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Abstract: The hydrology of tropical seasonal wetlands is affected by changes in the land cover.
Changes from open water towards a vegetated cover imply an increase in the total evaporation
flux, which includes the evaporation from open water bodies and the transpiration from vegetated
surfaces. This study quantified the total evaporation flux of six covers of the Palo Verde wetland
during dry season. The selected wetland covers were dominated by Neptunia natans (L.f.) Druce,
Thalia geniculata L., Typha dominguensis Pers., Eichhornia crassipes (Mart.) Solms, a mixture of these
species, and open water conditions. The plants were collected from the wetland and placed in
lysimeters (59.1 L) built from plastic containers. The lysimeters were located in an open area
near the meteorological station of the Organization for Tropical Studies (OTS). The evaporated
water volume and meteorological data were collected between December 2012–January 2013.
A completely randomized design was applied to determine the total evaporation (E), reference
evaporation (Eref, Penman-Monteith method) and crop coefficient (Kc) for all the covers. T. geniculata
(E: 17.0 mm d−1, Kc: 3.43) and open water (E: 8.2 mm d−1, Kc: 1.65) showed the highest and lowest
values respectively, for daily evaporation and crop coefficient. Results from the ANOVA indicate
that E. crassipes and N. natans were statistically different (p = 0.05) from T. dominguensis and the
species mixture, while the water and T. geniculata showed significant differences with regard to
other plant covers. These results indicate that the presence of emergent macrophytes as T. geniculata
and T. dominguensis will increase the evaporation flux during dry season more than the floating
macrophytes or open water surfaces.

Keywords: lysimeters; macrophytes; transpiration; marshland; Guanacaste; Tempisque river;
Costa Rica

1. Introduction

Seasonal wetlands as swamps, marshes or floodplains are characterized by their dynamism
in terms of water availability [1,2]. These ecosystems shelter huge populations of birds, mammals,
reptiles, amphibious, fishes, and invertebrates [3]. The seasonal wetlands in Central America are
important shelters for migratory bird species [4] and also provide important environmental services as
water quality regulators [5]. The Ramsar convention was signed in the city of Ramsar, Iran in 1971. It is
an international treaty aiming for the conservation and sustainable use of wetlands of international
importance [2]. Caño Negro National Park and Palo Verde National Park, both located in Costa Rica
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are among the most important Ramsar sites in Central America [6]. Palo Verde National Park has an
extension of 18 418 ha covering an area of marshes and dry forest. This national park has a long dry
season, conditioning the aquatic vegetation and bird presence [7–11]. Aquatic plants are also known
as macrophytes, they grow fully or partially submerge in water [12]. Its traditional classification is
based on the life form as emergent plants, floating-leaved plants, submerged plants, and free-floating
plants [13]. Palo Verde National Park have 100 species of macrophytes distributed in all the classes,
representing the 31% of the total macrophytes species reported for Costa Rican wetlands [14,15].
Macrophytes species do not only provide shelter for animal species, but also can remove pollutants
from soil and water. Additionally, submerged plants as Najas guadalupensis (Spreng.) Magnus and
Najas arguta Kunth work as oxygenators or participate in carbon storage. Moreover, the macrophytes
are the primary producers of the wetlands together with the macro-algae and phytoplankton [16].

Historically, the wetland from Palo Verde National Park was used for livestock grazing.
This activity maintained under control the wetland cover dominated by Cattail plants
(Typha domingensis Pers.), leaving an extensive open water surface on the wetland. The abandonment
of this activity with the creation of the national park in 1970s along with the infrastructure and
extensive agriculture development in the surroundings, triggered the deterioration of the ecosystem
quality [11,17–20]. Moreover, this affected the presence of open water surfaces used by the
migratory bird species, as well as the hydrological and nutrient cycles of the wetland. Consequently,
the institutions involved with the management of this national park in Costa Rica developed a
wetland restoration program. This program includes activities as the restoration of water fluxes and
Cattail wetland cover control through livestock grazing and mechanical management locally known
as “Fangueo” [21,22]. These activities have been carried out with the aim to remove and destroy
the emergent vegetation, and to restore the open water surfaces on the wetland [23]. The partial
elimination of Cattail cover led to an increase in macrophytes species in the open water surfaces.
Thus allowing the reappearance of plant species such as Thalia geniculata L., Neptunia natans (L.f.)
Druce, Nymphaea pulchella DC., Eichhornia crassipes (Mart.) Solms, and Salvinia minima Baker [24].
Therefore, it is necessary to understand the effects of the new wetland cover conditions on the
water fluxes.

