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Abstract: Modeling efforts to simulate hydrologic processes under different climate conditions rely
on accurate input data. Among other inaccuracies, errors in climate projections can lead to incorrect
decisions. This study aimed to develop a reliable climate (precipitation and temperature) database for
the Western Lake Erie Basin for the 21st century. Two statistically downscaled bias-corrected sources
of climate projections (GDO: Global Downscaled Climate and Hydrology Projections and MACA:
Multivariate Adaptive Constructed Analogs) were tested for their effectiveness in simulating historic
climate (1966–2005) using ground-based station data from the National Climatic Data Center. MACA
was found to have less bias than GDO and was better at simulating selected climate indices; thus, its
climate projections were subsequently tested with different bias correction methods including the
power transformation method, variance scaling of temperature, and Stochastic Weather Generators.
The power transformation method outperformed the other methods and was used in bias corrections
for 2006 to 2099. From the analysis, mean daily precipitation values were expected to remain more or
less the same under both RCP (Representative Concentration Pathway) 4.5 and RCP 8.5 scenarios,
ranging between 2.4 mm and 3.2 mm, while standard deviations were expected to increase, pointing
to a rescaling of the distribution. Maximum one-day precipitation was expected to increase and could
vary between 120 and 650 mm across the basin, while the number of wet days could potentially
increase under the effects of RCP 4.5 and RCP 8.5. Both mean maximum and mean minimum daily
air temperatures were expected to increase by up to 5.0 ◦C across the basin, while absolute maximum
and minimum values could increase by more than 10 ◦C. The number of days in which precipitation
could potentially fall as snow was expected to decrease, as was the annual number of days for optimal
corn growth, although an earlier start to the growing season could be expected. Results from this
study were very useful in creating a reliable climate database for the entire Western Lake Erie Basin
(WLEB), which can be used for hydrologic, water resources, and other applications in the basin.
The resulting climate database is published and accessible through the Purdue University Research
Repository (Mehan et al., 2019), which is an open-access repository.

Keywords: climate projections; Western Lake Erie Basin; bias correction; water resources; open access

1. Introduction

Predictive hydrologic studies require accurate weather input to simulate hydrologic processes
within a watershed [1]. Any inaccuracies or bias associated with the weather data may lead to deleterious
effects on simulated outputs [1–3]. As a rule of thumb, the better the input climate data, the more
reliable the outcomes of modeling studies can be. Transport of pollutants as well as their dilution by
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water flows are also dependent upon climate [4]. Moreover, studies based on impacts on hydrological
processes due to changing climate have become possible using results from simulations from large-scale
general climate models. However, climate projections at regional scales suffer from some bias because of
the influence of local factors [5–7]. These local factors include topography and catchment characteristics,
atmospheric circulation, and moisture supply [8,9], and usually produce errors or bias within climate
values, which may alter the outputs of many different model application studies.

For the U.S. Great Lakes Region, and in particular for the Western Lake Erie Basin (WLEB), data for
several Representative Concentration Pathways (RCPs) (RCP 2.6, RCP 4.5, RCP 6, RCP 8.5) scenarios
from different GCM (General Circulation Model) models at varied resolutions (100 km–600 km) are
available [10–12]. For this study, WLEB is an area of interest because phosphorus loadings from
agricultural lands within the basin are the major cause of harmful and nuisance algae blooms (HNAB)
in Lake Erie. To facilitate policy planning and mitigation measures to control this nuisance, it is very
important to assess nutrient loadings in future climatic conditions. Due to their coarse resolution and
large uncertainties associated with downscaling [13], it is a challenge to use available GCM outputs
within WLEB for hydrologic studies. These coarser resolution products from GCMs need to be resolved
into finer resolution Regional Climate Models (RCMs), which is achieved using different downscaling
techniques (statistical and dynamic), which are discussed in greater detail in subsequent paragraphs.

In statistical downscaling, the relationship between large-scale climate variables from GCMs
(predictors) is determined using fine-scale climate variables for RCM [7]. Statistical downscaling
is computationally inexpensive, requires less time, and involves different methods to produce the
projections [7]. On the other hand, dynamic downscaling techniques develop an RCM that is derived
from a GCM with the same set of empirical equations and physical principles that were used to
develop the GCM [5,14]. The outputs are resolved at a resolution less than 50 km and can be used
for regional studies at the catchment scale [13,15]. A major limitation with simulated outputs from
dynamic downscaling is that the resulting RCM may not be applicable to locations other than the
region for which it was developed [16]. Some errors associated with baseline climate data [17] and
many of the natural variabilities and uncertainties, including future greenhouse gas emissions, the
structure of climate models and their parameterization, and downscaling techniques [18], can make
it difficult to obtain sufficient or viable model runs based on computations and resource availability,
which may produce some biases [15]. Thus, in either downscaling approach, there may be the need for
post-processing of the projected output from a downscaled GCM [19] to correct for bias in the data.

Bias correction and perturbation are post-processing options for data following downscaling [20].
Bias correction helps to maintain the statistical relationships between the distributions of observations
and model outputs of different climate variables for the current period simulated along with future
periods [20]. The perturbation approach assumes that change in the distribution of observations from
current to future will be the same as the model distribution [21].

Different bias correction techniques can lead to different results in climate change impact
studies [15,22]. Therefore, it is very important to quantify the bias in outputs generated from the climate
models before they are applied in climate change impact modeling studies [15]. Different sources of
uncertainty arising from GCM or RCM structure and hydrological model parameterization have been
studied but evaluation of GCM and RCM model outputs of different climate variables for climate
change impact studies are rarely studied [23]. Previous climate change implication studies in the WLEB
have used projected daily climate data summaries from different sources without quantifying the
associated bias [24–26]. This study addresses the gap where reliable climate information for simulating
future water resource responses in the WLEB is lacking. The goal was to develop a framework to
evaluate and correct biases associated with simulated climate output from the most reliable and easy
to access statistical downscaled models available in the public domain for the WLEB and produce a
reliable climate database for the entire WLEB for the period 2006–2099.

This manuscript comprises three major research objectives, to: (1) assess two sources of climate
projections available in the public domain and, based on bias quantification, select the one having less
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bias for further analysis; (2) evaluate the performance of different methods in correcting the bias of the
climate values for the historical period (1966–2005); and, (3) develop future climate values for the 21st
century for the WLEB using the most effective bias correction method.

