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Abstract: Typhoons are major marine dynamic disasters that affect the coastal ocean areas of China.
During a typhoon, the coupling dynamic factors, such as wind, waves, storm surges, and river
runoff, greatly enhance the mass and energy exchange at the various interfaces of the ocean. A fully
coupled atmosphere-wave-ocean model in the South China Sea (SCS) was established based on the
WRF, SWAN, and ROMS models. The variation of sea surface salinity (SSS) and ocean subsurface
salinity caused by Typhoon Kai-tak (201213) was analyzed by the fully coupled model, and the
basic characteristics of the response of the upper ocean to the typhoon are given in this paper. The
simulation results demonstrate that the salinity of the sea surface showed a sharp change during
Typhoon Kai-tak, and it changed gradually after entering the recovery period. During the passage of
Typhoon Kai-tak, the disturbance caused by strong winds strengthened the mixing process of the
water in the Pearl River Estuary (PRE) and its adjacent waters. As the typhoon developed, under the
influence of Ekman pumping, the mixing effect between the subsurface and the bottom and the upper
water was obvious. Before the impact of Typhoon Kai-tak, the salinity had obvious stratification
characteristics along the water depth. Due to the influence of the storm surge, the surface water
with increased salinity was transported to the estuary, which led to an increase in the salinity of
the estuary’s surface water. In this condition, it is highly likely for there to be saltwater intrusion.
The salinity distribution characteristics of three schemes (ROMS model only, coupled WRF-ROMS
model, and fully coupled WRF-SWAN-ROMS model) were compared in this study. In the fully
coupled WRF-SWAN-ROMS model, the disturbance of the bottom water was the most obvious, and
the salinity value was greater than that of the coupled WRF-ROMS model, which indicates that under
the influence of waves, the mixing and exchange abilities were strengthened.

Keywords: sea surface salinity (SSS); saltwater intrusion; storm surge; Pearl River Estuary; COAWST
modeling system
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1. Introduction

The typhoon is one of the most serious natural disasters that affects the coastal ocean environment
in China [1–3], especially in the eastern and southern estuaries, such as the Yangtze River Estuary [4–6]
and the Pearl River Estuary [7–9]. During a typhoon, the coupling of various dynamic factors, such
as wind, waves, storm surges, and river runoff, greatly enhances the mass and energy exchange of
various interfaces in the ocean and is accompanied by heavy rain and storm runoff on the surface [10].
Scouring can transport a large amount of minerals from the land to an estuary offshore, causing
sudden changes in the water quality of the estuary, which may have an important impact on the
marine ecological environment [1,9,11–13].

On the one hand, typhoon transit strengthens the mixing process of offshore water [14–16].
On the other hand, the heavy rainfall brought by a typhoon rapidly increases river runoff into the
sea, and a large amount of land-based materials are washed away and brought into the estuary
offshore area [17–20]. These changes due to the influence of a typhoon significantly affect the physical,
chemical and biological processes of estuarine offshore waters, which in turn have an impact on the
structure and function of the ecosystem [13,21–23]. Studying the changes of the estuarine nearshore
environment under the influence of a typhoon and its ecological effects are of great importance for
further understanding the evolution process of ecosystems in this region on a long-term scale [24,25].

Field observations show that the salinity of the surface water of an estuary usually shows a sharp
change during a typhoon and the resulting rain, which gradually rises after entering the recovery
period [26–28]. During typhoon crossing, the disturbance caused by strong winds strengthens the
mixing process of the estuary and its adjacent waters [7,13]. However, this process has a passing
impact on the water environment, and the runoff diluting water expansion and the external seawater
intrusion play a greater role in changing the water environment after a typhoon. Among these, the
strengthening of a typhoon after the expansion of fresh water greatly affects the upper water, the upper
salinity decreases after the typhoon, and the nutrient salt concentration increases significantly. External
seawater intrusion substantially changes the bottom water environment. The salinity of the bottom
layer increases after a typhoon, and the nutrient concentration of nitrogen and silicon decreases.