The seasonality in wetland ecosystems drives the variation in aquatic diversity depending on
water availability [25]. Palo Verde wetland seasonality is driven by the orographic influence of
Guanacaste and Tilarán mountain ranges, which affect the air humidity conditions during the pass of
the intertropical convergence zone (ITCZ) [26]. This climatic variation allows the presence of a rainy
and a dry season. The rainy season provides the main water input to the wetland via precipitation
and occasional flooding from the Tempisque river. On the contrary, the dry season consists mainly of
evaporation from the wetland covers and open water bodies [10,24]. The timing of open water surfaces
in seasonal wetlands depend on the water inputs during the rainy season while evaporation plays
an important role during the rainy-dry transition and dry season. The evaporation flux during these
two periods will be influenced by the wetland cover change, since precipitation ceased and the dryer
conditions prevail increasing the transpiration on the wetland [27].

Evaporation (E) from any ecosystem includes transpiration (Et), open water evaporation (Ew),
evaporation from intercepted water on plant surfaces (Ei), and evaporation from soil (Es) [28,29]. In an
aquatic ecosystem, the proportion of each evaporation component depends on the wetland cover
characteristics. Important evaporation differences among open water and aquatic plant covers have
been reported worldwide [30–33]. The evaporation from aquatic plant covers plays an important role
on the wetland hydrology [34]. However, information on evaporation rates are limited for tropical plant
species. From the 100 macrophytes reported in Palo Verde National Park [14,15], only T. dominguensis
and E. crassipes [28,34–37] have published values of evaporation in other regions (e.g., Suriname,
South Africa, United States). The effect of invasive plants as T. dominguensis and E. crassipes in wetlands
is linked to the increment of evaporation and the subsequent reduction of the water surfaces [38–40].
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Macrophytes information is available worldwide by their use in waste water treatment plants [41–43].
However, most of the tropical macrophytes lack the information about its evaporation rates.

The active management of Palo Verde National Park has generated changes on wetland surface
cover. Hence, it is important to quantify the evaporation flux from the different macrophyte species to
understand the effect of cover changes on the wetland hydrology. The estimation of evaporation rates
in wetlands has been performed with eddy covariance systems and lysimeters [28,33,44]. The eddy
covariance system allows to estimate the evaporation at ecosystem scale but its reliability depends on
the homogeneity of the footprint [45]. Additionally, it is important to investigate the difference between
individual wetland covers where the eddy covariance system is not suitable. Therefore, the lysimeter
technique allows the estimation of evaporation rates of individual covers at a smaller scale [46].
This work determines the evaporation rates of six wetland covers from Palo Verde National Park
during dry season by calculating the evaporation, the reference evaporation and the crop coefficient
for each wetland cover.

2. Materials and Methods

2.1. Study Site

Palo Verde National Park (N: 10◦20′35′′–W: 85◦20′26′′) is situated in the Guanacaste Province,
in the North–West of Costa Rica [10]. It is located 20 km North from the Tempisque river mouth into
the Gulf of Nicoya (Figure 1). Palo Verde National Park covers a seasonal marshland between the
Tempisque river and limestone hills in the North of the wetland, as well as one of the last relicts of
tropical dry forests in Costa Rica [47,48]. Climatic data recorded between 2000–2017 report a mean
annual precipitation of 1380.5 mm year−1 (Figure 2). A precipitation surplus can be observed between
May and November (wet season), with a short dry period in July. While the dry season of the national
park is between December and April. The mean annual temperature is 27.5 ◦C and varies between
26.3 ◦C and 29.3 ◦C on a yearly basis. The potential evaporation is 1834.3 mm year−1. Winds are present
all over the year, but they get stronger (>3 m s−1) during the dry season coming from the North–East.

