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Abstract: Although the relationships between water and energy systems have been widely researched
globally, such studies have not properly considered the coupling and driving mechanisms of the
nexus between water and energy. Based on panel data from 30 Chinese provinces and cities, we used
a three-stage Slacks-Based Measure model for Data Envelopment Analysis (SBM-DEA) to estimate the
Water-Energy coupling efficiency in China from 2003–2015. Using the Stochastic Frontier Approach
(SFA) regression model, we constructed an index of environmental factors that affect the Water-Energy
coupling efficiency from the four aspects of resource environment, social environment, economic
environment, and ecological environment. The results indicate that the Water-Energy coupling
efficiency scores in most provinces in China are high and stable, and that the coupling efficiency of
water and energy in China has a distribution pattern of northeast > east > west > central. Compared
to the results in the first stage of analysis, the efficiency values in the third stage (after removal of
environmental and stochastic factors) were smaller, illustrating that the coupling efficiency of water
and energy in China depends on a favorable external environment. In the sample period, we also
found that the improvement of the resource and social environments was the most conducive way
to improve the Water-Energy coupling efficiency. Overall, the management level of technological
innovation in China still has some room for improvement.

Keywords: Water-Energy coupling efficiency; Three-Stage Data Envelopment Analysis (DEA);
Slacks-Based Measure (SBM); Stochastic Frontier Approach (SFA); index system of environmental factors

1. Introduction

Water and energy security is not only related to the sustainable development of the social
economy, but is also directly related to economic security, ecological security, and even national
security. Sustainable development is an important area in which energy and water objectives interact.
Two of the UN’s Sustainable Development Goals (SDG) are related to improving access to energy
and water: SDG6 aims to provide available and sustainable management of water and sanitation
for all, and SDG7 aims to provide affordable, secure, sustainable, and modern energy for all [1].
At the same time, in the contexts of global population growth, climate change, and resource shortages,
water and energy shortages and conflicts are impacting the world’s economic pattern, political order,
and environmental health. Therefore, it is vitally important for countries to study the connection
between water and energy [2]. A Water-Energy framework was presented at the World Water Forum in
2012, and the World Water Day in 2014 released a report on water and energy, calling on governments
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to consider local water capacity when formulating energy development strategies [3]. At present,
research on water and energy at home and abroad is more concentrated on the utilization of water
resources in the process of energy development, including the development of traditional energy
sources, the development of new energy sources, and the consumption of energy in the processes of
water resources exploitation and utilisation.

In China, the problems of water and energy are reflected mainly in the increasing total and per capita
demands for water and energy. Urbanization and pressing policy options for high energy and water
consumption aggravate the tensions between the water and energy sectors [4,5]. Recently, water and
energy have become an important bottleneck in China’s sustainable development. The spatial distribution
of Water-Energy resources has long been extremely uneven in China and will continue to exist in the
foreseeable future. China’s water resources are distributed mainly in the southeast, with a distribution
pattern showing an east–west trend, while its energy resources are distributed mainly in the central and
northern regions, with a distribution pattern showing a significant northeast–southwest trend. Water and
energy distributions are extremely mismatched, and this mismatch is exhibiting a slow upward trend,
that is not conducive to the comprehensive utilization of water and energy resources. Over the years,
stochastic changes in water and yearly renewal of energy resources have not significantly influenced the
spatial distributions of Water-Energy resources in China, and the mismatch of the spatial distributions of
water and energy resources is expected to remain stable for a long time [6,7].

For sustainable development, due to the global demand growth being faster than the population
growth and the rising impact of climate change, it is vital for all countries to research the nexus between
water and energy. Current studies have not properly considered coupling and driving mechanisms for
this nexus, nor formed a theoretical basis for assessing this system. In addition, policies and plans for
energy and water are often developed independently, an approach that cannot achieve the coordinated
and sustainable development of water and energy.