Typhoons or tropical cyclones are strong wind events in the climate system and are a strong form
of air-sea interaction. The strong vertical mixing and wind field generated by a typhoon has a major
impact on the upper ocean dynamics and ecosystem [29]. Due to typhoons, there is a decrease in sea
level, a decrease in sea surface temperature, an increase in phytoplankton blooms and a decrease in
primary productivity, which also affect marine fisheries [30–32]. Typhoons mainly affect the marine
ecological environment through two physical mechanisms: (1) after a typhoon, a cold vortex is formed,
causing seawater to upwell and the lower layer of cold nutrient water is transported to the upper
layer [33,34]; and (2) the typhoon intensifies the vertical mixing of the upper ocean by a strong wind
process [35–38].

At present, most research on the sea surface salinity (SSS) response to typhoons is limited to the
estuary area. According to the physical and biochemical environmental conditions of the estuary, SSS
may show an upward or downward trend after typhoon transit [39–41]. However, studies on marine
ecological factors, especially SSS and the response to typhoon transit, are limited and have not been
discussed in detail [42–44]. The South China Sea (CSC) is the largest marginal sea in the Pacific Northwest,
and is also a frequent typhoon zone, but it is difficult to obtain measured data during typhoons.

Due to the harsh meteorological conditions during typhoon transit, the use of on-site observation
methods in an estuary to study the changes in the marine environment before and after a typhoon
is very limited. The numerical simulation method is an effective way to study the distribution
characteristics of fresh and salt water in an estuary under the influence of a typhoon.

In this study, a fully coupled atmosphere-wave-ocean model [1,7] was used to simulate the salinity
changes in the upper ocean under the influence of a typhoon. The coupled WRF-SWAN-ROMS model
in the South China Sea was established based on the model coupling toolkit (MCT), the mesoscale
atmospheric model WRF, the wave model SWAN and the regional ocean model ROMS in this study.
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The passage of Typhoon Kai-tak (201213) was observed in detail by a numerical model. Numerical
observations revealed typhoon-induced sea surface salinity change. The typhoon wind and pressure
field, typhoon waves, and storm surge under the influence of Typhoon Kai-tak were simulated based
on this coupled model and some other coupled schemes. The characteristics of the atmospheric, wave
and oceanic results in the South China Sea under the influence of this typhoon were calculated. The
characteristics of surface salinity distribution and subsurface salinity distribution in the South China
Sea during Typhoon Kai-tak were also analyzed in this study. The response of the upper ocean during
Typhoon Kai-tak was studied to reveal the characteristics of SSS and subsurface salinity changes.

2. Model Setup and Case Study

2.1. Overview of Study Area

The South China Sea is a continental margin of Southeast Asia, which is part of the western Pacific
Ocean and is the third continental margin of the world (Figure 1a). It covers an area of about 3.56
million km2, and has an average water depth of about 1212 m. The deepest part is the central deep-sea
plain, which reaches about 5567 m. In addition to being a main maritime transport route, the South
China Sea is also rich in oil and natural gas. The Pearl River Delta (PRD) is a delta formed by the
impact of the Xijiang River, Beijiang River, and Dongjiang River (Figure 1b). It covers an area of about
56,000 km2 and is the second largest delta in China. The Pearl River Estuary (PRE) is the estuary where
the delta network river and the remaining estuary bay coexist. The Pearl River Estuary has a large
runoff, small tidal range and small concentration of sediment. The rivers in the Pearl River Estuary
area develop a dense river network.
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Figure 1. The geographical location of the study area: (a) the South China Sea; (b) the Pearl
River Estuary.

The Pearl River Estuary system has eight radially distributed diverted waterways that flow into
the South China Sea. The salt and fresh water near the estuary are generally mixed, and there is a
strong mixing type in the dry season. The flood period is highly layered and there is an obvious salt
wedge. The salt water in the dry season is far behind the Humen and Yamen waterways, and can reach
Guangzhou, Zhongtang, Xinhui and other places in dry years.

