit Monte Carlo test. Based on visual inspections of the 

standardised (as per index flood) flood frequency curves developed, the GEV appeared to be a good 

candidate to describe the AMFS data for different Australian states. The GEV distribution seemed to 

capture the higher flows much better than the other competing three-parameter distributions. Further 

information and discussion can be found in [25,26]. 

3.2. Estimating Inter-Site Dependence 

Spatial dependence can be accounted for through the use of a spatial dependence model, which 

defines the effective number of independent stations in a region (Ne) [13,18,20]. The value of Ne can 

be calculated from the relative position of two frequency curves, the regional maximum curve (this 

is formed by pooling the highest values of the standardised maxima from the stations in the 

streamflow gauging network considered each year), and the regional average curve (which is formed 

by the average curve for the streamflow network considered, i.e., the average of the standardised at-

site curves) (or typical curve) [17]. This can be measured on a Gumbel plot (YT) by ln(Ne), the 

horizontal separation between the two frequency curves, as seen Figure 2. As shown by Dales and 

Reed [17] that the value of Ne is constant irrespective of quantile or average recurrence interval (ARI) 

if the annual maxima are GEV distributed and the shape parameters of the regional maximum and 

regional average distributions are equal. In this study, a relatively simple model of spatial 

dependence was obtained by ignoring the possible variation of Ne with ARI/annual exceedence 

probability (AEP). 

For each regional network of stations, a fixed value of Ne is calculated from the first probability 

weighted moments (β�-mean) β�
�  and β�

�  of the regional maximum (superscript r) and typical point 

(superscript t) data: 

N� = �
(β�

� − x�����)

(β�
� − x�����)

�

�
��

 (1) 

where  is the shape parameter of the GEV distribution, and xbound is the bound of the typical point 

GEV distribution [17]. 

Network sizes of N = 2, 4, and 8 stations were used to determine a relationship between N and 

Ne. Based on concurrent record lengths between sites (average 18 years) a maximum number of 8 

stations in a network were adopted for the experiments carried out. To establish an indication of the 

typical degree of dependence in a network of size N, different forms of constrained and random 

sampling were adopted, and then Ne was related to the average correlation coefficient (ρ) of 

concurrent annual maxima at pairs of stations for the particular network size. The different forms of 

constrained and random sampling were (i) using a ROI approach to pool stations closest to the station 

of interest using N = 2, 4, and 8, (ii) pooling the closest 20 stations and then randomly sampling N = 

2, 4, and 8 sites, and (iii) totally random sampling N = 2, 4, and 8 sites from the region. The different 

sampling approaches provide different information about ρ. For example, the ROI and random ROI 

method was useful when investigating small networks which are highly correlated. The total random 

network samples were over a broader range of correlation values. Further details on this can be seen 

in [13,14]. This was carried out on the real dataset and on a simulated dataset, with the main purpose 

of establishing a suitable model to describe the spatial dependence in each region/state and then 

combining the results to form one relationship to use for all of Australia. For the simulated data, the 

multi-site maxima were generated according to [20] using a GEV distribution. For the generated 

dataset, the constant correlation coefficient varied from 0 to 0.5 in steps of 0.1. The overall steps in the 

analysis carried out in this paper are summarised in a flowchart given in Figure 3. 
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Figure 2. Example plot of regional maximum and typical growth curves and the effective number of 

independent stations on a Gumbel plot for a random network of 2 and 4 gauging sites in Tasmania. 

3.3. Establishing and Generalising Ne 

The Ne values were obtained for these different network sizes by fitting the mean as described 

in section 3.2 for the real and simulated datasets for the different networks and regions. It was found 

that the total random network exhibits less spatial dependence than both the ROI and random ROI 

networks. Indeed, sites that are closer together are more likely to show more spatial dependence. 

Importantly, the same features as detailed above were seen with the simulated data; however, the 

simulated data showed less spatial dependence in the ‘total random network’ as compared to the real 

dataset. 
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Figure 3. Flowchart with the different methods described in the methodology. 

To avoid regional variations in the derived spatial dependence model, a regional approach was 

used to combine all the experimental results together for all of Australia. Regression analysis was 

used to relate Ne to the average correlation coefficient (ρ) of concurrent AMFS at pairs of stations for 

the different networks and regions for each of the adopted experiments (this includes the real data 

and simulated data). To derive the regression equation, it was determined to be more appropriate to 

build a general model that relates the ratio LN(Ne)/LN(N) to the average correlation coefficient (ρ), 

similar to that of Dales and Reed [17]. 