Water is needed for each stage of energy production, and energy is crucial for the provisioning
and treatment of water [8]. The complex interrelationship between water and energy is mainly
embodied in three segments (production, transportation, and consumption) and this interaction has
been strengthened by the increased demand for water and energy from climate change, industrial
development, and population growth. From an environmental point of view, Ait et al. [9] believed
that one of the biggest causes of climate change is the burning of fossil fuels, and that climate change
is creating uncertainty about the future of the water supply that may affect future long-term water
and energy security through more acute Water-Energy relationships [10]. Describing the relationship
between water and energy from a technical aspect, Tyler et al. [11] used GIS to combine a digital spatial
dataset of thermal power plants with basic engineering principles, quantifying the water intake and
energy consumption of cogeneration plants to predict the demands of thermoelectric plants. From the
economic perspective, the main focus is on water prices, electricity price subsidies, and questions
regarding tariff structures. For example, Corrado et al. [12] analyzed the need for water resources
and energy in the Green Transformation Strategy of Bologna, Italy. Water and energy are the basic
materials of society, and the implementation of related policies inevitably brings social impacts [13].

In the evaluation of water and energy, it is most common to construct a model for the relationship
between water and energy and conduct a whole life-cycle analysis based on the water footprint [14].
In the model-building approach, the input–output model has been proven to be an effective analytical
tool for investigating the economic pressures on resources and the environment, such as taking regional
characteristics and sectoral differences into account and using a multi-region input–output model to
account for ecological and water footprints [15]. In addition, water can be used as an integral part of
energy models, and vice versa. Thus, Dale et al. [16] combined the Water Evaluation And Planning
system (WEAP) with the Long-range Energy Alternatives Planning system (LEAP) to analyze water
and energy use in Sacramento, California, for nearly 20 years. Because the physical flows of water
and energy are hidden in economic trade, it makes sense to use the concepts of “virtual water” and
“embedded energy” to discuss the use of water and energy in an economic system [16].
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In China, a 2011 Central Document, “Decision to Speed Up the Development of Water Conservancy
Reform”, proposed optimizing the allocation of resources and called for the integration of resources,
economics, and the environment [17,18]. Based on studies of the relationship between water and energy
in foreign countries, Chinese scholars have researched the domestic situation in China [19]. Zhu et al. [20]
analyzed the relationship between water and electric power in China’s power production based on the
theory of virtual water, finding that virtual water (which is transported by electricity) is transferred from
inland areas with a shortage of water resources to coastal areas. Zhou et al. [21] measured the relationship
between water and climate based on flow analysis, suggesting that optimizing urban water supply
system cabinets can reduce energy demand and greenhouse gas emissions. Meanwhile, domestic scholars
have used the input–output model to analyze the relationship between water and energy at different
scales. For example, Duan and Chen [22] combined the input–output model and ecological network
analysis to analyze the Water-Energy nexus in China’s energy trade, finding that international energy
trade could alleviate China’s water shortage problem but also increase its energy dependence on other
countries or regions. Based on this method, Wang and Chen [23] constructed an input–output model of
the Beijing–Tianjin–Hebei region to explore the structural characteristics of water and energy and the
interaction between departments in the urban group.

To summarize, such previous research has only selected relevant variables to explore, lacking
comprehensive indicators of measurement for an objective system. This paper establishes a more
scientific and comprehensive index system, using D–S theoretical data synthesis with the objective
weight with the help of the Stochastic Frontier Analysis (SFA) to remove the interference of random and
environmental factors. The traditional SBM-DEA does not account for the influence of environmental
and random factors, which leads to deviation in calculating efficiency [24]. However, China is a country
of vast territory and unbalanced regional economic development, so it is necessary to consider regional
differences and the impact of random noise to evaluate the nexus of water and energy efficiency more
accurately. To eliminate the influence of environmental and random factors, Fried et al. [25] proposed
a three-stage Data Envelopment Analysis (DEA) model, using the Stochastic Frontier Analysis (SFA)
proposed by Aigner et al. [26] to remove the influence of external environment and random error on
efficiency. This allows the calculated efficiency to reflect the management level of the decision-making
unit more realistically, such that the model can analyze the relationship between the input difference value
and exogenous environment variables in stage 1 using the SFA model. The three-stage DEA method has
been applied widely in the field of efficiency evaluation in China. For example, Zhang et al. [27] used this
to show that environmental regulation had a significant impact on the efficiency of construction industry.