2. Materials and Methods

2.1. Study Site and Climatology

The 29,137 km2 Western Lake Erie Basin (WLEB) extends across portions of Michigan, Indiana,
and Ohio, and drains into Lake Erie, the shallowest of the five U.S. Great Lakes (Figure 1). For this
study, eight stations, as shown in Figure 1, were selected for analysis based on data availability
(>95%) and consistency, and to provide spatial coverage across the basin. Based on data from these
selected stations, the total annual precipitation varied from 1050 mm to 1200 mm (1966–2005). More
precipitation occurred during the spring season. To answer the research questions in this study, three
of the eight stations (Adrian, MI, Fort Wayne, IN, and Norwalk, OH) were used for methodology
development, approaches from which were then extended to the other five stations. The three stations
were selected based on [27] with considerations including geographical location and differences in
precipitation. Of the three stations, Norwalk, OH had the highest one-day maximum precipitation
based on daily precipitation records for this period (Figure 2A). Precipitation at this station also
occurred more frequently and over longer periods than with the other two stations. The temporal
spread of precipitation varied and with the diverse geographic coverage, these three stations were
considered satisfactory to answer the first two major questions of this study.
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Figure 2. (A) Temporal distribution of daily precipitation records (mm), for (a) Adrian, MI; (b) Fort
Wayne, IN, and (c) Norwalk, OH from 1966 to 2015 from the respective ground-based weather stations.
Red boxes show the greatest magnitude precipitation event for each station. (B) Executive summary of
the methodology. *; **: RCP: Representative Concentration Pathways (Radiative forcing); Currently:
300–400 ppm; RCP 4.5: 4.5 W/m2; RCP 8.5: 8.5 W/m2.

2.2. Data Acquisition

Downscaled climate data for this project were obtained from two sources: (1) GDO (authors
created acronym for Global Downscaled Climate and Hydrology Projections), available at https://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/; and (2) MACA (Multivariate Adaptive Constructed
Analogs), available at https://climate.northwestknowledge.net/MACA/. The historical period for
both sources was 1950–2005 and future climate projections were for 2006–2099. Data from both sources
were statistically downscaled from the set of GCMs and have been used in previous climate change
studies [24,28,29]. The sources provide fine spatial resolution translations of climate projections over
the United States based on the multi-model dataset referenced in the IPCC AR 5 (CMIP5) to an extent
of 0.25 and 0.04 degrees, sufficient for regional climate impact assessment studies [30].

The GDO source incorporates non-dynamic approaches including monthly Bias correction and
Spatial Disaggregation (BCSD) and daily Bias-corrected and Constructed Analogue (BCCA), which
have been well tested and automated to produce output statistics matching those of a historical
period for fine-scaled gridded precipitation and temperature [30]. Under the BCSD method, quantiles
of historical patterns are related to quantiles of predictions from the GCM to project daily time
series for the downscaled grid. GCM predictions are matched statistically with a set of observed
historical weather patterns to develop the fine-scale map while downscaling using the BCCA method.
The drawback of using GDO downscaled data is the assumption that the statistical properties of

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://climate.northwestknowledge.net/MACA/
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the high-resolution GCM and local-scaled RCM after downscaling, including mean and variance are
constant through time, which is not necessarily the case [31,32].

In the MACA source both the observation dataset and GCM outputs are resolved to either 4 km
or 6 km. To overcome the problem of limited availability of suitable weather analogues in a changing
climate, seasonal and annual trends at each grid point are computed using 21 days, 31-year running
mean of data. A cumulative distribution function (CDF) of 15 days is computed at each grid point
using non-parametric quantile mapping, and the CDF of historical data is used for bias correction.
The final outputs are consistent with the GCM data and compatibility with the observational dataset is
ensured. Downscaled variables include 2-m maximum and minimum temperature, 2-m maximum and
minimum relative humidity, 10-m zonal wind, downward short-wave radiation, 2-m specific humidity,
and precipitation accumulation all at a daily time step. There are two versions of MACA data; the
difference between them pertains to epoch adjustments for variables and periods, while removing the
trend. For this study, MACA version 2 was used.

The two sources provide outputs from different GCMs under different RCP scenarios. GDO
provides values for RCPs 2.6, 4.5, 6, and 8.5 from 40 GCMs, whereas MACA has output for RCP 4.5
and 8.5 from 20 GCMs. For this study, nine GCMs common to both climate databases were selected for
preliminary assessment (Table 1) to allow for comparison. Analysis, comparisons, and evaluations
were performed using climate projections from 1966 to 2005 for GDO and MACA and observed
ground-based weather station data. A prior analysis published in [27] indicated an increasing trend in
precipitation depth from 1966 forward, so we selected 1966 as the beginning year in our analyses.

Table 1. Different GCM models used for quantifying the error or bias when compared with the
ground-based station from NOAA’s (National Oceanic and Atmospheric Administration) Climate Data
Online facility.

S. No. GCM Basic Source Studies Based
on Source

1 Beijing Climate Center Climate System
Model, Beijing, China (BCCCSM)

http://forecast.bcccsm.ncc-cma.
net/htm/ [33–36]

2 Community Climate System Model,
USA (CCSM4) http://www.cesm.ucar.edu/ [37–40]

3,4 Geophysical Fluid Dynamic Laboratory,
USA (GFDL_ESM2G and GFDL_ESM2M)

http://nomads.gfdl.noaa.gov:
8080/DataPortal/cmip5.jsp [1–3,41–43]

5,6
Institute Pierre Simon Laplace Climate
Modeling Center, France (IPSL_CM5ALR
and IPSL_CM5AMR)

http://icmc.ipsl.fr/ [4,5,44,45]

7,8 MIROCESM and MIROCESMCHEM, Japan http://www.geosci-model-dev.
net/4/845/2011/ [6,7,46,47]

9 Norwegian Earth System Model, Norway
(NorESM1M)

http://adsabs.harvard.edu/abs/
2013GMD.....6..687B [8,9,48,49]