The form of the constant Ne model is given by Equation (2) which was calibrated by combining 

all the models for each of the Australian states into one generic equation. The final form of Equation 

(2) was identified by investigating the real and simulated data sets: 

LN(N�)

LN(N)
= a + bρ� (2) 

Overall, the one variable model (see Equation (2)) provided a relatively good fit for the 

experimental data. The fitted parameters of the constant Ne model for Australia (overall) are given in 

Table 1 for the real and simulated datasets. The final parameter values for the general Australian 

spatial dependence model were found by combining the different network values of the ratio 

LN(Ne)/LN(N) and developing a regression equation of the form represented by Equation (2), then 

taking the average of the coefficient values of the developed regression equations. 

The coefficient of determination (R2) values for the final models (see Table 1) fitted to the real 

and simulated data sets are quite high, suggesting that the use of the constant Ne model should result 

in improved Ne estimates compared to the values calculated directly from the AMFS data in each 

station network.  
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Table 1. Properties of the constant Ne spatial dependence model. 

Region 
Real Data Simulated Data 

a b R2  a b R2  

Australia 1 −0.66 88 1 −0.63 99 

The comparison of the fitted Ne values for the real data computed using Equation (1) and those 

by the spatial dependence Equation (2) are shown in Figure 4. The figure below illustrates that the 

scatter in the spatial dependence model estimates increases with increasing N. The scatter may also 

be attributed to natural and sampling variability from site to site, given that the concurrent record 

length for analysis was very modest. Figure 4 and Table 1 show the overall satisfactory performance 

of Equation (2), as far as practical application is concerned. 

 

Figure 4. Comparison of directly computed Ne from the annual maximum flood series (AMFS) data 

and Ne by the constant Ne model. The black line represents a 1:1 line. 

4. Results 

4.1. Development and Calibration of LFRM for Australian Data 

The selected Qmax (1 and 3) (i.e., the top 1 and 3 maximum data points from each station’s AMFS 

data, referred to as Qmax), are first standardised by the at-site average of the AMFS data (mean), and 

then plotted in the (CV, Qmax/mean) plane. Figure 5 shows such a plot for (1 and 3 max) the study 

data set, consisting of 626 data points (1 max), 1878 data points (3 max) from 626 sites, which suggests 

the following relationship: 

Q���

mean
= c + αCV� (3) 

The coefficients (c, α, and ψ) of Equation (3) were estimated by the maximum likelihood method 

for each of the plots in Figure 5. The estimated coefficients, along with their R2 values, are provided 

in Table 2. 

Table 2. Coefficients of non-linear interpolation from Figure 5. 

Qmax-AMFS c � � R2 (%) 

1 1 3.25 1.37 87 

3 1 2.35 1.20 70 

The R2 values in Table 2 suggest that the estimated coefficients provide a reasonably good fit to 

the experimental data; this is more evident, however, when pooling the top 1 AMFS. When pooling 

3 top maxima, a greater scatter is noticed, as can be seen in Figure 5; this is also supported by the 
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drop in R2 value. An important note is made here on whether the weaker relationship with CV is 

compensated for later on by having additional data points to define the lower end of the distribution. 

What can be observed from Table 2 is that the exponent ψ is appreciably greater than unity (as would 

be the case for a Gumbel distribution for 1 maxima) and decreases slightly with the pooling of more 

data (i.e., 3 max). 

 

Figure 5. Scatter of Qmax/mean data in the (CV(Q), Qmax/mean) plane, and non-linear interpolation 

function, which is represented with a red line. (Top panel) Maxima 1; (bottom panel) Maxima 3. 

Based on Figure 5, and assuming that a large part of the scatter can be explained by variations 

in the average recurrence interval (ARI/AEP) of the AMFS data, the best way to model the scatter is 

to search for a LFRM function in the form of: 

Q���

mean
= c + f(ARI)CV� (4) 

where it is assumed that f(ARI/AEP) is a function of the ARI/AEP only, and can be substituted for 

the coefficient α. From Equation (3), the calibration procedure is based on the introduction of a new 

standardised variable, which can be defined by: 

Y��� =
�

Q���

mean
� − c

CV�
 (5) 

where c and ψ are based on the coefficients according to the number of annual maxima pooled (e.g., 

1 or 3 maxima). This form of standardisation (Equation (5)) takes into account not only differences in 

the mean values, but also of the CV, raised to the power appropriate for a specific regional data set. 