Fresh water from the Pearl River Estuary spreads out to the South China Sea, and there are two
axial directions. First, it is perpendicular to the coast and points to the southeast. In summer, it drifts
to the northeast due to the influence of the southwest monsoon. It can expand to more than 100 km
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away from Hong Kong during the flood period and shrink to the shore in winter and spring. Second,
it is parallel to the coast year-round along the southwest. During the flood period, while the surface
water of the offshore spreads to the South China Sea, there is deep shelf water offshore to compensate
the movement along the coast. On average, there is one landfalling typhoon every year in the Pearl
River Estuary, although there can be four or five in individual years. Affected by typhoons and tropical
depressions, the estuary increases surge level significantly, with a maximum level increase of 1.58 m.
During a typhoon, the maximum wave measured in Henglan Island (Hong Kong) was as high as 10.4 m.

2.2. Numerical Modeling: The COAWST Model System

The COAWST model system was presented and developed by Warner et al. [45,46] and includes
the mesoscale atmospheric model WRF, the wave generation and propagation model SWAN, and the
regional ocean model ROMS. The model coupled toolkit (MCT) as the coupler is used to exchange
physical information between different model.

The fully coupled model was used to simulate Typhoon Kai-tak (201213). The simulation time
includes the entire process of development and movement of Kai-tak in the South China Sea region
(from 2012-08-15 00:00 to 2012-08-18 06:00). The simulation domains were the South China Sea and the
nearby region (0◦N, 102◦S to 32◦N, 130◦S), as shown in Figure 2. The d01, d02, and d03 represent the
three nesting domains of the WRF model, and the yellow and blue wireframes represent the parent
and child simulation domains of the SWAN and ROMS, respectively. Specific configuration schemes
for WRF, SWAN, and ROMS; initial conditions and boundary conditions; terrain elevation and grid
configuration; etc., and verification of the model can be found in reference [1,7].
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2.3. Computational Conditions

The fully coupled atmosphere-wave-ocean model of the South China Sea was established based
on the WRF, SWAN, ROMS models and the MCT coupler in this study. The following were the physical
exchanges between the models: (1) WRF to SWAN: 10-m wind speed (U10, V10); (2) SWAN to WRF:
sea surface roughness simulated by wave height (Hs), wave length (Len.) and wave period (Per.);
(3) WRF to ROMS: sea surface stress (τ), surface pressure, net heat fluxes, sensible heat flux, latent heat
flux, shortwave radiation flux, and longwave radiation flux; (4) ROMS to WRF: sea surface temperature
(SST); (5) SWAN to ROMS: wave height (Hs), wave direction (Dir.), wave length (Len.), wave period
(Per.) and other wave parameters, and bottom orbital velocity; (6) ROMS to SWAN: topography, zeta,
and depth-average velocity (ua and va).

The simulation results of three different computational schemes (in Table 1) were used to compare
and analyze the effects of the typhoon, surge and wave simulation results based on different coupling
models, including:
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(1) Run1 (Exp-ROMS): Only the ROMS model was used to simulate the oceanic results. This
scheme was used to observe the salinity distribution characteristics under normal dynamic conditions
(at the same time during Typhoon Kai-tak).

(2) Run2 (Exp-CWR): The coupled WRF and ROMS model was used to simulate the atmospheric
and oceanic results of Typhoon Kai-tak. This scheme was used for the distribution of salinity in
the South China Sea and the Pearl River Estuary without considering the wave dynamics under the
influence of Typhoon Kai-tak.

(3) Run3 (Exp-CWSR): The fully coupled WRF, SWAN, and ROMS model was used to simulate the
atmospheric, wave and oceanic results of Typhoon Kai-tak. This scheme was used for the distribution
of salinity in the South China Sea and the Pearl River Estuary when considering the wave dynamics
under the influence of Typhoon Kai-tak.

Table 1. The atmosphere-wave-ocean model considered in three different numerical schemes.