In this study, the three-stage DEA model and the Slacks-Based Measure (SBM) model were used
to calculate the nexus of water and energy efficiency in China, with the four inputs (capital stock,
employment personnel, water footprint, and energy consumption). The desirable output was GDP
and the undesirable outputs were carbon emissions and the grey-water ecological footprint. Through
constructing the three-stage, non-radial, non-oriented SBM-DEA and an index system of environmental
factors, the efficiency in 30 Chinese provinces and cities was factually calculated and analyzed which
is called the Water-Energy coupling efficiency. The influence of external environment on the input
slack was also analyzed, and directions for improvement in the nexus of water and energy efficiency
were determined. From the above, we believe this article does propose enough novel information
in the application development of data envelopment analysis (DEA). Furthermore, there are enough
practical contributions to the sustainable development of water and energy in this paper.

2. Methodology and Data

2.1. Three-Stage DEA Model

The three-stage DEA model mainly analyses and solves the problem through three stages.
Fried et al. [25] pointed out that the traditional DEA model does not take into account the influences
of environmental factors and random noise on the efficiency evaluation of the Decision-Making Unit
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(DMU) and discussed how to introduce environmental factors and stochastic noise into the DEA
model, arguing that it is necessary to isolate these factors. In the model’s three stages, the key question
is how to eliminate the environmental factors and random noise in the second stage [28].

2.1.1. Stage One

In 1978, three well-known operational research analysts first proposed the DEA method,
which was used to evaluate the relative effectiveness of the same department [29]. The traditional DEA
includes models such as CCR and BCC and is input-oriented and output-oriented in the direction
selection. However, Liu and Tone [30] pointed out that there were two problems requiring further
study: (1) the BCC model does not have a unit invariant property and (2) information loss caused by the
improvement of radial and non–radial aspects. Then, Tone [31] proposed a non-radial, non-oriented
SBM, which overcomes the shortcomings of the traditional DEA and can measure slack improvement
and the amount of non-ray redundancy.
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Here, the objective function ρ is the coupling efficiency of water and energy. There are K*T DMUs
and three factors associated with each DMU, including inputs, good outputs, and undesirable outputs,
as represented by the three vectors x = (x1, . . . , xN)∈RN
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, and the objective value satisfies 0 ≤ ρ ≤ 1. The first k’ DMU is efficient

in the presence of undesirable outputs, if and only if ρ = 1. If it is inefficient, i.e., ρ < 1, efficiency can be
improved by removing excess inputs and undesirable outputs and by increasing the inadequacy of
desirable outputs.

In the first phase, two values are calculated: the preliminary DEA efficiency value, used for the
comparison and analysis of the following links in Section 3.3., and the slack value of input, which is
the dependent variable of the second stage.

2.1.2. Stage Two

In the second stage, the slack variable is assumed to reflect the initial inefficiency, which is
composed of environmental factors, inefficient management, and statistical noise [32]. The main
objective of the second phase is to decompose the slack variables into the above three effects by SFA
regression, where the slack variables are used to regress the environment variables and the mixed error
items [33]. In the second stage, the external environmental factors and stochastic factors are further
removed, which results in DMU input redundancy by only management inefficiency [34].

Assuming that there are p observable external environment variables with n DMUs, each DMU
has m inputs, and the slack variables are decomposed into three independent variables containing
environmental factors, stochastic factors, and management factors:

Sij = xij + Xiλi = 1 . . . . . . m, j = 1 . . . . . . n (3)
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Sij = f izj; βi + vij + uij (4)

In addition, Sij represents the slack variable of input i of DMU j (i.e., the difference between the
actual input and the ideal input), zj is the j-th environment variable, βi represents the corresponding
estimate value of each environment variable, and f izj; βi is the influence of the environment variable.
vij is random error, obeying the normal distribution, uij is management inefficiency, obeying the
truncated normal distribution, and vij and uij are independent and irrelevant. The aforementioned
SFA regression needs to be calculated as follows:

γ = σ2
u/(σ2

v + σ2
u) (5)

σ2 = σ2
v + σ2

u (6)

where σ2
u and σ2

v represent the variances of the management inefficiency and random error, and γ

indicates the ratio of the variance of the management inefficiency to the total variance. When γ

approaches 1, indicating that the technical efficiency of each DMU is different and the stochastic factor
is very small, the maximum likelihood method should be used for estimation. When γ approaches 0,
indicating that the technical efficiency difference between the decision-making units is not significant
and the stochastic difference is large, the maximum square estimation should be used. The estimation
results of each parameter are calculated and the input value is adjusted by using the results, so that all
of the DMUs are adjusted to the same environmental conditions. The input volume of the other DMU
can be adjusted based on the most effective DMU:

xA
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where λ = σu/σv, εi = uij + vij is the joint error term, and ϕ and Φ represent the density and
distribution function of the standard normal distribution, respectively.