As expected, as a result of this new standardisation, Y��� was practically uncorrelated with the CV, 

as was confirmed by the very small R2 of 0.0037 referring to the same set of data points for using the 

top 3 annual maxima. The following plotting position formula (Equations (6)–(8)), proposed by 

Majone and Tomirotti [11], was applied to estimate the ARI or the empirical non-exceedance 

frequency (AEP) of each of the Y��� values in the pooled data sets (i.e., max of 1 and 3) from the N = 

626 sites. In order to define the form of the distribution of the variable Y���, the top 1 and 3 annual 

maxima values of each site’s data were used. Here, the major assumption made is that the ith value 

of the Y��� series is independent of the other values and that the Y��� values belong to the same 
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population. It follows that the plotting position of the Y���  can be provided by the following 

equations (Majone and Tomoirotti [11]): 

P(Y��� ≤ y���) = P(Y ≤ y���)�� (6) 

Where Y is the at-site standardised annual maximum and na is the site sample size (taken as the 

average of the site samples sizes, which is 34 for this study). Now, sorting the pooled sample of 

standardised maxima consisting of N = 626 (and L = 626 or 1878) in decreasing order and define 

y��� (m) as the mth ranked value in the pooled sample. The ARI of y���(m) (expressed as T years) 

can be estimated using 

m

N
= 1 − P(Y��� ≤ y���(�)) = 1 − P(Y ≤ y���(m))�� = 1 − �1 −

1

T
�

��

 (7) 

Rearranging leads to: 

T =
1

�1 − �1 −
m
N

�

�
���

 
(8) 

From this definition, the estimated ARI/AEP values would ideally be assumed to be 

representative of actual return periods. However, this may not be the case for the Australian flood 

data set, as many of the gauging sites used here are very close together spatially (see Figure 1) and 

hence there would be significant inter-site dependence. The plot of Y���  vs. YT (where YT is the 

Gumbel reduced variate and is used as a surrogate for ARI or AEP), where YT = −ln[−ln(1−1/T)] is 

shown in Figure 6 for Y��� (L = 626 and 1838). The plots for L = 626 and L = 1838 sites in Figure 6 

(bottom curves for all two plots) are in line with what would be expected from using the additional 

data points. Clearly, the impact of using a greater number of maxima, e.g., 3 maxima, seems to 

provide a very smooth empirical distribution that is fitted closely by the distribution function. The 

plots also reveal that the experimental data can be approximated by a second-degree polynomial 

function of YT as given by Equation (9), whose model coefficients and R2 values can be seen in Table 

3 for the different pooling of the annual maxima (i.e., top 1 and 3 maxima): 

Y��� = C�(Y�)� + C�(Y�) + C� (9) 

which, in terms of Qmax/mean, takes the following form 

Q���

mean
= c + (C�(Y�)� + C�(Y�) + C�)CV� (10) 

Equations (9) and (10) yield the analytical expression of the LFRM model for the study data, set 

using the top 1 and 3 annual maxima. The appropriate values of the coefficients in Table 3 are 

substituted into Equations (9) and (10). However, this formulation does not allow for the effects of 

the inter-site dependence. 

4.2. Revision of LFRM for Spatial Dependence 

The LFRM for the study data in its current form (see Equations (9) and (10)) does not allow for 

the effect of inter-site dependence. In this section, spatial dependence is accounted for through the 

use of the spatial dependence model derived in the previous section (see Equation (2)). For this study, 

the use and calculation of Ne for application with the LFRM is illustrated. Firstly, the average 

correlation for each pair of sites was calculated for the region by computing the correlation coefficient 

from a regional relationship with distance for all of the Australian states. The average correlation 

coefficient was found to be ρ� = 0.26. Secondly, using Equation (2) along with the coefficients for the 

Australian spatial dependence model given in Table 1 (using the real and simulated data) and ρ� = 

0.26, the Ne was estimated. The calculated Ne value, along with the effective record length, is given 

in Table 4. From Table 3, it can be seen that the results from the real data match reasonably well with 

the simulated data. 
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Table 3. Coefficients and R2 values of Ymax polynomial interpolation from Figure 6 for N and Ne 

sites. 