Run Exps Name WRF Model SWAN Model ROMS Model

R1 Exp-ROMS
√

R2 Exp-CWR
√ √

R3 Exp-CWSR
√ √ √

2.4. Selection of Typhoon: Kai-tak (201213)

Typhoon Kai-tak (201213) formed a tropical depression on the eastern sea of the Philippines on
the evening of 12 August 2012 as shown in Figure 3. Kai-tak was a mild tropical cyclone that affected
China, Vietnam, and Laos. It can be tracked back to the broad area of disturbance embedded in a
monsoonal trough that was first spotted, early on 10 August 2012. It reached the southeast of Taiwan
(16.9◦N, 127.8◦E) at about 08:00 on the 13th and continued to strengthen. The maximum wind speed
reached 18 m/s or more, and the minimum air pressure was 998 hPa. At the same time, it moved
northwestward at a speed of about 10 km/h and gradually approached the southern coast of Taiwan.
The track of Typhoon Kai-tak is shown in Figure 3.

Water 2019, 11, x FOR PEER REVIEW 5 of 17 

 

(1) Run1 (Exp-ROMS): Only the ROMS model was used to simulate the oceanic results. This 162 
scheme was used to observe the salinity distribution characteristics under normal dynamic 163 
conditions (at the same time during Typhoon Kai-tak). 164 

(2) Run2 (Exp-CWR): The coupled WRF and ROMS model was used to simulate the atmospheric 165 
and oceanic results of Typhoon Kai-tak. This scheme was used for the distribution of salinity in the 166 
South China Sea and the Pearl River Estuary without considering the wave dynamics under the 167 
influence of Typhoon Kai-tak. 168 

(3) Run3 (Exp-CWSR): The fully coupled WRF, SWAN, and ROMS model was used to simulate 169 
the atmospheric, wave and oceanic results of Typhoon Kai-tak. This scheme was used for the 170 
distribution of salinity in the South China Sea and the Pearl River Estuary when considering the wave 171 
dynamics under the influence of Typhoon Kai-tak. 172 

Table 1. The atmosphere-wave-ocean model considered in three different numerical schemes. 173 

Run Exps Name WRF Model SWAN Model ROMS Model 

R1 Exp-ROMS   √ 

R2 Exp-CWR √  √ 

R3 Exp-CWSR √ √ √ 

2.4. Selection of Typhoon: Kai-tak (201213) 174 

Typhoon Kai-tak (201213) formed a tropical depression on the eastern sea of the Philippines on 175 
the evening of 12 August 2012 as shown in Figure 3. Kai-tak was a mild tropical cyclone that affected 176 
China, Vietnam, and Laos. It can be tracked back to the broad area of disturbance embedded in a 177 
monsoonal trough that was first spotted, early on 10 August 2012. It reached the southeast of Taiwan 178 
(16.9°N, 127.8°E) at about 08:00 on the 13th and continued to strengthen. The maximum wind speed 179 
reached 18 m/s or more, and the minimum air pressure was 998 hPa. At the same time, it moved 180 
northwestward at a speed of about 10 km/h and gradually approached the southern coast of Taiwan. 181 
The track of Typhoon Kai-tak is shown in Figure 3. 182 

 183 

Figure 3. The track (a) and satellite images (b and c) of Typhoon Kai-tak (from the Hong Kong 184 
Observatory). 185 

(a)

(b) (c)

Figure 3. The track (a) and satellite images (b and c) of Typhoon Kai-tak (from the Hong Kong Observatory).



Water 2019, 11, 646 6 of 17

On 2012-08-16 05:00:00 UTC, it strengthened to the typhoon level over the north of the South
China Sea. At 06:00 a.m., the center of the typhoon was south of Zhanjiang, Guangdong Province
(18.7◦N, 118.2◦E). The maximum wind speed near the center was more than 33 m/s, and the minimum
pressure in the center was 975 hPa. It made landfall on Zhanjiang in Guangdong Province at around
12:30 p.m. on 17 August 2012. At the time of landfall, the maximum wind speed near the center was 38
m/s, and the minimum pressure in the center was 968 hPa. At 21:30 on the 17th, it made landfall again
on the China–Vietnam coast and began to weaken and gradually dissipated on the 18th. Typhoon
Kai-tak caused heavy rainfall in most parts of southern China and caused floods and other disasters,
killing 40 people and causing a total of US $554.08 million in losses.