2.1.3. Stage Three

After using the adjusted input variable to measure the efficiency of each DMU again, the efficiency
has no influence on environment and stochastic factors [34,35]. This paper argues that an effective DMU
also needs to filter out the effects of environment and stochastic factors, thus allowing re-evaluation of
the effectiveness of its management.

2.2. Index System of Environmental Factors

2.2.1. Construction of Index System

With continuous economic development and societal progress, the demand for water and energy
has reached an unprecedented height; this is reflected in all aspects of the four factors (resources,
society, economy, and ecological environment). Therefore, based on the relevant research [36,37],
this study constructed an index system of environmental factors composed of 48 basic indicators
(Table 1) that affects the coupling effect between water and energy and quantifies the influence of
this external environment with regard to the four factors as the explanatory variables in Stage two
(Equation (4)).

2.2.2. Processing of Indexes

In the influence factor frame, each index unit and degree of importance is different, so the subjective
and objective combination method was used to process the influence factor data. The subjective and
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objective weights were evaluated by the Analytic Hierarchy Process (AHP) and the entropy method,
respectively, and the comprehensive weights were based on D–S evidence synthesis theory [38–43].
According to the calculation above, the corresponding weights of each method can be obtained from
Table 1.

Table 1. Index system of environmental factors.

Environment Variables Secondary Indicators Third Level Indicators Weight

Resource Environment

Water Resources Development
and Utilization

Water resources per capita 0.0912359
Water consumption per unit of GDP * 0.0052151

Water resources development and utilization degree 0.3052488

Energy consumption
Per capita electricity consumption 0.0076327

Electricity consumption per unit of GDP * 0.0105545
Proportion of coal consumption * 0.030139

Energy Investment Energy industry investment 0.0754953
Waste gas management investment 0.1317343

Sewage Treatment Total amount of sewage treatment 0.2060739
Rate of urban sewage treatment 0.0406663

Utilization Efficiency
Energy intensity * 0.0164427

Industrial effluent discharge rate 0.022869
Comprehensive utilization ratio of industrial solid waste 0.0566923

Social Environment

Population Growth Natural growth rate of population * 0.0089249
Population density * 0.0118809

Urban-rural Structure
Urban-rural population ratio 0.095739

Urbanization level 0.0290601

Social Security Urban registration unemployment rate * 0.0160734
Comparative labor productivity 0.1098623

Public Service
Local general public budget expenditure 0.1073178

Industrial adjustment coefficient 0.0835815

Science & Technology
Education

Per capita education outlay 0.0626544
R&D expenditure ratio 0.4749056

Economic Environment

Economic Growth Annual GDP growth rate 0.0301135

Economic Development Per capita disposable income of urban residents 0.1391604
Per capita disposable income of rural residents 0.1422021

Economic Scale
Per capita GDP 0.0683624

Stock of per capita fixed assets 0.0593269

Economic Structure
Proportion of the secondary industry 0.0551652

Proportion of the tertiary industry 0.0988244

Economic Benefit
Secondary industry contribution rate 0.0610254

Tertiary industry contribution rate 0.1267039

Economic Extraversion
Per capita FDI 0.0755002

Dependence on foreign trade 0.1436155

Ecological Environment

Basic Facilities
Per capita public green space area 0.0495535

Proportion of nature reserve 0.0670543

Manpower Input Proportion of environmental workers 0.1347224

Ecological Scale
Greenbelt coverage of built-up area 0.0458514

Per capita green space coverage 0.1379591
Forest coverage rate 0.1999812

Pollutant Emission

Carbon emission intensity per unit of GDP * 0.0103709

Sulfur dioxide emission intensity per unit of GDP * 0.0139201
Industrial waste gas emission per unit of GDP * 0.0105777

Per capita carbon emission * 0.0178669
Total industrial effluent discharge * 0.0189

Policy Planning
Environmental investment in GDP 0.120236

Sewage charges accounted for revenue 0.1400109
Per capita sewage charges 0.0329955

Note: * marked for the reverse indicator. Limited by space, only the comprehensive weights are shown.