2.3. Data Analysis

Data for the historical period obtained from the two sources were compared with observed data
from the three ground-based climate stations for 1966–2005 obtained and quality checked under NCDC:
NOAA protocol (https://www.ncdc.noaa.gov/cdo-web/datasets and https://www1.ncdc.noaa.gov/
pub/data/cdo/documentation/GHCND_documentation.pdf). Data analysis included comparisons of
means and distributions of the observed data and simulated values. Beyond the statistical properties,
we computed conditional probabilities for precipitation, and various extreme and general climate
indices (Table 2). For both sources, each model was considered individually (as opposed to using
ensembles) so as to capture the range of possible values consistent with [50]. Comparisons were
performed to quantify the error in simulated values in terms of their distributions, statistical properties,

http://forecast.bcccsm.ncc-cma.net/htm/
http://forecast.bcccsm.ncc-cma.net/htm/
http://www.cesm.ucar.edu/
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp
http://icmc.ipsl.fr/
http://www.geosci-model-dev.net/4/845/2011/
http://www.geosci-model-dev.net/4/845/2011/
http://adsabs.harvard.edu/abs/2013GMD.....6..687B
http://adsabs.harvard.edu/abs/2013GMD.....6..687B
https://www.ncdc.noaa.gov/cdo-web/datasets
https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/GHCND_documentation.pdf
https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/GHCND_documentation.pdf
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and climate indices including extremes. Other measures of performance included skill scores and
Cohen’s Effect Size (Cohen’s d) as described in Table 2. All measures were used to evaluate the
performance of each data source and the different methods of bias correction. For this study, a day with
precipitation less than 0.1 mm was considered a dry day and any day with precipitation depth≥0.1 mm
was considered a wet day based on our previous study [27] and other literature review [10–15,51–56].

The analysis began by comparing GDO and MACA values with the observed data for the three
ground-based stations from the National Climatic Data Center (NCDC). The source that performed
better in simulating climate values was selected and then treated with different bias correction methods
that were chosen after extensive review of literature [15,57,58]. Care was taken to preserve the means
and variances. One method was a conventional one that included power transformation [57,58]
and variance scaling of temperature [59]. The other bias correction method was novel and based
on conclusions and discussions from previous studies [27,60] where Stochastic Weather Generators
(SWGs) performed better at simulating greater depths of precipitation. We postulated that SWGs
could be used to redistribute the precipitation and simulate greater daily precipitation depths. This
precipitation might otherwise be distributed to dry days or days with lower or no precipitation, thus,
adversely affecting simulation outputs from crop growth and hydrologic models.

To evaluate the performance of SWGs for bias correction, climate values from the better performing
climate projection source were used as input to two SWGs—CLimate GENerator (CLIGEN) [61]
and the Long Ashton Research Station Weather Generator (LARS-WG) [62,63]—both of which have
been evaluated and found suitable for use in hydrologic and water resources studies in previous
work by the authors [27]. The weather generators were used in their default state without changing
their parametrization. Twenty-five different realizations [60] were generated for all nine GCMs at the
three stations, to capture the variability and correct for bias or reduce error. Since the interest was
to redistribute the precipitation to capture high magnitude precipitation events, the 75th and 90th
percentiles precipitation values from the 25 different realizations were used for precipitation depth
comparisons and means were used for temperature comparisons. This was because precipitation is not
normally distributed, but temperatures are. The 75th percentile or interquartile range (as 50th percentile
was zero) and 90th percentile were expected to pick up extreme precipitation events (which were not
captured by GCMs). The 75th and 90th percentile values were selected because variations between
simulated and observed precipitation were found to start after the interquartile range and increase at
the 90th percentile and beyond, with the largest variations being observed at higher percentiles [27].

Following the evaluation of the different bias correction methods, the best approach was used
to develop correction factors using the historic period and was translated to the climate projections
from the different climate models for the eight stations in Figure 1. The reliable climate projections
so generated can be used to evaluate changing climate impacts on water resources in the WLEB.
Methodology in this study can be extended to any study site. The summary of the methodology is
explained via flowchart in Figure 2B.
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Table 2. List with explanation, application, and computational formula for various climate indices, verification skill scores, and performance coefficients.

CLIMATE INDICES

Parameter Name Definition Application

Count of Dry Spell [10–14,51–55] A period with at least 15 consecutive days in which none of
the days had greater than 0.1 mm of rainfall

Onset and cessation of droughts can be projected using count of dry spells. Moreover, dry spell affect
aquatic biodiversity, crop growth, and hydropower generation.

Count of Wet Spell [15,56]

A period where there were more than three wet days
(day with precipitation more than or equal to 0.1 mm)
ended with two continuous dry days (day with
precipitation less than 0.1 mm)

Information on wet spell is important for optimizing water allocation and distribution, which is
instrumental in planning flood control remedies and regulating sediment yield into the main streams.

Number of dry and wet day count in a month Absolute count of days with precipitation depth of less and
more than 0.1 mm on a single day

The decision on beginning planting of a crop based on crop water requirements is dependent on count of
number of dry and wet days in a month.

Number of Snow Days [16,17,64,65] Day with average temperature lower than 2 ◦C and
precipitation depth more than 0.1 mm The water budget of snow dominated watershed is dependent on count of snow days.

Growing Season Requirement/ Period of optimal
growth [18–20,66]

Day with an average temperature between 20 and 25 ◦C
(supports corn growth in Midwest USA) Estimation of growth and yield of corn requires information on period of optimal growth of corn

Growing Degree Days (GDD) or Heating Units (HU) [18,66] Heating Units (HU) are energy (heat) units affecting crop
cycle from planting till harvesting.

GDD =
Maximum Temperature + Minimum Temeprature

2
− Base Temperature

Different stages of crop growth cycle can be simulated using information on Heating Units (HU).

Count for Maximum Dry and Wet Length [21,67] The longest continuous stretch of the dry and wet period Information on this data helps in identifying extreme events, including dry and wet periods

Probability of dry day (Pd)

All these factors are critical in generating long-term climate
simulation, hence needed evaluation. Moreover, mean
length of dry and wet period decides onset of planting and
harvesting in rainfed agricultural places.
(for the transition probabilities computation, the dry day is
day with the precipitation 0.1 mm and anything equal and
more than 0.1 mm is wet day for all other purposes, the
threshold 0.1 mm)

pd =
Number of dry days

Total number of days

Probability of wet day (Pw) pw =
Number of wet days
Total number of days = 1− pd

Probability of dry followed by dry day (Pd|d) pd|d =
Number of sequence with two dry days

Total number of dry days

Probability of wet day followed by wet day (Pw|w) pw|w =
Number of sequence with two wet days

Total number of wet days

Probability of wet day followed by dry day (Pw|d) pw|d = 1− pd|d

Probability of dry day followed by wet day (Pd|w) pd|w = 1− pw|w

Average length of dry and wet period (Ld, and Lw) Ld = 1
pw|d

Lw = 1
1−pw|w

Return time Period to have an event equal to average
length of dry and wet period (Td and Tw) [22,23,68,69]

Td =
1−pw|w+pw|d

Number of days in a month∗ pw|d

(
1−pw|w

)(
1−pw|d

)Ld
Tw =

1−pw|w+pw|d

Number of days in a month∗ pw|d

(
1−pw|w

)
pw|w

Ld

One day maximum Precipitation (mm) [24,25,70,71] Maximum value of single day precipitation event Drainage design, soil conservation and management, risk mitigation, in events, including flash floods
and droughts
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Table 2. Cont.