The wetland soil is classified as Vertisol (USDA Soil Taxonomy) [49]. They have a high content
of expansive clay with a strong acidity [50] as a consequence of the seasonal flooded conditions [19].
The soil is completely saturated at the beginning of the dry season (December and January), developing
cracks at the end of the dry season while the lagoon gets dry [7]. Two geomorphological units describe
the area: the plain region with slopes between 0–5% and an inclination towards the Tempisque river;
and the hills formed from limestone and the Nicoya complex with maximum elevations of 170 m.a.s.l.
Both geomorphological formations lack of a developed drainage system [11]. The meandered drainage
pattern of Tempisque river allows the alluvial plain formation, as well as the lagoons and marshlands
that surround it [51]. This drainage pattern enhances the side bank erosion in the river margins,
altering the water course creating sediment sequences in different sections of the fluvial system [52,
53]. The wetland vegetation is dominated by emergent plants such as T. geniculata, Canna glauca L.
and T. dominguensis. With the presence of floating plants such as Ceratopteris pteridoides Brongniart,
Salvinia auriculata Aubl.; and submerged species such as N. guadalupensis. Some herb species are also
important such as Paspalum repens P.J. Bergius in the driest areas and N. natans in small ponds [15,24].
The presence of these species decrease gradually with the lagoon water level reduction, excepting for
T. dominguensis.
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Figure 1. Geographical location of Palo Verde National Park in the Pacific North–West of Costa
Rica. The photograph in the map shows the result of mechanical management activities within
the lagoon with the consequently vegetation growth on the open water surfaces (GIS data source:
Ortiz-Malavassi [49]).
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Figure 2. Climate diagram of Palo Verde National Park based on 18 years of measurements (2000–2017)
of the meteorological station from the Organization for Tropical Studies in Palo Verde Research Station.

2.2. Experimental Design

Four plant species forming patches in the open water bodies of Palo Verde wetland were selected
to evaluate the evaporation rates during the beginning of the dry season. N. natans is a floating plant
of the Fabaceae family used as ornamental [54]. This plant is characterized by the presence of floating
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stems covered by a spongy tissue allowing it to float [15] and by the presence of N2-fixing nodules in
the roots [55,56]. This species does not have information about evaporation rates and/or its influence
on the evaporation process of a wetland. E. crassipes is a rooted Pontederiaceae plant characterized
by its floating life form [15]. This species is used for waste water treatment [57,58] or as biofuel [59].
Information about its evaporation rates is available, but it is scattered in different climate conditions
around the world [34,37,60–62]. T. geniculata is an erectus plant from the Marantaceae family. It grows
in dense populations along the marsh edges attached to the ground [63]. There is no data published on
the evaporation rates of this plant. The last plant selected in this study was T. dominguensis. It is an
emergent plant [15] from the Typhaceae family. During the first growing stages in solitary, the roots
allow the anchorage to the ground during flooding periods. Later on during its adulthood this species
has a well–developed root system. This species has been widely studied worldwide and information
about its evaporation is available [28,31,36,64–68].

The plant species selection was done based on a preliminary sampling, where N. natans was the
most abundant species. Specimens of all species were collected from the wetland, placed in lysimeters
filled with water and the required substratum. Six experimental units were established in the trial
and each experimental unit included five replicates. Four experimental units represented the selected
species, one with all the species together (Mixed) (one plant of N. natans, two plants of T. geniculata,
one plant of E. crassipes and one plant of T. dominguensis), and the last one the open water body
(Water) (Figure 3). Mature plants of N. natans (three plants per lysimeter), T. geniculata (five plants per
lysimeter) and E. crassipes (three plants per lysimeter) were collected to use them in the lysimeters.
However, young plants of T. dominguensis (four plants per lysimeter) were chosen accordingly with the
growing stage of the specimens of this species available in the open water bodies from the managed
sections of the wetland. These sections are characterized by a water level of 1 m depth at the beginning
of the dry season. Lysimeter plant densities were determined through 35 samplings performed in
different locations within the wetland. The plant sampling was based on a PVC frame representing the
same area of the lysimeters (0.19 m2).