2.3. Data Sources and Processing

This study assessed China’s provinces, municipalities, and autonomous regions (excluding Hong
Kong, Macao, and Taiwan); due to a serious lack of relevant data in Tibet, this region was also not
included. The input indexes were capital stock calculated from the Perpetual Inventory Method
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(PIM) [43], employment personnel, water footprint [44,45], and energy consumption, representing
capital, manpower, water resources, and energy resources, respectively. Output indicators included
desirable and undesirable outputs. The selected desirable output was the regional GDP, using the
base period of 2003 as the GDP deflator to reduce its value to eliminate the impact of price factors.
The undesirable outputs were regional carbon emissions and the grey-water ecological footprint,
which were calculated according to the methods of IPCC2006 [46] and the virtual water content at
home and abroad respectively [45]. Other data were derived from the China Statistical Yearbook,
China Water Resources Bulletin, China Energy Statistical Yearbook, China Grain Yearbook, and China
Statistical Yearbook on Environment in each year, as well as the Provincial57 Statistical Yearbook.

3. Results and Discussion

3.1. Stage One

In the first stage, based on the SBM-DEA model, we used MaxdeaUltra software to obtain the
Water-Energy coupling efficiency values before excluding environmental and stochastic factors (Table 2).

Table 2. The Water-Energy coupling efficiency in various areas of China before adjustment.

Region 2003 2007 2011 2015 Average

East

Beijing 1 1 1 1 1
Tianjin 1 1 1 1 1
Hebei 0.446141 0.446442 0.434448 0.383724 0.430407

Shanghai 0.306585 0.37508 0.443222 0.412682 0.390732
Jiangsu 0.309984 0.316796 0.37809 0.360684 0.34406

Zhejiang 0.586479 0.5199 0.552559 0.535031 0.544582
Fujian 0.548022 0.569936 0.60875 0.592826 0.582367

Shandong 0.469097 0.37655 0.337597 0.319929 0.363234
Guangdong 1 1 1 1 1

Hainan 1 1 1 1 1

Average 0.666631 0.66047 0.675467 0.660488 0.665538

Northeast

Liaoning 1 1 1 1 0.98813
Jilin 0.469135 0.471483 0.479159 0.487041 0.479822

Heilongjiang 1 0.815573 0.758264 0.800654 0.807001

Average 0.823045 0.762352 0.745808 0.762565 0.758318

Central Areas

Shanxi 0.547697 0.576414 0.616397 0.591138 0.591323
Anhui 0.60685 0.663972 0.588314 0.611378 0.627385
Jiangxi 0.420899 0.438451 0.422452 0.47054 0.438989
Henan 0.504259 0.434349 0.41688 0.505749 0.459025
Hubei 0.426506 0.440985 0.461889 0.503999 0.455642
Hunan 1 1 1 1 1

Average 0.584369 0.592362 0.584322 0.613801 0.595394

West

Chongqing 0.590795 0.573126 0.641648 0.755155 0.624126
Sichuan 0.36526 0.397335 0.411907 0.476396 0.410645
Guizhou 0.373881 0.410142 0.495629 0.61219 0.462443
Yunnan 0.447861 0.449602 0.433184 0.467562 0.452524
Shaanxi 0.477918 0.527668 0.5667 0.534536 0.540191
Gansu 0.479837 0.49853 0.491934 0.512617 0.495641

Qinghai 1 1 1 1 1
Ningxia 1 1 1 1 1
Xinjiang 0.591016 0.548447 0.544524 0.470137 0.537942
Guangxi 1 1 1 1 1

Inner
Mongolia 0.463954 0.446641 0.396282 0.37126 0.417249

Average 0.61732 0.622863 0.63471 0.654532 0.630978

Note: Limited by space, only the 2003, 2007, 2011, and 2015 values and the 2003–2015 average are shown.