VERIFICATION PARAMETERS

Parameter Name Definition Formula Range

Lorenz Curve [26,72]
Daily precipitation totaled data are arranged in increasing
order, cumulative, and converted to a proportion of total
precipitation

Brier Score [27,73] Measures the mean squared probability error

BS =
1
n

n

∑
i=1

(fi − oi)
2

Where fi are forecast probabilities between 0 and 1
and oi are given as 0 and 1 for observed dry and wet
days, respectively.

Lower brier score means the forecast is closer to the
observation. BS can be partitioned into three terms:
(1) reliability, (2) resolution, and (3) uncertainty.

Bias [28,74]

Verification metric denoted by ratio of total number of
events forecast and total number of events observed;
Forecast is termed as underforecast when BIAS < 1 or
overforecast (BIAS > 1) events

Bias =
h + f

h + m

Where h = Hit, f = False Alarm, m = miss

Perfect Score: 1

Extreme Dependent Score [29,75] EDS is independent of bias, so should be presented
together with the frequency bias

EDS =
ln p− ln H
ln p + ln H

Where p = (hits + misses)/total is the base rate
(climatology), H is the hit rate, also known as the
probability of detection, and F is the false alarm rate,
also known as the probability of false detection.

[−1, 1], 0 indicating no skill with 1 representing
perfect score.

Cohen’s-d effective size [30–32,76–78] Alternate measure of checking the differences
in distributions

Cohen′s d =
M1−M2

SDcont

Where M1 and M2 are means from the simulated
and observed data and SD control is standard
deviation from observed data or pooled standard
deviation generally used with more realizations.

Values closer to 0 correspond to better simulations.
In general, d = 0.2 (small); d = 0.5 (medium); and,
d = 0.8 (large) effect sizes
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3. Results

3.1. Comparison of Data from Two Different Sources of Climate Projections (GDO and MACA)

Density distribution plots for monthly precipitation for the period from 1966 to 2005 (Figure 3a,
Figure S1A,B) showed that performance of datasets from both climate projection sources was similar.
The GCMs tended to distribute precipitation across more periods than what was evident from observed
data. For example, some models simulated more months having precipitation totals between 20 mm
and 100 mm than what was seen for the observed data (highlighted in the red box in Figure 3a). Some
models overestimated months having precipitation totals of more than 100 mm (both models). MACA
had a wider range of simulation outputs from the different GCMs compared to GDO. At Adrian, MI,
MACA-based simulations did not perform well in capturing lower values of annual precipitation
totals during the late 1970s and 1980s, whereas GDO-based projections did not capture higher values
of annual precipitation totals around the mid-1970s and late 1990s (red boxes in Figure 3b). Similar
patterns were seen at the other two stations (Figure S1A,B).Water 2019, 11, x FOR PEER REVIEW 13 of 30 
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Comparison of statistical properties from all different GCMs from the two different climate
projection sources (Table 3 and Table S1) showed that both sources performed equally well in simulating
mean and minimum values of daily precipitation depth at all three stations. Neither source was able to
capture the number of days with zero precipitation depth (NDPO) although MACA performed better
than GDO, and similarly for maximum precipitation values. However, GDO values of maximum
precipitation were closer to observed values at Adrian, MI, with values ranging from 65.4 mm to
110.1 mm compared with 120.4 mm from the observed data. Overall, MACA-based simulations were
better at capturing the statistical properties of precipitation data.

Analysis of wet days (Table S2) showed a tendency to overestimate the number of wet days in a
month (both sources), although MACA-based simulations performed better. This would explain why
one-day maximum precipitation values from both sources failed to match observed values as rainfall
was spread across more days hence overall lower values were simulated. Values from MACA-based
simulations were close to observed values in some of the months (e.g., 11 days in February at Fort
Wayne, IN compared with 10 days from observed data and 17 days from GDO output). MACA-based
values were particularly better at Fort Wayne, IN, where the observed value was captured in one of
the months (November) and simulated values were within two days of observed values in seven of
the months. The number of wet days in a month based on the GDO source were generally greater
(5–15 days more than observed) than what was obtained based on the MACA source (0–7 days more
than observed) for all three stations. Results obtained for the number of dry days in a month (Table S3)
were similar to those for wet days in a month for both sources. Generally, both sources underestimated
the number of dry days in a month although MACA performed better. This was not surprising as
both sources had overestimated the number of wet days in the month. MACA-based values came very
close to observed values (within 1–2 days) in seven of the months and matched observed values in
November at Fort Wayne, IN, similar to observations for number of wet days in a month. Values from
GDO-based simulations performed particularly poorly in April through August at Fort Wayne, IN and
over most months at Norwalk, OH.

The analysis of extreme and general climate indices (Figure 4, Table S4 and Table 4) showed that
MACA-based data captured maximum dry length very well while this value was underestimated by
GDO for all three stations. The number of dry sequences were also severely underestimated for both
sources. Values for maximum wet lengths were overestimated for both sources (larger values were
seen with GDO outputs) with the exception of MACA at Norwalk, OH for which the observed value
was well captured within the range of values obtained. The number of wet sequences was, however,
greatly overestimated for both sources (377–501 compared with 153–183 for the observed data). This
corresponds to previous observations regarding the tendency of the models to spread precipitation
across a larger number of days than what would generally occur based on observed data. Transitional
probabilities were generally captured well by MACA outputs but values from GDO outputs at all
three stations indicated that this climate dataset lacked much needed accuracy. The mean lengths
of the dry periods were well captured in MACA-based data at Fort Wayne, IN and Norwalk, OH,
but underestimated otherwise. Neither source was able to capture the mean length of the wet period
(Lw) although values were closer for MACA. Return periods for the mean lengths of dry periods
were overestimated by both GDO and MACA sources, with GDO values being substantial larger
than observed (Table 4). Return periods for the mean lengths of wet periods were underestimated by
both sources although differences were not very large. Overall, MACA-based values were better at
capturing both extreme and general climate indices.
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Table 3. Comparison of GDO and MACA climate projection sources for Adrian, MI, Fort Wayne, IN, and Norwalk, OH in simulating descriptive statistics for daily
precipitation (mm), and maximum and minimum air temperatures (◦C).