3. Results and Analysis

3.1. Sea Level Change Influenced by Astronomical Tide

For comparison with the ocean dynamics characteristics under the influence of a typhoon, the
astronomical dynamic characteristics during the influence of Typhoon Kai-Tak were calculated and
analyzed in this study. In this scheme (R1, ROMS model only), only the influence of the astronomical
tide was considered, and the dynamic factors such as the atmosphere and waves (typhoon and waves)
were not added.

Based on the R1 scheme (ROMS only), a three-dimensional ocean model over the South China
Sea was established. According to the relevant parameter configuration, the tidal level change process
in the South China Sea region from 2012-08-15 00:00 UTC to 2012-08-21 00:00 UTC was simulated.
Figure 4 shows the simulated results of the astronomical tide level in the northern South China Sea
during Typhoon Kai-tak from2012-08-16 00:00 UTC to 2012-08-17 20:00 UTC.
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3.2. Salinity Distribution Driven by Astronomical Tide

Figure 5 shows the distribution of stratified salinity in the northern South China Sea, under only
the astronomical dynamic forcing conditions during the Typhoon Kai-tak. It can be seen from Figure 5
that the surface salinity of the northern South China Sea was mainly distributed between 30 and
35 practical salinity units (PSU). The salinity of the Pearl River Estuary and its adjacent waters was
relatively low less than 28 PSU, the surface salinity was low, and the bottom salinity was relatively
large. According to the observations of the salinity distribution of the surface waters in the nearshore
of the South China Sea in August 2012, it was found that the salinity in the estuary and nearshore
areas was relatively low, especially in the Pearl River Estuary and its adjacent waters.

Water 2019, 11, x FOR PEER REVIEW 7 of 17 

 

3.2. Salinity Distribution Driven by Astronomical Tide 209 

Figure 5 shows the distribution of stratified salinity in the northern South China Sea, under only 210 
the astronomical dynamic forcing conditions during the Typhoon Kai-tak. It can be seen from Figure 211 
5 that the surface salinity of the northern South China Sea was mainly distributed between 30 and 35 212 
practical salinity units (PSU). The salinity of the Pearl River Estuary and its adjacent waters was 213 
relatively low less than 28 PSU, the surface salinity was low, and the bottom salinity was relatively 214 
large. According to the observations of the salinity distribution of the surface waters in the nearshore 215 
of the South China Sea in August 2012, it was found that the salinity in the estuary and nearshore 216 
areas was relatively low, especially in the Pearl River Estuary and its adjacent waters. 217 

 218 

Figure 5. Distribution of salinity in the northern South China Sea under the influence of astronomical 219 
tide. PSU: practical salinity units. 220 

The sea surface salinity of the five special positions was extracted based on the simulation results, 221 
and a time history curve was drawn, as shown in Figure 6. It can be seen from Figure 6 that the surface 222 
salinity change of each special position was relatively small under the condition of astronomical 223 

salinity(PSU)

(a)2012-08-15 00:00:00 UTC  (b)2012-08-15 00:00:00 UTC   (c)2012-08-15 00:00:00 UTC

(d)2012-08-16 00:00:00 UTC  (e)2012-08-16 00:00:00 UTC (f)2012-08-16 00:00:00 UTC

(g)2012-08-17 00:00:00 UTC (h)2012-08-17 00:00:00 UTC       (i)2012-08-17 00:00:00 UTC

(j)2012-08-18 00:00:00 UTC      (k)2012-08-18 00:00:00 UTC  (l)2012-08-18 00:00:00 UTC

surface layer                                   middle layer                                   bottom layer

surface layer                                   middle layer                                   bottom layer

surface layer                                   middle layer                                   bottom layer

surface layer                                   middle layer                                   bottom layer

Figure 5. Distribution of salinity in the northern South China Sea under the influence of astronomical
tide. PSU: practical salinity units.