As can be seen from Table 2, eight provinces and cities achieved an efficient level of Water-Energy
coupling. Among the other provinces and cities, Liaoning Province had the highest average coupling
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efficiency (0.98813) while Jiangsu Province had the lowest average coupling efficiency value (0.34406).
As shown in Figure 1, the efficiency values of coupling efficiency were relatively high in China.
Most values were higher than 0.5, and the average efficiency values in the east, northeast, middle,
and west were 0.665538, 0.758318, 0.595394, and 0.630978, respectively, showing a spatial distribution
ranking from northeast > east > west > central.
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From the evolution trend of the efficiency in the four regions during the sample period (Figure 1),
the Water-Energy coupling efficiency from 2003–2015 was basically unchanged. The main reason for
this lack of change is the rapid expansion of investment in high-energy industries during the “Eleventh
Five–year Plan”, which accelerated the consumption of water and energy and carbon dioxide emissions.
Meanwhile, binding targets for energy saving and emission reduction were put forward. Furthermore,
the “Twelfth Five-year Plan” put forward the goal of reducing energy consumption by 16% and
carbon dioxide emissions GDP by 17%, so the country is on the road toward low-carbon economic
development. It is worth noting that because of the eruption of the 2008 global economic crisis,
the Chinese government increased investment to expand domestic demand, resulting in a slight
decline in 2009. After that, due to the gradual digestion of this investment, the guidance and driving
role of the Chinese government continued to promote rising efficiency.

3.2. Stage Two

The second stage implemented Frontier 4.0 to isolate environmental factors, stochastic noise,
and management inefficiency. The gamma value in Table 3 is greater than 0.80, indicating that the
use of the SFA was reasonable, and the table shows that the input slack volume likelihood ratio
(LR) test results of 297.90895, 621.05, 864.89, and 457.7 were located outside of the 99% confidence
interval; therefore, management inefficiency actually exists. When the regression coefficient is negative,
this indicates that an increase in the environment variable will decrease the slack amount of the input
variable, that is, the environment variable has a positive effect on the input variable and vice versa.

The coefficients of slack of resource environment and social environment for all inputs were
negative and significant at 1%, indicating that the resource environment and social environment
had positive effects on all inputs. Therefore, they had significant effects on the four inputs of the
coupling relationship between water and energy, but the social environment’s influence was not
as large as that of the resource environment. Because of complex external factors, the economic
environment and ecological environment were more vulnerable to political factors and international
factors. The economic environment was positive for the slack of capital stock, employment personnel,
and water footprint, indicating that the economic environment was not conducive to narrowing
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the gap between the three inputs and the ideal inputs. At the same time, the coefficient for energy
consumption was negative, indicating that the economic environment had a positive effect on energy
consumption. The ecological environment was positive for the water footprint, but negative for capital
stock, employment personnel, and energy consumption. Although some variables were not significant,
they still had directional effects.

Table 3. Stochastic Frontier Approach (SFA) regression results.

Variable Capital Stock Employment Personnel Water Footprint Energy
Consumption

Constant −3152.161 *** −3546.4536 *** −478.55315 *** −6606.4096 ***
(−3149.5018) (−156.87411) (−13.050275) (−3731.2915)

Resources
Environment −46470.535 *** −251.18285 *** −561.73942 *** −20275.529 ***

(-46469.252) (−37.149723) (−5.1765442) (−18478.819)

Social
Environment −9283.5029 *** −230.71714 *** −412.68387 *** −4020.0156 ***

(−9283.4855) −45.301469) (−2.9321697) (−3391.4211)

Economic
Environment 13604.762 *** 2740.9118 *** 94.849516 ** −1224.8368 ***

(−13604.579) (−345.04024) (−0.76725493) (−955.45612)

Ecological
Environment 13847.54 *** 2881.5491 *** −229.24258 ** 19595.257 ***

(−13847.468) (−314.55491) (−2.2052833) (−13741.142)

Sigma-squared 51907495 *** 2058250.9 *** 132495.73 *** 31297354 ***
Gamma 0.85977245 0.94168732 0.9725617 0.92094702

Log Likelihood −3716.7 −2896.6202 −2239.7968 −3518.2246
LR Test of the

One-sided Error 297.90895 621.05406 864.886 457.70496

Note: * p < 0.1; ** p < 0.05; *** p < 0.01 The values in parentheses are the corresponding estimated T-statistics.

To summarize, the resource, social, economic, and ecological environment variables selected in
this paper had different and significant influences on the slack amount invested by various DMUs,
so the original input variables must be adjusted by excluding the influence of the external environment
and stochastic factors to reflect the real Water-Energy coupling efficiency level. Using the parameter
estimate obtained from the second stage, the coupling efficiency in various provinces and cities was
adjusted (Table 4).

Table 4. Water-Energy coupling efficiency in various areas of China after adjustment.