A B 

D 

C 

E F 

Figure 3. Pictures of the selected wetland covers. (A): Neptunia natans; (B): Thalia geniculata;
(C): Eichhornia crasipes; (D): species mix (Mixed); (E): Typha dominguensis; (F): Open Water.
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Evaporation rates were quantified using the lysimeters due to their capability to be adapted
to different plant species and substratum. Additionally, they allow the estimation of evaporation
rates from complete plants [33,44,69]. Each lysimeter had a capacity of 59.1 L and were made with
Sterilite R© containers. The lysimeters were filled with a layer of non–disturbed soil from the lagoon
floor (5 cm depth) and a layer of 25 cm depth filled with wetland water (Figure 4). The water level was
kept at 1.4 cm below the container edge through a pipe placed in one side of the lysimeter. The water
excess was drained towards an overflow reservoir next to the lysimeter. The lysimeters were randomly
distributed in a 50 m2 area next to the meteorological station of the Organization for Tropical Studies
(OTS) within the Palo Verde National Park.

Figure 4. Lysimeter design used during the experiment (left image) and the distribution of lysimeters
(right image) at the experimental site in Palo Verde National Park.

2.3. Measurement and Estimation of Evaporation Rates

The measurements were carried out during the beginning of the dry season, considering the
importance of the evaporation flux as the main driver of the wetland hydrology during this season.
The water availability and growing stage of the macrophytes during this period allowed to determine
the crop coefficient of each of the wetland covers. Daily measurements were performed along
45 consecutive days between December 2012 and January 2013. Each lysimeter measurement was
done on a daily basis before 07:00 a.m. The meteorological data was collected every second and
summarized in 30 min time intervals by the meteorological station from the OTS (Detailed data showed
in Figure A1). This data was used to calculate the reference evaporation (Eref) with Penman-Monteith
equation (Equation (1)) according to Allen et al. [70] (Equation (3) of their manuscript). In this equation,
Eref is the reference evaporation (m s−1), Rn is the surface net radiation (MJ m−2 d−1) and G is the soil
heat flux (MJ m−2 d−1). The term (es − ea) is the air vapor pressure deficit (VPD) in kPa, defined as
the difference between the saturation vapor pressure (es) and the actual vapor pressure (ea). ρa is the
air density (1.225 kg m−3), ρw is the water density (1.0 kg m−3) and cp is the specific heat of the air
(1.013 × 10−3 MJ kg−1 ◦C−1). ∆ is the slope of the vapour-pressure relationship (kPa ◦C−1), λ is the
latent heat of vaporization (2.45 MJ kg−1) and γ is the psychometric constant (0.054 kPa ◦C−1). rs and
ra are the bulk surface resistance (s m−1) and aerodynamic resistance (s m−1), respectively. The rs and
ra values were determined for a hypothetical reference crop with 0.12 m of height and 70 s m−1 of
surface resistance.

Eref =
1

λρw

∆(Rn − G) + ρaCp
(es−ea)

ra

∆ + γ
(
1 + rs

ra

) (1)

Daily evaporation rates (E) in mm d−1 were calculated with the water balance equation
(Equation (2)). In this equation, P is the daily precipitation (mm d−1) recorded by the meteorological
station and Q is the water excess (mm d−1) measured as the overflow (mL) from the lysimeter. The term
dS
dt is the change in the lysimeter water storage (mm d−1), which corresponds to the water added
manually every morning (mL) to replenish the evaporated water. Water was added in case the
precipitation was not enough to fill the lysimeter or if the water level was lower than the overflow
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drainage outlet in the lysimeter. All the volumetric measurements were performed with a measuring
cylinder of 1.0 L with a scale of 1 mL. The collected values in mL d−1 were translated into mm d−1

according with the lysimeters area and water density (ρw). Crop coefficient (Kc) was calculated from
the relationship between E and Eref as it was proposed by Allen et al. [70] in the Equation (3):

E = P−Q−
(dS

dt

)
(2)

Kc =
E

Eref
(3)

The accumulated evaporation (Eac) for each lysimeter was estimated using Equation (4). In this
equation, Ei is the evaporation rate of each lysimeter, i represents each day of measurement and n
corresponds to the total number of consecutive measurements performed.