Ne sites C1 C2 C3 R2 

1 −0.0078 0.504 2.57 0.985 

3 −0.010 0.954 0.861 0.995 

N sites C1 C2 C3 R2 

1 −0.0263 0.787 0.52 0.997 

3 −0.053 1.13 −0.603 0.999 

Table 4. Total record length (L) and effective record length (Le) for all the Australian datasets. 

Region N L 
Constant Ne Model—Real 

Data 

Constant Ne Model—Simulated 

Data 

Australia 
  Ne

* Le Ne
* Le 

626 21049 207 6969 228 7654 

   (33%)  (36%)  

* 
Ne values in parentheses are percentages of N. 

Using the calculated Ne value of 207 (from the real dataset) in Equations (7) and (8) instead of 

the total number of stations (N = 626), we can now estimate the new plotting position of the pooled 

data points for 1 and 3 maxima. The new interpolated curve for Equations (9) and (10) has new 

coefficient values. The revised coefficient values of the LFRM have now been corrected for the spatial 

dependence in the dataset. The appropriate values of the coefficients of Equations (9) and (10) are 

given in Table 3. Differences are clearly seen in the coefficients of the LFRM when comparing the 

results of the dataset using N and Ne sites; this is due to the reduction of the total useful information 

(i.e., the effective number of stations). The new interpolated frequency curves can be seen in Figure 6 

(both panels, top curves). 

 

Figure 6. Frequency distribution of standardised Ymax values using N and Ne stations. (Top panel) 

Maxima 1; (bottom panel) Maxima 3. 
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What is striking in Figure 6 is the shift upwards in the frequency curve of the pooled data. Taking 

the 1 max plot for example, if one compares the Ymax value of approximately 4, it can be seen that, if 

one ignores the spatial dependence, the flood magnitude risk may be notably underestimated (for N 

sites Ymax = 4, AEP = 1 in 87, for Ne sites Ymax = 4, AEP = 1 in 8.3). For the pooling of the 1 max and 

correcting for spatial dependence (see max of 1 plot in Figure 6) it was found that the range of Ymax 

values for which the fitted model (referred to as LFRM_Ne henceforth) might be considered reliable 

is approximately 2.2 to 7, which corresponds to AEPs of 1 in 10 to approximately 1 in 2000. 

Figure 7 shows the behavior of the dimensionless quantiles derived from Equations (9) and (10) 

for AEPs of 1 in 100, 1 in 500, and 1 in 1000 for all the pooled data, (i.e., 1 and 3 max), and for the 

estimated quantiles using N and Ne. The dimensionless quantiles for the world model (referred to as 

the PM (world), based on 7300 gauging stations around the world) developed by Majone and 

Timorotti [11] are also superimposed for comparison. The comparison with the PM (world) curves in 

Figure 5 indicates that the LFRM_Ne can explain a good amount of the scatter in these plots, as the 

set of curves (1 in 100 and 1 in 500 AEP curves) for this extended AEP range (including the 1 in 1000-

AEP) captures most of the upper part of the points in the pooled data set of the Qmax/mean values. 

The flatter slopes in Figure 7 for 3 max (bottom panel), are consistent with what was shown in Figure 

5 and seems to reflect a weaker relationship of Qmax/mean with CV. Comparison of the curves for max 

of 1 and 3 for Ne and N seems to indicate that allowance for spatial dependence has a smaller 

influence on slope. Figure 7 also indicates that the extra data i.e., 3 max provides slightly better 

definition of the left-hand tail of the distribution (where the top few points in the right-hand tail are 

mostly common in all 2 data sets (1 and 3 maxima). Further investigation also revealed that the 

LFRM_Ne can provide reasonably accurate growth curve estimation for CV values in the ranges 0.60–

1.60 (approximately 81% (505 out of 626) of the study catchments fall in this range). However, the 

LFRM_Ne can perform poorly for some catchments, with CV values greater than 1.70. 
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Figure 7. Various Qmax/mean quantiles derived from the LFRM_Ne model and PM (World) model. 

(Top panel) Maxima 1—no spatial dependence; (middle panel) Maxima 1—spatial dependence 

accounted for; (bottom panel) Maxima 3—spatial dependence accounted for. 