Adrian, MI Fort Wayne, IN Norwalk, OH

Precipitation, mm

Treatment Median NDP0 * (%) Maximum Median NDP0 (%) Maximum Median NDP0 (%) Maximum

Observed 0 66.9 120.4 0 63.5 111.8 0 64 229.1
GDO (0.2–0.2), 0.2 (29.8–31.9), 30.9 (65.4–110.1), 83.3 (0.4–0.5), 0.4 (15.4–20.7), 17.7 (52.0–72.0), 63.7 (0.7–0.8), 0.8 (10.8–13.0), 12.0 (40.1–48.0), 43.6

MACA (0.0–0.0), 0.0 (53.5–54.1), 53.9 (67.2–71.0), 69.7 (0.0–0.0), 0.0 (54.6–55.5), 54.9 (65.0–74.5), 72.3 (0.0–0.0), 0.0 (51.0–51.7), 51.4 (54.5–112.8), 101.6

Maximum Temperature, ◦C

Treatment NDT35 † (%) Maximum Minimum NDT35 (%) Maximum Minimum NDT35 (%) Maximum Minimum

Observed 0.3 40.0 −20.0 0.3 41.1 −23.9 0.2 39.4 −22.2
GDO (0–0.4), 0.2 (36.0–38.9), 37.4 (−20.4–−16.2), −18.5 (0.1–0.5), 0.3 (36.7–39.5), 38.1 (−23.2–−17.4), −19.7 (0–0.3), 0.1 (34.8–39.8), 36.9 (−21.3–−14.9), −18.2

MACA (0.5–0.7), 0.6 (39.5–40.2), 39.9 (−17.5–−16.5), −17.1 (0.5–0.8), 0.7 (40.6–42.1), 41.8 (−22.1–−20.3), −21.4 (0.2–0.3), 0.2 (37.6–37.8), 37.7 (−19.2–−17.8), −18.8

Minimum Temperature, ◦C

Treatment NDT2 ‡ (%) Maximum Minimum NDT2 (%) Maximum Minimum NDT2 (%) Maximum Minimum

Observed 46.3 24.4 −30.0 41.1 25.6 −30.0 41.8 25.0 −29.4
GDO (44.4–46.0), 45.4 (21.7–26.3), 23.6 (−31.2–−25.8), −29.0 (39.5–41.2), 40.3 (22.7–26.8), 25.0 (−33.8–−26.8), −30.2 (39.9–41.6), 40.9 (22.0–27.8), 24.6 (−29.7–−23.6), −27.2

MACA (44.8–45.7), 45.3 (23.8–24.0), 24.0 (−28.2–−26.4), −27.9 (39.9–40.7), 40.4 (25.2–25.5), 25.5 (−28.9–−26.9), −28.4 (41–41.6), 41.4 (24.0–24.0), 24.0 (−28–−27), −27.5

* NDP0: Number of days with daily precipitation depth 0 mm expressed as percentage of total days of observation. † NDT35: Number of days with daily maximum air temperature 35 ◦C
expressed as percentage of total days of observation. ‡ NDT2: Number of days with daily maximum air temperature 2 ◦C expressed as percentage of total days of observation. Values in
the table are presented as (Minimum of values from all 9 GCMs—Maximum values from all 9 GCMs), Median of values from all nine GCMs.
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Table 4. Comparison of GDO and MACA climate projection sources for different climate indices for
Adrian, MI, Fort Wayne, IN, and Norwalk, OH for 1966 to 2005.

Index

Treatment P(w|w) P(w|d) Ld Lw Td Tw

Adrian, MI

Observed 0.5 0.3 4 1 1 4
GDO (0.7–0.7), 0.7 (0.5–0.6), 0.5 (2–2), 2 (2–2), 2 (13–33), 21 (1–1), 1

MACA (0.6–0.6), 0.6 (0.3–0.4), 0.3 (3–3), 3 (2–2), 2 (2–3), 2 (1–2), 1

Fort Wayne, IN

Observed 0.5 0.3 3 1 1 3
GDO (0.8–0.8), 0.8 (0.6–0.7), 0.6 (2–2), 2 (3–3), 3 (52–174), 81 (1–1), 1

MACA (0.6–0.6), 0.6 (0.3–0.3), 0.3 (3–3), 3 (1–2), 2 (2–2), 2 (1–2), 1

Norwalk, OH

Observed 0.5 0.3 3 1 1 3
GDO (0.9–0.9), 0.9 (0.7–0.8), 0.7 (1–2), 1 (3–4), 4 (256–2016), 738 (1–1), 1

MACA (0.6–0.6), 0.6 (0.3–0.4), 0.4 (3–3), 3 (2–2), 2 (2–3), 3 (1–1), 1

Daily air temperature analysis (Table 3, Tables S5 and S6) revealed that both sources performed
well and at par with respect to the statistical properties for maximum and minimum air temperature
for all three stations. This is consistent with [50], based on which the expectation is that biases with
respect to temperatures would be minimal regardless of the source of projections. That said, the
number of days with maximum temperature greater than 35 ◦C and, in general, values related to
minimum temperatures were better represented by GDO data. The number of days for optimum
growth of corn was better represented by GDO at Adrian, MI (Figure 4) and by MACA at Fort Wayne,
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IN and Norwalk, OH (Table S4). For example, at Fort Wayne, IN, the GDO source output estimated
67–76 days for optimum corn growth, while the MACA source output estimated 63–67 days; compared
with 63 days from observed data (Table S4). Output from both sources overestimated the number of
snow days with the closest representation being from MACA output at Fort Wayne, IN for which the
range of values was 34–37 days compared with 33 days based on observed data. Values from GDO
tended to be greatly overestimated, for example 63–71 days at Norwalk, OH, compared with 31 days
from observed data (Table S4). The number of growing degree days (Table S7) were generally well
captured by outputs from both sources with the exception of values for 15 October, which were often
overestimated by over 100. Values based on GDO were also overestimated for 1 October at Fort Wayne,
IN and Norwalk, OH.