Eac =
n

∑
i=1

Ei (4)

2.4. Data Analysis

The first five days of measurements were not used during the analysis because they were
considered as the minimum time required for the plants to adapt to the lysimeters. The analysis
of variance (ANOVA) was performed to determine the differences among the evaporation rates
of the wetland covers. This was done based on a completely randomized experimental design
by evaluating independently the reference evaporation (Eref), evaporation (E) and crop coefficient
(Kc). When significant differences were identified (p = 0.05) a Fisher Least Significant Difference
(LSD) test was applied to identify the homogeneous groups. The assumptions of normality and
homocedasticity of the residuals were tested with the Shapiro-Wilk normality test and Levene’s test,
respectively. The data satisfied the assumptions of normality and homocedasticity during the analyses.
A Pearson correlation analysis was also applied among the evaporation rates of each cover and the
main meteorological variables measured by the OTS station. This analysis was performed with three
different significance levels: p = 0.05, p = 0.01 and p = 0.001. Wind speed data were plotted using the
open source software WRPLOT [71]. All the analyses were performed with the software R [72].

3. Results

The daily meteorological conditions were similar for all the 40 days of the study period. The mean
daily temperature was 27.6 ◦C. Values above 25 ◦C were registered around noon. Few nights registered
temperatures between 20 ◦C and 25 ◦C (Figure 5). Relative humidity kept a mean daily value of 56.7%,
oscillating between 40% to 70% on a daily basis. This condition led to a maximum vapor pressure
deficit of 3.62 kPa around noon and 1.0 kPa at night. The wind blew from NNE with an average
speed of 2.96 m s−1. Specifically, 3% of the time the wind speed was recorded to be less than 0.5 m s−1,
26.6% between 0.5 m s−1 and 3.0 m s−1, and 70.4% of the time higher than 3 m s−1 (Figure 6). Only one
precipitation event was registered during the 40 days of measurements, with a total precipitation of
1.27 mm d−1 on 27 December 2012.
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Figure 5. Density plots from the meteorological measurements during the study period at Palo Verde
National Park, Costa Rica. Data recorded by the meteorological station of Palo Verde research station.
The dots represent the first 50 points with lower densities among all measurements. Detailed data
showed in Figure A1.
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Figure 6. Wind speed distribution per azimuth and scalar category of Palo Verde National Park during
the study period. Plot generated with WRPLOT [71].

The average Eref was 5.0 mm d−1 with small variability during the study period considering
the standard deviation of 0.41 mm d−1. An accumulated evaporation of 200.0 mm was lower than
all the evaporation measured from the wetland covers for both accumulated and daily values.
The wetland covers T. geniculata, T. dominguensis and Mixed, showed the highest evaporation rates
with values above 10 mm d−1 (Table 1). T. geniculata evaporates 17.0± 2.42 mm d−1 on average, with a
slightly decreasing trend towards the end of the period. Contrary to T. geniculata, T. dominguensis
intensified the evaporation in January but the average evaporation remained lower than T. geniculata
with 14.3± 3.39 mm d−1. Evaporation from the Mixed cover was 13.5± 2.44 mm d−1 with standard
deviation similar to T. geniculata (Figure 7).

Water cover had the lowest daily evaporation from all the covers with a value of
8.23± 1.56 mm d−1, while the evaporation rates from N. natans and E. crasipes were 9.3± 1.61 mm d−1

and 9.5± 1.48 mm d−1, respectively. These two species did not show tendency to increase nor decrease
the evaporation rates as T. dominguensis and Mixed covers do (Figure 7). During the only precipitation
event registered (December 27th), the average evaporation rates from T. geniculata, T. dominguensis,
E. crasipes and N. natans experienced a reduction of almost 50% with respect to their own average.
Meanwhile, the reduction on the mixed cover was about 40% of the daily average.