4.3. Application of the LFRM to Ungauged Catchments 

Our interest is the application of Equations (9) and (10) to ungauged catchments, which requires 

the estimation of the mean flood and CV for the ungauged catchment in question. The BGLSR and 

the ROI approach, as discussed in [21], were used to develop the prediction equations for the mean 

flood and CV of the AMFS data as a function of catchment and climatic characteristics (predictor 

variables). The prediction equation for the mean flood used a ROI of 30–40 stations, while 65–80 

stations were used for the CV, based on the findings from past studies (e.g., [21–23,27]) and which 

state was being analysed. 

The regression equations are presented in general form below: 

Mean =  β� + β�(area) + β�(2I��) (11) 

CV = β� (12) 

The prediction equations developed above using the ROI approach, and Equations (9) and (10) 

(LFRM_Ne model), were applied to the 28 test catchments, which were not used in developing the 

prediction equations. To make the comparison more useful and to benchmark the LFRM_Ne model, 

the developed prediction equations were also used to estimate the mean flood and CV with the PM 

(world) model developed by Majone and Tomirotti [11]. It must be pointed out however, that the PM 

(world) model does not contain any of the data used to develop the Australian LFRM. The validation 

analysis was undertaken for AEPs to 1 in 1000. AEPs in the range of 1 in 50 to 1 in 100 were compared 

with at-site flood frequency analysis (FFA) (obtained from the fitted log Pearson type 3) distribution 

using the FLIKE software, Kuczera). Validating beyond the AEP 1 in 100 with at-site FFA estimates 

was not viewed as reliable, given the very large extrapolation errors involved. Any validation results 

obtained beyond AEP 1 in 100 would be of little significance for most of the stations. 

For the lower AEPs (1 in 500 and 1 in 1000), comparison was made against the results obtained 

from another regional method where the parameters of the LP3 distribution (i.e., mean, standard 

deviation, and skew) were regressed against catchment characteristics (known as the PRT—see 

[21,26] for more details) and flood quantiles were then derived for the 1 in 500 and 1 in 1000 AEPs. 

The extrapolation of these distributions to the low AEPs also involves a large degree of uncertainty. 

To assess how well the derived large flood estimates could approximate the observed flood estimates, 

two numerical measures were applied. Relative bias (BIASr) was used to assess whether the predicted 

rare flood quantiles by the LFRM_Ne or PM (world) models systematically under- or overestimated 

the at-site FFA or the PRT estimates on average, considering all the 28 test catchments. 
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The relative error values (REr), with respect to the at-site FFA or the regional parameter 

regression technique (PRT) estimate, were also obtained. This is by no means the true error of the 

LFRM_Ne or PM (world) models; the estimated errors represented here by both the BIASr and REr 

may be taken as a reasonable indication of consistency of the LFRM_Ne or PM (world) models as 

compared to FFA and PRT estimates. Here, both the FFA and PRT estimates are associated with a 

higher degree of uncertainty due to considerable extrapolation involved. It is worth noting here that 

in calculating the median relative error (REr), the sign of the relative errors was ignored. 

Table 5 summarises the various error statistics with the LFRM_N (i.e., no spatial dependence) 

and LFRM_Ne models (considering the pooling of 1 and 3 maxima) and the PM (world) model based 

on the 28 test catchments. If spatial dependence is ignored in the Australian dataset, it is observed 

that the estimation for the AEP of 1 in 1000 using the LFRM_N model suffers from major 

underestimation on average (e.g., BIASr of −27%) for the ungauged catchment case. Moreover, from 

Table 5, it can be seen for 1 max and when the pooling of more data is undertaken (i.e., 3 maxima), 

and spatial dependence (LFRM_Ne) is compensated for, the BIASr is well corrected. For example, 

from Table 5, for the 1 in 1000 AEP, the BIASr for 1 and 3 max and LFRM_Ne are a 5 and 7% 

overestimation on average, respectively. 

Focusing on the 3 max results, for the AEPs of 1 in 50 to 1 in 1000-, the BIASr values are positive 

on average for the LFRM_Ne, while for the PM (world) models, there are a couple cases of 

underestimation on average. When compared to the results of preliminary LFRM models (i.e., [12]), 

the results obtained here present a significant improvement. As found in Haddad et al. [12], the 

underestimation on average was up to 40%. By pooling more data and also accounting for the inter-

site dependence in the LFRM model, the underestimation problem, to a large extent, has been 

rectified. The results as benchmarked against the PM (world) model are reassuring; this places a 

higher degree of confidence in the estimates given by the LFRM_Ne model developed here. 