Region 2003 2007 2011 2015 Average

East

Beijing 1 1 1 1 1
Tianjin 1 1 1 1 1
Hebei 0.226933 0.186492 0.168631 0.154293 0.181516

Shanghai 0.304882 0.306125 0.318688 0.291432 0.305996
Jiangsu 0.232677 0.174279 0.152818 0.139388 0.171057

Zhejiang 0.306924 0.242941 0.234446 0.234086 0.25264
Fujian 0.421175 0.39593 0.378679 0.353577 0.385727

Shandong 0.231138 0.186631 0.155889 0.139896 0.176895
Guangdong 1 1 0.392163 0.352248 0.712351

Hainan 1 1 1 1 1

Average 0.572373 0.54924 0.480131 0.466492 0.518618

Northeast

Liaoning 1 1 0.394179 0.400998 0.628468
Jilin 0.405377 0.36132 0.330218 0.344393 0.358329

Heilongjiang 1 0.412573 0.296262 0.305602 0.410953

Average 0.801792 0.591298 0.34022 0.350331 0.465916
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Table 4. Cont.

Region 2003 2007 2011 2015 Average

Central Areas

Shanxi 0.345204 0.304061 0.296496 0.299518 0.308401
Anhui 0.363937 0.349059 0.291439 0.289854 0.332571
Jiangxi 0.362591 0.309679 0.282745 0.284424 0.308107
Henan 0.27449 0.210265 0.186054 0.179333 0.208293
Hubei 0.286587 0.234835 0.199355 0.218635 0.2333
Hunan 1 1 1 1 1

Average 0.438802 0.401317 0.376015 0.378627 0.398445

West

Chongqing 0.504823 0.491885 0.460293 0.524644 0.485913
Sichuan 0.262284 0.224419 0.210418 0.24184 0.22646
Guizhou 0.414967 0.403945 0.432617 0.433432 0.419114
Yunnan 0.405532 0.357551 0.327963 0.316444 0.35049
Shaanxi 0.41747 0.395588 0.373137 0.33569 0.381908
Gansu 0.505652 0.462924 0.434843 0.434061 0.455734

Qinghai 1 1 1 1 1
Ningxia 1 1 1 1 1
Xinjiang 0.504206 0.456466 0.427971 0.346225 0.433065
Guangxi 1 1 1 1 1

Inner
Mongolia 0.330707 0.239329 0.180736 0.18056 0.222783

Average 0.576876 0.548373 0.531634 0.528445 0.543224

Note: Limited by space, the 2003, 2007, 2011, and 2015 values and the 2003–2015 average are shown.

3.3. Stage Three

Based on the results of the third stage (Table 4, Figure 2), the coupling efficiency was greatly
changed after stripping the external environment and random error effects on the Water-Energy
coupling efficiency. The coupling level of water and energy in China was in a steady state before
stripping, but afterward, the coupling efficiency declined to various degrees. The provincial and
municipal rankings changed compared with the pre-stripping results. The most efficient and most
stable were Beijing, Tianjin, Hunan, Guangxi, Hainan, Qinghai, and Ningxia; other provinces had
varying degrees of efficiency decline. Lower efficiency values indicated that the technical management
level of these provinces and cities was not very high. Because some of these provinces and cities have
been in a strong external environment, there has not been much focus on improving the management
level. For other provinces and cities, although some regional strategies have adopted a follow-up
approach, the efficiency values of coupling water and energy were not as good as expected without
considering local realities or the lag in technological innovation inputs. We can conclude that the
management level of each province has had a significant effect on the coupling efficiency of its
water and energy and that the degree of influence varies according to the specific environment of
each province.

After eliminating the impacts of environmental variables and random factors, the regional
efficiency values were reduced to different degrees (Figure 3). Due to the favourable external
environment of the northeast and the impact of the 2008 economic crisis, the efficiency of the northeast
region declined sharply compared with that of the eastern region. The other two regions, although their
efficiency values decreased, were in a relatively stable state. The western region remained particularly
steady while the middle region maintained a low level with a stable trend; this indicates that the
economic crisis had less impact on these regions, so we can conclude that external environment and
management level are the main factors restricting their development. Due to the development of
the western region via national policy, its management level increased to a certain degree, and the
efficiency values of the eastern and northeastern regions were even lower than that of the western
region after 2008.
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4. Conclusions and Suggestions