The estimated Kc values of the different covers were bigger than 1.5. The open water cover
had the lowest Kc (1.65). Kc values of N. natans and E. crasipes were close to each other (1.85 and
1.90, respectively), meanwhile T. geniculata had the highest Kc value (3.43). The Mixed cover and
T. dominguensis had similar Kc values, with evaporation rates of about 2.68 and 2.83 times more than
Eref, respectively (Table 1).

The statistical differences (p< 0.05) among daily evaporation rates of the wetland covers showed
Open Water and T. geniculata as the ones with the lowest and highest daily evaporation rates,
respectively (Table 1). Additionally, N. natans and E. crasipes were grouped with the second lowest
evaporation rates. Mixed and T. dominguensis resulted as the second highest evaporation rates.
Despite these differences, the accumulated evaporation among Open Water, N. natans and E. crasipes did
not differ. The estimated crop coefficients showed values higher than one, depicting high evaporation
with respect to the reference evaporation. Open Water resulted with lowest crop coefficient (1.65),
while T. geniculata evaporated 3.43 times more than the reference evaporation (Table 1). The statistical
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differences (p< 0.05) showed by the six wetland covers, grouped the crop coefficients into four
homogeneous groups. All of them followed the same pattern as the daily evaporation.

Table 1. Average values of crop coefficient, daily and accumulated evaporation rates for the selected
wetland covers at Palo Verde National Park, Costa Rica. Each average is based in 40 days of measurements
and five replicates. Average values on the same column with similar lower case letters (a,b,c,d) do not show
statistical differences (p= 0.05) according to the Fisher LSD test.

Wetland Cover
Foliar Evaporation Crop

Area Daily Averages Accumulated Coefficient
(cm2) (mm d−1) (mm) (-)

Reference Evaporation N.A. 5.0 200.0 1.0

Open Water 0 8.2 a 329.2 a 1.65 a

N. natans 11.8 9.3 b 369.8 a 1.85 b

E. crasipes 61.1 9.5 b 379.6 a 1.90 b

Mixed 70.4 13.5 c 537.8 b 2.68 c

T. dominguensis 55.6 14.3 c 570.6 b 2.83 c

T. geniculata 152.9 17.0 d 681.0 c 3.43 d
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Figure 7. Mean daily evaporation from six wetland covers of Palo Verde National Park, Costa Rica.
Sampling period: 40 days.

Correlation analysis among daily evaporation values and meteorological variables showed to be
significant (p <0.001) ranging from 0.53 to 0.73 (Table 2) for air temperature, solar radiation and wind
speed. Relative humidity was inversely proportional to daily evaporation rates with correlation values
between −0.83 to −0.63, except for T. geniculata (Detailed information if Figure A2). Daily evaporation
rates of N. natans (r = 0.38, p < 0.05) and T. geniculata (r = 0.32, p < 0.05) were poorly correlated to air
temperature. All the other wetland covers were equally influenced by the meteorological parameters
(p< 0.001). Excepting for T. geniculata, the atmospheric pressure exerted a similar effect during the
evaporation process for all the covers with a correlation coefficient close to 0.5 (p< 0.05).
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Table 2. Person correlation analysis among the evaporation from wetland covers and meteorological
variables during the study at Palo Verde National Park, Costa Rica. Significant correlations among
evaporation and meteorological variables were tested with the following significance levels: p = 0.05 (*),
p = 0.01 (**) and p = 0.001 (***).