The sea surface salinity of the five special positions was extracted based on the simulation results,
and a time history curve was drawn, as shown in Figure 6. It can be seen from Figure 6 that the surface
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salinity change of each special position was relatively small under the condition of astronomical
dynamic forcing. Especially in the offshore zone (P3, P4, and P5), it was almost constant around
33.5 PSU. However, in the Pearl River Estuary zone (P2), the surface salinity underwent significant
changes due to factors such as estuaries and nearshore dynamics.
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Figure 6. Surface salinity process of each special position (beginning on 2012-08-15 00:00:00 UTC): (a)
special positions; (b) surface salinity at each position (unit: PSU).

3.3. Salinity Distribution Driven by Storm Surge

Under the influence of a typhoon, the salinity field will change significantly. Figure 7 shows
the salinity field distribution of the surface, middle, and bottom layers of the northern South China
Sea based on the fully coupled WRF-SWAN-ROMS model (R3 scheme, Exp-CWSR) during Typhoon
Kai-tak. Figure 8 shows the changes in the salinity of the South China Sea before the impact of the
typhoon based on the R3 scheme. The reference time is 2012-08-15 00:00 UTC.

It can be seen from Figure 8 that in the Pearl River Estuary and its adjacent coastal ocean, due
to the influence of runoff and other dynamics factors, the salinity always remained relatively low, at
about 28 PSU. During the influence of Typhoon Kai-tak, the low salinity waters of the Pearl River
Estuary were brought to the southwest coast due to the influence of coastal ocean currents. It can
be found that in the later stage of the influence of Typhoon Kai-tak, the salinity in the southwestern
coastal ocean zone of the Pearl River Estuary decreased from about 33 to 31 PSU, and the salinity
decreased by about 6.5% of the total salinity.

The change of salinity distribution was more obvious near the Pearl River Estuary during the
influence of Typhoon Kai-tak. Figure 8a,d,g show that the surface salinity of the water in the upper
ocean reaches of the Pearl River Estuary increased by about 1.5 PSU. From Figure 8c,f,i, it can be found
that the salinity of the bottom of the water in the upper ocean reaches of the Pearl River Estuary is
reduced by about 1.5 PSU. This indicates that, under the influence of storm surge, the bottom high
salinity water was disturbed, and after exchange with the surface low salinity water, the surface
water salinity increased. Due to the influence of storm surge, the surface water with increased salinity
was transported to the estuary, which led to an increase in the salinity of the surface water of the
estuary and a decrease in the salinity of the bottom layer. This condition is highly likely to cause
saltwater intrusion.
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Figure 7. Temporal and spatial distribution of salinity fields under different stratifications influenced
by Typhoon Kai-tak based on the fully coupled WRF-SWAN-ROMS model (R3 scheme, Exp-CWSR).

It can be seen from Figure 8a,d,g that the surface salinity of the upper ocean under the influence
of this typhoon had asymmetrical distribution characteristics, which, on the right side of the typhoon
track, was even more pronounced. On the right side of the typhoon track, the surface salinity increased
by 1 PSU before the impact of the typhoon, while on the left side of the typhoon track, the surface
salinity reduced by 1 PSU before impact. Under the influence of the typhoon, the bottom high-salinity
water mixed with the surface low-salinity water under the upwelling flow process, resulting in an
increase in surface salinity. On the left side of the typhoon track, due to the combined dynamics of
wind-driven coastal currents and circulation (see Figure 9), the low-salinity water produced by the
Pearl River runoff was transported to the left side of the typhoon track, resulting in a reduction in the
salinity of the surface water on the left side of the track.
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Figure 8. Changes in stratifications salinity influenced by Typhoon Kai-tak based on the fully coupled
WRF-SWAN-ROMS model (beginning on 2012-08-15 00:00:00 UTC).
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Figure 9. Influence of wind-driven circulation on salinity distribution during Typhoon Kai-tak. (a) flow
field of wind-driven circulation; (b) change of salinity field.