The REr values in Table 5 show acceptable results, which are comparable to similar regional 

models for the larger AEP ranges (Rahman et al. [27]). Focusing on the 3 max results, the REr values 

range from 30% to 60% (which are also very comparable to the PM (world) model). It should be noted 

that in the PM (world) data set most of the stations were so well separated that they were mostly 

independent of each other, and this was the reason why Majone and Timorotti [11] did not need to 

work out an effective number of sites. The LFRM_Ne model in this study has refined the approach of 

the PM (world) model, as significant inter-site dependence exists between stations in the Australian 

data set. 

An error bar plot of the BIASr values is given in Figure 8, which displays the central tendency 

and variability of the sample BIASr values over the 28 independent test catchments. Here, Figure 8 

displays the mean value (circle symbol) with a 95% limit bar for flood quantiles AEP 1 in 100 to 1 in 

1000. While the mean values appear to be different for the two methods (i.e., LFRM_Ne and PM 

(world) models), the difference is modest because the error bars overlap, suggesting the LFRM_Ne 

model to be very comparable and even better than the PM (world) model. Moreover, it proves that 

consistency is achieved for the 3 maxima pooling LFRM_Ne model as the mean values and the spread 

of BIASr values are very similar to the PM (world) model. What is noteworthy is the difference 

between LFRM_Ne and LFRM_N. The mean values were found to be statistically different, which 

suggests that the LFRM_Ne has corrected the negative bias quite well and justifies the use of the 

LFRM_Ne. It is envisaged that as a part of the future assessment of the LFRM_Ne, model comparisons 

will be made against design flood estimates obtained by alternative methods (e.g., spillway design 

and dam safety studies based on design rainfall-based approaches). 
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Figure 8. Error bar plot of BIASr values with the LFRM_Ne and PM (world) models for the 28 test 

catchments. (Top panel) Maxima 1—no spatial dependence; (middle panel) Maxima 1—spatial 

dependence accounted; (bottom panel) Maxima 3—spatial dependence accounted for. 

Table 5. Summary of error statistics obtained from independent testing associated with the large flood 

regionalisation model (LFRM) model. 

1 Max LFRM_N 

AEP (1 in Y) BIASr (%) REr (%) 

Model LFRM_N World Model LFRM_N World Model 
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1 in 50 −2 12 61 56 

1 in 100 −16 −2 66 55 

1 in 200 −18 6 46 33 

1 in 500 −20 5 47 33 

1 in 1000 −27 −1 49 34 

1 Max LFRM_Ne 

AEP (1 in Y) BIASr (%) REr (%) 

Model LFRM_N World Model LFRM_N World Model 

1 in 50 40 12 66 56 

1 in 100 18 −2 66 55 

1 in 200 22 6 28 33 

1 in 500 15 5 29 33 

1 in 1000 5 −1 33 34 

3 Max LFRM_Ne 

AEP (1 in Y) BIASr (%) REr (%) 

Model LFRM_N World Model LFRM_N World Model 

1 in 50 31 12 58 56 

1 in 100 14 −2 60 55 

1 in 200 15 6 30 33 

1 in 500 15 5 31 33 

1 in 1000 7 −1 30 34 

5. Conclusions 

The large flood regionalisation model (LFRM) proposed here can be viewed as an alternative to 

traditional approaches of large flood estimation, where time and resource constraints may not permit 

the development of rainfall-based methods. This paper presented the further development and 

application of a simplified LRFM that pools the top 3 annual maxima flood values from many sites 

in a region to define the regional curve growth combined with a spatial dependence model for annual 

maximum flow data. To apply the LFRM to ungauged catchments, Bayesian generalised least squares 

regression was used to estimate the mean flood and coefficient of variation of annual floods. The 

extended LFRM coupled with a spatial dependence model offers an alternative method of regional 

flood estimation for AEPs down to 1 in 1000 years. It has been demonstrated that there is positive 

bias when estimating the 1 in 1000 AEP flood quantiles. The results obtained in this study represent 

a step forward for rare to very rare flood estimation for Australian catchments in the absence of 

detailed flood studies. Further analysis, testing, and future work will also include enhancing the 

LFRM with the new data being collated for ARR Revision Project 5, comparing results from the LFRM 

at catchments where detailed flood studies have been undertaken extending to the range of extreme 

floods (e.g., spillway adequacy assessment), and deriving uncertainty limits to provide a practical 

and simple tool for rare to very rare flood estimation. 
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