Wetland Air Solar Relative Wind Atmospheric Vapor Pressure
Cover Temperature Radiation Humidity Speed Pressure Deficit

Open Water 0.53 *** 0.61 *** −0.75 *** 0.58 *** 0.44 * 0.77 ***
N. natans 0.38 * 0.60 *** −0.63 *** 0.54 *** 0.45 * 0.60 ***
E. crasipes 0.50 *** 0.62 *** −0.70 *** 0.59 *** 0.55 ** 0.68 ***

Mixed 0.70 *** 0.73 *** −0.83 *** 0.63 *** 0.40 * 0.85 ***
T. dominguensis 0.56 *** 0.62 *** −0.77 *** 0.65 *** 0.50 ** 0.75 ***

T. geniculata 0.32 * 0.41 ** −0.21 0.02 −0.06 0.27

4. Discussion

Water temperature in tropical wetlands is affected by water depth, plant cover thickness,
air temperature and solar radiation [73]. Evaporation differences among wetland plants are influenced
by microclimatic conditions, which regulate the stomata opening and clousure processes [34,65,67,74].
This leads to a total contribution of 38% from the total evaporation in marshland ecosystems [75]
similar to Palo Verde National Park. Reported values of evaporation for E. crasipes range from
1.02 mm d−1 to 9.8 mm d−1 depending on the ecosystem, season and climatological conditions [35].
Floating plants as N. natans and E. crasipes are influenced mainly by radiation and vapor pressure
deficit. Temperature has a strong influence (p< 0.001) on the evaporation of the E. crasipes, Open Water,
Mixed and T. dominguensis covers. Meanwhile, the evaporation rates of N. natans and T. geniculata
are driven by solar radiation, and the vapor pressure deficit also influences N. natans. The emergent
macrophyte T. dominguensis and the Mixed cover are strongly influenced (p< 0.001) by wind speed.
Despite the differences of foliar area among wetland covers, the accumulated evaporation in Open
Water, N. natans and E. crasipes do not differ. The estimation of the VPD based on the relative humidity
measurements provides an indication of the maximum water vapor that can be allocated to the
atmosphere. The VPD and relative humidity are the main drivers of the evaporation process during
this period for all the covers excepting T. geniculata. This reflects the lack of correlation between
evaporation and VPD or relative humidity is not unusual and it has been documented with other
macrophytes as Typha latifolia L., Hacer rubrum L. and Salix babylonica L. with correlations between
−0.14 and −0.46 in the United States [33].

Differences and similarities among evaporation rates and crop coefficients of wetland covers
are driven by the physiological characteristics of the plants [34]. Stomatal conductance of any plant
determines the maximum water vapor transfer during transpiration, and it is an important factor in
worldwide wetlands [76]. N. natans and E. crasipes are floating macrophytes with leaves located close
to the water surface (the plants are not taller than 20 cm). This keeps the plants within a more saturated
atmosphere reducing the total evaporation. Previously, it was though that floating macrophytes such
as E. crasipes reduce evaporation from open water surfaces because of its shadow effect [34]. However,
this assumption does not include the transpiration process, which increases the evaporation rates from
E. crasipes plants compared to open water surfaces [37,60,61]. Consequently, both covers N. natans and
E. crasipes behave similar.

The presence of macrophytes increases considerably the evaporation from open water bodies [30,40].
Any increment in the number of plants per unit of area in an open water surface represents an augment in
the physiological water demand for those plants [38]. For this reason the intermediate daily evaporation
rate of the Mixed cover is similar to the evaporation rate of the T. dominguensis cover. T. dominguensis
has leaves up to 50 cm above the water surface, exposing the plants to a less saturated atmosphere but
more windy, leading to high evaporation. T. dominguensis is adapted to hypoxia thanks to the presence
of aerenchyma tissues [77]. Additionally, it is a drought tolerant species highly efficient during its
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photosynthesis process [78]. This enables the species to adapt to dehydration, increasing the water supply
through the root system and reducing the water consumption when it is not available [32]. Evaporation
rates in Typha sp. show high values per unit of foliar area as a consequence of the stomata distribution on
both sides of the leaf [33]. Additionally, the leaf age affects considerably the evaporation rates, making
younger leaves to be more efficient due to the high productivity fixing new tissues. Thus leading towards
a higher evaporation rate than older plants [76]. Previous studies showed the dependency of evaporation
rates from macrophytes to the plant size as a proxy of the fixed plant biomass [34]. In this case, the
evaporation rates of E. crasipes and Typha latifolia depend on plant diameter, height and solar radiation.
Unpublished data from Palo Verde National Park showed that evaporation rates of T. dominguensis depend
on total biomass during lysimeter experiments. These evaporation rates differ between dry and wet
season evaporating between 3.7 mm d−1 to 4.7 mm d−1, respectively [79]. This implies that even the
younger plants of T. dominguensis export more water to the atmosphere than mature plants of N. natans or
E. crasipes. Meanwhile, younger plants of T. dominguensis export the 84% of the evaporation registered by
T. geniculata.