Figure 10 shows the five special positions near the typhoon track (see Figure 6a) and the salinity of
the surface, middle and bottom layers and local pressure at each position. From offshore to nearshore,
the surface salinity at the P5 position (within the 1000-m isobath) increased by 0.5 PSU, and the salinity
of the middle and bottom layers remained essentially unchanged. Due to the strong Ekman pumping
of the ocean caused by the typhoon, the salinity at P4 (within the 200-m isobath) fluctuated under
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strong mixing. Under the influence of Ekman pumping, the upper ocean was completely disturbed,
and the salinity of the surface, middle and bottom layers and local pressure at P3 (within the 100-m
isobath) had the same change trend as the sea surface salinity. The value of the middle salinity was
close to the surface salinity. P1 and P2 were near the coast line, and due to the shallow depth of water,
in the later stage of the typhoon, the salinity of the surface, middle and bottom layers in the whole
section showed a similar trend.
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Figure 10. Variations in salinity of different layer at five different special positions (beginning on
2012-08-15 00:00:00 UTC).

It is worth noting that in the early stage of typhoon influence, due to the low-salinity water in the
near estuary zone (P2), the salinity of the surface, middle and bottom layers was relatively close, at
around 32 PSU. Under the influence of wind-driven circulation, the water on the east side of the Pearl
River Estuary began to affect the west side of the estuary, resulting in a decrease in the salinity of the
surface water at P2 and an increase in the salinity of the bottom layer. Under the action of the typhoon,
the water body of the section was fully disturbed and had similar salinity and trends. In terms of time,
the change of sea salinity was similar to the change of sea temperature [1,7], and it also lagged behind
the moment when the extreme value of air pressure occurred, that is, the response of sea salinity to the
typhoon had a time lag.

4. Discussions: Comparison of Salinity Distribution Under Different Coupling Schemes

In order to further explore the salinity distribution and variation characteristics of different depths
of the upper ocean under the influence of a typhoon, the S1 section (shown in Figure 9a) was selected
to plot the vertical distribution of salinity at different water depths. Figure 11a–d show the depth
distribution of the salinity in the cross section at different times based on the R3 scheme (fully coupled
WRF-SWAN-ROMS model, Exp-CWSR). Figure 11e,f show the depth distribution of the salinity in the
cross section at different times based on the R2 scheme (coupled WRF-ROMS model, Exp-CWR).

From Figure 11a–d, it can be found that, as the typhoon developed, under the influence of Ekman
pumping, the mixing action of the bottom and the surface water was obvious. It can be seen from
the red dotted frame in the comparison chart that under the influence of the typhoon, the salinity of
the water in different depths changed significantly. On 2012-08-15 00:00:00 UTC, before the impact of
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Typhoon Kai-tak, it can be seen from Figure 11a that the salinity distribution characteristics along the
water depth were more obvious. On 2012-08-17 00:00:00 UTC, after the impact of Typhoon Kai-tak,
it can be seen from Figure 11c that the water above 60-m depth was disturbed, the salinity was
relatively close, the overall salinity was around 33.7 PSU, and there were no longer any obvious
layering characteristics.

From the comparison of Figure 11c–f, it can be found that the bottom water disturbance in the
R3 scheme (fully coupled WRF-SWAN-ROMS model, Exp-CWSR) was more obvious than the water
disturbance based on the R2 scheme (coupled WRF-ROMS model, Exp-CWR). In the black dotted
frame in the figure, the salinity in this region was closer to the bottom salinity based on the R3 scheme
(Exp-CWSR), and its value was greater than the salinity value based on the R2 scheme (Exp-CWR).
This shows that the mixing ability with the upper ocean was strengthened under the influence of the
waves’ actions.
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Figure 11. Distribution of salinity in the S1 section at different times in different coupling schemes.
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The change in salinity of the surface, middle and bottom layers of the S1 section over time based on
two different coupling schemes is shown in Figure 12. Overall, the distribution of salinity in different
layers of the cross-section was similar in the two different coupling schemes. Comparing Figure 12a,b,
it can be seen that the surface salinity simulated by the fully coupled scheme (R3, Exp-CWSR) was
smaller than the surface salinity obtained by the R2 scheme (Exp-CWR).
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Figure 12. Comparison of different salinity layers of the S1 section in two different coupling schemes
(beginning on 2012-08-15 00:00:00 UTC).