Forecast verification or skill scores along with performance coefficients for precipitation events
showed that GDO had a higher Brier score (0.6) than MACA (0.5) for Norwalk, OH; this indicated
that GDO projections were relatively more offset from the observed data than MACA. Higher bias
was recorded for GDO (1.7, 1.8, and 2.1 at Adrian, Fort Wayne, and Norwalk, respectively), when
compared with 1.4, 1.2, and 1.3 for the MACA source at the three stations, respectively. Lower EDS
score for MACA (0.2, 0.1, and 0.2 Adrian, Fort Wayne, and Norwalk, respectively compared with 0.3,
0.4, and 0.6, respectively for GDO) showed that there was greater dependence between the projected
GDO output and observed data and the GDO forecast was less random. No high correlations were
seen between projected values from either source and the observed data. Relative performance of
both climate projection sources was the same for growth degree days at all stations. From the outputs
discussed, the MACA source performed better than GDO in most of the parameters. Therefore, the
MACA source was selected for further analysis to correct biases. Corrections were not necessary for
temperatures since these were well captured by default outputs.

3.2. Evaluation of Different Bias Correction Methods for the Historic Period

Climate values from different outputs from the MACA source were treated with different methods
of bias correction, including conventional methods (power scaling for precipitation and variance scaling
of temperature) and SWGs. The Q-Q plots between simulated values and observed data (Figures 5–7)
revealed that power transformation redistributed the precipitation fairly well and provided better
representation of daily precipitation albeit with a slight overestimation at the higher values. None of
the SWG-based approaches performed well at any of the stations based on these figures. Statistical
properties evaluated at a daily time step (Table S8) showed that power transformation greatly improved
the representation of precipitation for MACA-based simulations. For example, values of standard
deviation and daily maximum precipitation at Adrian ranged from 6.5–6.6 and 116.6–134.3 mm,
respectively after power transformation, compared with 6.5 and 120.4 mm, respectively based on
observed data, having improved from values obtained before transformation (5.4–5.7 and 67.2–71.0 mm,
respectively). A similar picture was seen at the other two stations and for other properties such us
skewness (both) and kurtosis (Norwalk, OH). Means, medians, and minimums were generally captured
well at all stations, with or without power transformation. For SWG-based corrections, the LARS-WG
75th percentile was able to capture mean and minimum values relatively well, but otherwise failed
on all other properties. None of the other SWG-based corrections were able to provide suitable
representation of precipitation at any of the stations.

Evaluations on a seasonal basis (Table S8) showed that power transformation greatly improved the
representation of precipitation for MACA-based simulations at all three stations. The improvements
were especially evident in the spring and summer and with values of maximum precipitation within
seasons. As with daily values, the LARS-WG 75th percentile was able to capture mean and minimum
values relatively well at the seasonal level, but otherwise failed on all other properties. None of the other
SWG-based corrections performed well at this level, with the exception of minimum values, which all
but LARS-WG 90th percentile were generally able to capture. None of the treatments was able to capture



Water 2019, 11, 581 15 of 29

the number of days with no precipitation, with the exception of power transformation at Norwalk, OH
for the fall season, which came close (59–62% compared with 62.9% for the observed data).
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1966 and 2005 to reduce the bias in simulating values for daily precipitation, mm and to present the
future climatic scenarios (2006–2099) for Adrian, MI.

Analysis of extreme and general climate indices (Table 5) showed that the maximum length of
dry periods was captured relatively well by MACA outputs at all stations with or without power
transformation, as was the maximum length of a wet period at Norwalk, OH. For example, maximum
dry period length at Adrian, MI ranged between 17–29 days without treatment and 17–32 days with
treatment, compared with 26 days obtained from observed data. The representation of the maximum
length of a wet period was generally the same for treated and untreated data. The average length of a
dry period was better captured with power transformation at Fort Wayne, IN and Norwalk, OH and
values at Adrian, MI improved with the transformation (2.8–3.2 days with transformation compared
with 1.7–1.9 days without transformation and four days for the observed data). No changes were seen
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in the average length of the wet period, and in the return periods for either the dry or wet periods
following transformation. The number of snow days was better represented by the original MACA
dataset (no treatment) at all stations, although values were generally overestimated.
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between 1966 and 2005 to reduce the bias in simulating values for daily precipitation, mm and present
future climate scenarios (2006–2099) for Fort Wayne, IN.

Distributions obtained using Lorenz curves (Figure 8) showed that power transformation reduced
the bias and projected similar distributions as those observed from the ground-based stations. Values of
Cohen’s effect size, d for power transformation ranged from 0.1–0.3 indicating that differences between
treated data and observed values were small. Values obtained for SWGs were mixed indicating that the
SWG simulation outputs were less close to the observed data, consistent with previous observations.
The bias was also higher when using the SWGs (2.6–3.0) compared to power transformation (1.2–1.4).
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Overall, results indicated that power transformation outperformed any other method of bias
correction in this study. Generally, SWGs did not perform well as methods of bias correction, with the
exception of LARS-WG 75th percentile, which captured mean values relatively well (Table S4) and
CLIGEN 75, which captured the maximum and average lengths of dry periods and the number of wet
sequences relatively well (Table 5). The potential of weather generators as tools for bias correction has
previously been discussed [79] and such generators have been used to generate reliable future climate
datasets [80]. Thus, the possibility of using SWGs for bias correction cannot be completely discarded.

As previously noted (Section 3.1), precipitation suffered from the most bias, while maximum
and minimum temperature had minimal bias and did not require much, if any, correction. The Q-Q
plots drawn from outputs of different climate models when treated with the different bias correction
methods (Figure S2A–F) showed that the SWGs and variance scaling of temperature did not perform
well in correcting any biases. Default values from either GDO or MACA had less bias and could be
used without correction, consistent with previous conclusions.
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Table 5. Extreme event and general climate indices analysis for Adrian, MI; Fort Wayne, IN; and Norwalk, OH for MACA climate projections before and after different
bias correction methods compared with observed climate data from ground-based stations.