T. geniculata is the plant with the biggest leaf area (152.9 cm2) allowing the plant to pump more
water to the atmosphere than the other wetland vegetated covers and open water. T. geniculata develops
its foliar architecture according to the resources availability [32], reason why this species is able to
produce bigger leaves in Palo Verde wetland. T. dominguensis is a highly adaptable species, with high
evaporation rates when fully adult [67]. The high numbers of T. geniculata can affect the wetland
hydrology by increasing the evaporation during shorter periods of time than T. dominguensis due to
its senescence at the end of the dry season. Despite E. crasipes is an abundant species in the wetland,
it would affect less the wetland than T. geniculata and T. dominguensis. Under subtropical climate
conditions, E. crasipes exhibits a crop coefficient value between 1.31 and 2.52, whilst T. latifolia show
1.05 to 2.50 [34,62]. There is no data reported for N. natans nor T. geniculata in its adult stage.

Some authors have referred to the ratio between macrophytes evaporation (E) and open water
evaporation (Ew) as an alternative to the crop coefficient in wetland ecosystems. As an example,
E. crasipes in the Nile Delta is characterized by a value of E

Ew
of 2.12 [38], meanwhile in this experiment

this value is 1.15 (value estimated from the results of Table 1). The crop coefficient has been widely used
in agriculture for irrigation management [80,81] and it can be applied in hydrological modelling of
agricultural wetlands [82]. The same principle can be also applied to wetlands with seasonal vegetation
where the plant growing patterns follow a similar trend like short term crops. The estimation of the crop
coefficients for macrophytes in the Palo Verde wetland describes the evaporation rates of full growth
plants except for T. dominguensis. Because the growing stage of the selected plants of T. dominguensis
matches the earlier growing stage shared with the other covers in the recently cleared zones in Palo
Verde wetland. Considering the lack of an eddy covariance system to measure the evaporation from
the wetland, the crop coefficients can be used in combination with the monitoring of the wetland cover
and the meteorological data. This to determine the evaporation rate from the managed ecosystem.
Unlike eddy covariance systems, meteorological data is more accessible in tropical wetlands.

5. Conclusions

This study quantified the evaporation rates of six wetland covers of Palo Verde National Park during
the dry season. The observed evaporation rates were comparably higher than the open water cover.
The reported differences among evaporation values can be explained due to the added effect of the
transpiration of macrophytes. This as a consequence of different foliar areas and biomass as a result of
plant size and age. Additionally, the evaporation rates were strongly correlated to the vapour pressure
deficit for all the covers excepting for T. geniculata which was dependent on solar radiation. These results
demostrate that the increment of vegetated areas within the Palo Verde wetland of floating–leaved and
emergent macrophytes, increase the water vapor flux to the atmosphere. Hence, controlling the extent
and growth of these plants, is a necessary management practice for the restoration of the natural habitats.
Among the aquatic plants investigated, T. dominguensis and T. geniculata have the highest evaporation
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rates and the biggest impact on the evaporation flux. Hence, further research should focus on studying
how to improve the methods to control the population grow of these two species.
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Figure A1. Meteorological parameters measured in 30 min intervals at the meteorological station of
Palo Verde Research Station, Costa Rica.
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Figure A2. Pearson correlation matrix among the evaporation rates of the selected wetland covers and
daily averages of the measured meteorological parameters.
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