It can be seen from Figure 12c,d that the salinity of the middle water exhibited a two-step
phenomenon, which first decreased and then increased. First, the salinity decreasing was due to
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the strong Ekman pumping effect of the middle layer of water under the influence of the typhoon,
which was mixed with the surface low-salinity water, resulting in a decrease in salinity. Secondly, as
the Ekman pumping continued, an upwelling flow was created in the deeper water, resulting in an
increase in the salinity of the middle seawater and a decrease in the salinity of the bottom water. This
phenomenon was also reflected in Figure 12e,f.

Comparing the extreme value of the salinity change in the two different schemes (black vertical
dotted line), it can be found that from the surface layer to the bottom layer, the extreme values of the
salinity of each layer gradually approached the center of the typhoon based on the fully coupled scheme
(R3, Exp-CWSR). That is, the asymmetric distribution of surface salinity based on the Exp-CWSR
scheme was more obvious than that based on the Exp-CWR scheme, and the change of salinity on the
right side of the typhoon track was significantly stronger than that of the left side. With the increase in
water depth, the characteristics of this asymmetric distribution were gradually weakened.

5. Conclusions

In this study, fresh and salt water distribution model in the South China Sea during Typhoon
Kai-tak was established to simulate the tide level, tidal current and salinity. The temporal and spatial
distribution of sea salinity was simulated and discussed. The simulation results of three different
coupled schemes were compared with the each other.

The following results were observed:
(1) The simulation results show that the salinity of the surface seawater showed a sharp change

during Typhoon Kai-tak, and it changed gradually after entering the recovery period. During the
passage of Typhoon Kai-tak, the disturbance caused by strong winds strengthened the mixing process
of the water in the Pearl River Estuary and its adjacent waters, but the process had a limited impact on
the ocean environment.

(2) As the typhoon developed, under the influence of Ekman pumping, the mixing effect between
the subsurface and the bottom water and the upper water was obvious. Under the influence of
the typhoon and storm surge, the salinity of the surface water increased due to the exchange of
low-salinity water with the surface layer and the high-salinity water at the bottom layer by the
disturbance processes.

(3) Due to the influence of the storm surge, the surface water with increased salinity was
transported to the estuary, which led to an increase in the salinity of the surface water of the estuary.
This condition is highly likely to cause saltwater intrusion.

(4) The salinity distribution characteristics of three schemes were compared in this study. In the
fully coupled model (R3, Exp-CWSR), the disturbance of the bottom water was the most obvious, and
the salinity value was greater than that in the coupled WRF-ROMS model (R2 scheme), which indicates
that under the influence of waves, the mixing and exchange abilities were strengthened. During the
influence of Typhoon Kai-tak, the low-salinity waters of the Pearl River Estuary were brought to
the southwest coast due to the influence of coastal ocean currents. In the later stage of the influence
of Typhoon Kai-tak, the salinity in the southwestern coastal ocean zone of the Pearl River Estuary
decreased from about 33 to 31 PSU, and the salinity decreased by about 6.5% of the total salinity.

(5) Under the influence of the typhoon, the response of ocean salinity was characterized by
asymmetric distribution and a delayed response. The response on the right side of the typhoon track
was more pronounced than the response on the left side. The ocean salinity responded to the typhoons
more than 6 h later than the pressure change, which was due to the time required for the mixing of the
upper ocean.

There is another very important driving factor in the estuary area, which is runoff. In subsequent
research, we will consider the combined effects of runoff, astronomical tides, and storm surges to study
the fresh and salt water distribution in Pearl River Estuary under the combined influence of multiple
extreme dynamic factors during a typhoon.
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