Treatment Maximum
Dry Length

Maximum
Wet Length

Number of Dry
Sequence

Number of
Wet Sequence Snow Days Ld † Lw † Td † Tw †

Adrian, MI

Observed 26 9 33 153 30 4 1 1 4
MACA No Treatment (17–29), 22 (16–23), 19 (4–17), 11 (318–450), 387 (40–43), 42 (1.7–1.9), 1.8 (1.5–1.6), 1.5 (1.9–2.5), 2.1 (1.3–1.5), 1.3
MACA Conventional (17–32), 24 (15–23), 19 (4–19), 12 (314–446), 381 (60–62), 61 (2.8–3.2), 3 (1.5–1.6), 1.5 (1.9–2.5), 2.1 (1.3–1.5), 1.3

MACA CLIGEN75 (13–36), 23 (175–228), 210 (0–5), 2 (108–170), 142 (332–338), 335 (2.8–3.2), 3 (2.9–3.9), 3.2 (3084–2016), 767.2 (0.7–0.8), 0.7

Fort Wayne, IN

Observed 30 11 16 166 33 3 1 1 3
MACA No Treatment (22–37), 27 (15–29), 21 (8–23), 16 (310–432), 377 (34–37), 36 (1.5–1.7), 1.6 (1.4–1.5), 1.5 (1.7–2.3), 1.9 (1.3–1.5), 1.4
MACA Conventional (22–37), 27 (14–29), 21 (309–432), 375 (309–432), 375 (42–44), 43 (2.9–3.3), 3.2 (1.4–1.5), 1.5 (1.7–2.3), 1.9 (1.3–1.5), 1.4

MACA CLIGEN75 (16–43), 26 (157–268), 213 (156–210), 194 (156–210), 194 (320–330), 324 (2.9–3.3), 3.1 (2.6–3.5), 2.9 (143–918.2), 301 (0.6–0.7), 0.6

Norwalk, OH

Observed 25 18 15 183 31 3 1 1 3
MACA No Treatment (16–29), 21 (14–27), 20 (2–15), 7 (346–473), 410 (38–41), 40 (1.3–1.5), 1.4 (1.5–1.6), 1.5 (2.2–3.1), 2.5 (1.1–1.3), 1.2
MACA Conventional (18–29), 22 (13–27), 19 (322–456), 394 (322–456), 394 (50–53), 52 (2.6–3.0), 2.9 (1.5–1.6), 1.5 (2.2–3.1), 2.5 (1.1–1.3), 1.2

MACA CLIGEN75 (11–17), 15 (218–279), 243 (76–116), 100 (76–116), 100 (342–346), 345 (2.6–3.0), 2.9 (3.4–4.7), 4 (1260–8870), 3771.1 (0.9–1), 1
† Ld, Lw: average length of dry and wet period; Td, Tw: return period for average length of dry and wet period.
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3.3. Analysis of Climate Projections for Western Lake Erie Basin

Based on the analysis, only slight increases (0.1–0.4 mm) were expected in mean precipitation
for either scenario. Not much difference was observed between the scenarios and values generally
ranged from 2.4–2.9 mm compared with 2.4–2.6 mm obtained from observed data. No changes would
be experienced in median values, which are expected to remain at 0 mm. The standard deviation was
projected to increase by between 0.3 mm and 1.9 mm with highest increases expected at Norwalk, OH
and the changes being about the same across both emission scenarios. Changes in scale parameters (in
this case, the standard deviation) point to a rescaling of the distribution function [81] and, particularly
in this case where the mean remains more or less constant, differences would be seen primarily at the
tails, the shapes of which reflect the occurrence of extreme events. Extreme events are particularly
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sensitive to changes in scale with relative sensitivity being higher for larger extreme values, regardless
of how the events respond to changes in location (in this case the mean) [81]. Based on our analysis,
maximum precipitation is expected to increase at all stations and could be up to four times higher than
that in the baseline scenario. For example, the maximum precipitation value at Fort Wayne, IN could go
as high as 455 mm under RCP 4.5 compared with 111.8 mm from the baseline scenario. Higher increases
are expected under the medium emission (RCP 4.5) scenario than under the high emission (RCP 8.5)
scenario except at Norwalk, OH where maximum precipitation under RCP 8.5 could go as high as
540 mm based on projections (Table 6). Based on the analysis, increases in maximum precipitation
will be especially evident during summer and spring (Table S9). The Q-Q plots of corrected daily
precipitation for the future time series revealed that the magnitude of the maximum daily precipitation
event would be much greater than that from the observed data (Figures 6–8), consistent with the
previous observations. The maximum length of dry periods would remain the same or increase only
slightly. The maximum wet length at Norwalk, OH would remain more or less the same under RCP 4.5
but could double or triple under RCP 8.5 (37–50 days compared with 18 days in the baseline scenario).
Values of the maximum wet lengths at the other two stations and average lengths of both wet and dry
periods at all three stations mirrored those from bias-corrected MACA-based simulations suggesting
that no changes were expected in these values, and similarly for transitional probabilities.

Based on analysis of temperature projections (Table 7), mean maximum temperatures could
increase by between 1.7 and 5.0 ◦C (average 2.6 and 3.8 ◦C under RCP 4.5 and RCP 8.5, respectively)
across all stations in the basin, consistent with IPCC reports [82]. The largest changes in the absolute
maximum value could be seen at Fort Wayne, IN, while increases in maximum temperature would
be about the same at the other two stations, ranging between 1.6–12.8 ◦C (average 5.1–9.1 ◦C under
RCP 4.5 and RCP 8.5, respectively). The number of days with temperatures >35 ◦C were projected to
increase across the board, with the largest increases (1.7–10%) seen at Fort Wayne, IN. Increases at the
other two stations were expected to be small although these could increase by up to 8.4% at Adrian,
MI. Mean minimum temperatures could increase by between 1.8 ◦C and 5.0 ◦C (average 2.8 and 3.8 ◦C
under RCP 4.5 and RCP 8.5, respectively) at all three stations. Absolute minimum temperatures could
increase by up to 8.3 ◦C (average 3.4 and 5.0 ◦C under RCP 4.5 and RCP 8.5, respectively) although
decreases of up to 1.5 ◦C could also occur. The number of days with temperatures <2 ◦C were projected
to decrease across the board, with the largest decreases (5–18%) seen at Adrian, MI. This points to a
potential decrease in the number of snow days as 2 ◦C is the threshold below which precipitation is
more likely to fall as snow than as rain [16,64]. The growing degree days as projected will be sufficient
for seeding, flowering and harvesting of corn. However, projected increases in GDD suggest that the
growth period may shift 15 days earlier (Table 8). For example, the GDD on 1 May at Adrian, MI was
projected to range between 98–142 under RCP 4.5 and 111–187 under RCP 4.5 compared with 60 and
104 on 1 May and 15 May, respectively obtained from the observed baseline data. Similar patterns
were observed at the other two stations. Overall, GDD values were projected to increase at all three
stations suggesting an overall longer growing period.
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Table 6. Comparison of future climate scenarios (2006–2099) with the historical period (1966–2005) for daily precipitation, mm.