This study combined the SBM-DEA model with the SFA method to construct an index system
of environmental factors and a three-stage calculation model of Water-Energy coupling efficiency in
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30 provincial districts in China from 2003–2015. The traditional DEA model does not take into account
the influences of environmental factors and random noise on the efficiency evaluation of the DMU [25].
And it is necessary to isolate these factors through SFA regression model to constructe an index an index
of environmental factors that affect the Water-Energy coupling efficiency from the four aspects of resource
environment, social environment, economic environment, and ecological environment. In the second
stage, the external environmental factors and stochastic factors are further removed, which results in DMU
input redundancy by only management inefficiency [34]. After removing the external environmental
factors and stochastic factors, this paper measured the efficiency of each DMU again; the efficiency of
stage three just reflects efficiency under the current management implications. This method can overcome
the decision bias caused by the radial and angled DEA, and can also eliminate the influence of external
environment and stochastic factors on efficiency evaluation. The empirical results can provide enough
valid bases to judge the pros and cons of the DEA method in the performance evaluation. The results of
the study are as follows.

(1) In the first stage, we used the SBM model to determine that the Water-Energy coupling efficiency
in China was relatively high and stable, with a spatial ranking from northeast > east > west > central.
However, after rejecting the influences of external environment and random factors and using the SBM
model again, we determined that the efficiency values of each region declined to different degrees over
time and that the efficiency values in the north-east declined more sharply year by year. The comparison
results showed that the management policy of the coupling level of water and energy in China is not
comprehensive enough and improving the management level would be an effective way to improve the
Water-Energy coupling efficiency. The coupling efficiency of water and energy in China currently depends
on a favorable external environment, and China’s management level of technological and institutional
innovation still has some space for improvement.

(2) After the SFA regression in the second stage, it was showed that the resource environment
and social environment had significant positive impacts on all inputs. In the meantime, the increase in
the proportion of the economic and ecological environments was not conducive to narrowing the gap
between all inputs and the ideal inputs, but the increase of the proportion of the economic environment
was helpful for reducing the slack of energy consumption and the ecological environment had a
positive impact on water footprint investment.

Given the goals of guaranteeing steady growth in China’s economy and the continuous progress
of its society, this study offers the following suggestions to improve the coupling efficiency of water
and energy to realize water safety, energy security and sustainable development based on an empirical
analysis of the regional differences of water and energy coupling efficiency.

The level of technology management in China should be improved, emphasizing management
and system innovation. Because of the influence of the external environment on the Water-Energy
coupling efficiency, China should maintain and improve this factor and continue to upgrade industrial
infrastructure, vigorously develop low-energy and high value-added industries, and further optimise
the consumption structure of water and energy to ensure sustainable development. For areas
in an unfavourable external environment, scientific and technological expenditures should be
increased and funds reasonably allocated for scientific research toward improving the Water-Energy
coupling efficiency by leveraging the higher level of resource utilization brought by talent and
advanced technology.

In the process of formulating relevant management policies, China should also pay attention to the
rationalization of allocations between elements and consider differences in the internal management
efficiency of the four regions. Above all, a differentiated management policy should be developed
according to the objective reality of each region to best realize sustainable development within the
entire country.
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Appendix A

Table A1. Comparison of average Water-Energy coupling efficiency for 2003–2015 in China (source
data for Figure 2).

Regions Before Adjustment After Adjustment

Beijing 1 1
Tianjin 1 1
Hebei 0.430407 0.181516
Shanxi 0.591323 0.308401

Inner Mongolia 0.417249 0.222783
Liaoning 0.98813 0.628468

Jilin 0.479822 0.358329
Heilongjiang 0.807001 0.410953

Shanghai 0.390732 0.305996
Jiangsu 0.34406 0.171057

Zhejiang 0.544582 0.25264
Anhui 0.627385 0.332571
Fujian 0.582367 0.385727
Jiangxi 0.438989 0.308107

Shandong 0.363234 0.176895
Henan 0.459025 0.208293
Hubei 0.455642 0.2333
Hunan 1 1

Guangdong 1 0.712351
Guangxi 1 1
Hainan 1 1

Chongqing 0.624126 0.485913
Sichuang 0.410645 0.22646
Guizhou 0.462443 0.419114
Yunnan 0.452524 0.35049
Shaanxi 0.540191 0.381908
Gansu 0.495641 0.455734

Qinghai 1 1
Ningxia 1 1
Xinjiang 0.537942 0.433065
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