Treatment Mean Median Std. Dev. Maximum Maximum
Dry Length

Maximum
Wet Length Ld † Lw †

Adrian, MI

Observed 2.4 0.0 6.5 120.4 26 9 4 1
RCP4.5 Treated (2.5–2.7), 2.6 (0–0), 0 (6.8–7.6), 7.3 (164.2–302.6), 214.4 (21–45), 27 (16–29), 20 (2.8–3.2), 3 (1.5–1.6), 1.5
RCP8.5 Treated (2.5–2.8), 2.7 (0–0), 0 (6.8–7.9), 7.4 (157.5–258), 191.1 (20–46), 28 (17–26), 20 (2.8–3.4), 3.1 (1.4–1.5), 1.5

Fort Wayne, IN

Observed 2.5 0.0 6.7 111.8 30 11 3 1
RCP4.5 Treated (2.7–2.9), 2.7 (0–0), 0 (7.4–8.1), 7.7 (134.9–454.6), 213.2 (22–45), 30 (16–22), 18 (3.0–3.4), 3.2 (1.4–1.5), 1.5
RCP8.5 Treated (2.6–2.9), 2.8 (0–0), 0 (7.3–8.3), 7.9 (151.5–293.8), 205.6 (27–41), 32 (15–26), 22 (3.0–3.5), 3.3 (1.4–1.5), 1.4

Norwalk, OH

Observed 2.6 0.0 7.0 229.1 25 18 3 1
RCP4.5 Treated (2.6–2.8), 2.7 (0–0), 0 (7.0–8.5), 7.7 (215.3–461.7), 324 (19–41), 27 (16–25), 20 (2.7–3), 2.9 (1.5–1.6), 1.5
RCP8.5 Treated (2.6–2.9), 2.8 (0–0), 0 (7.1–8.8), 8.1 (255.4–536.9), 381.9 (22–34), 29 (37–50), 44 (2.7–3.2), 2.9 (1.5–1.6), 1.5

† Ld, Lw: average length of dry and wet period.



Water 2019, 11, 581 22 of 29

Table 7. Comparison of future climate scenarios (2006–2099) with the historical period (1966–2005) for maximum and minimum temperatures, ◦C.

Maximum Temperature Minimum Temperature

Treatment Mean Std. Dev. Maximum Days with Max
> 35 ◦C (%) Mean Std. Dev. Minimum Days with Min

< 2 ◦C (%)

Adrian, MI

Observed 15.0 11.5 40.0 0.3 3.1 10.0 −30.0 46.3
RCP4.5 (16.7–18.5), 17.7 (10.8–11.9), 11.5 (42.7–51.2), 45.8 (1.8–4.8), 3.1 (4.9–6.9), 5.8 (9.0–9.8), 9.4 (−31.5–−21.7), −26.8 (32.3–40.9), 38.1
RCP8.5 (17.6–20.0), 18.8 (11.2–12.1), 11.7 (46.2–52.6), 50.0 (3.6–8.7), 6.7 (5.7–8.1), 6.9 (9.2–10.2), 9.6 (−27.5–−22.6), −25.6 (28.4–39.2), 34.9

Fort Wayne, IN

Observed 15.4 11.8 41.1 0.3 4.8 10.3 −30.0 41.1
RCP4.5 (17.0–19.0), 18.0 (11.1–12.1), 11.6 (45.2–53.9), 48.0 (2.0–5.1), 3.3 (6.3–8.4), 7.2 (9.5–10.1), 9.9 (−30.3–−23.3), −27 (28.5–36.4), 33.7
RCP8.5 (17.9–20.4), 19.2 (11.6–12.1), 11.9 (50.0–56.5), 52.4 (4.0–10.3), 7.3 (7.1–9.4), 8.3 (9.8–10.5), 10.1 (−28.6–−22.8), −26.3 (25.3–34.9), 31.1

Norwalk, OH

Observed 15.0 11.4 39.4 0.2 4.4 10.1 −29.4 41.8
RCP4.5 (16.6–18.2), 17.5 (10.6–11.5), 11.1 (41.0–47.9), 43.9 (0.9–3.1), 2 (5.9–7.8), 6.8 (9.0–9.8), 9.4 (−30.9–−21.1), −26.6 (29.1–37.0), 34.5
RCP8.5 (17.5–19.5), 18.6 (10.8–11.6), 11.4 (44.8–52.2), 47.5 (2.5–6.4), 4.9 (6.8–9.0), 7.8 (9.2–10.1), 9.6 (−28.2–−21.9), −25.4 (25.1–35.6), 31.6
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Table 8. Comparison of Growing Degree Days (GDD) under future climate scenarios (2006–2099) with
those from the historical period (1966–2005) at Adrian, MI, Fort Wayne, In, and Norwalk, OH.

Growing Degree Days

Treatment 1-May 15-May 1-October 15-October

Adrian, MI

Observed 60 104 1364 1386
MACANoTreatment (56–76), 68 (110–135), 125 (1437–1508), 1481 (1494–1570), 1531

RCP4.5 (98–142), 118 (174–231), 198 (1708–1954), 1861 (1761–2037), 1930
RCP8.5 (111–187), 144 (196–285), 236 (1901–2241), 2086 (1984–2347), 2190

Fort Wayne, IN

Observed 86 148 1615 1648
MACANoTreatment (77–103), 91 (146–175), 163 (1602–1679), 1650 (1667–1769), 1713

RCP4.5 (132–180), 152 (219–289), 249 (1872–2178), 2046 (1932–2279), 2133
RCP8.5 (140–225), 178 (242–344), 287 (2075–2474), 2279 (2160–2599), 2397

Norwalk, OH

Observed 80 129 1493 1516
MACANoTreatment (58–82), 72 (113–141), 129 (1490–1545), 1515 (1528–1620), 1565

RCP4.5 (109–138), 125 (186–233), 209 (1756–1971), 1894 (1816–2057), 1976
RCP8.5 (126–183), 153 (215–278), 249 (1950–2243), 2115 (2038–2355), 2228

3.4. Basin-Wide Projections

Under medium and high emission scenarios (Table S12) mean precipitation values were expected
to remain more or less the same (2.4–3.2 mm) or change only slightly at all stations across the basin,
consistent with previous results. Standard deviations were expected to increase, as previously observed,
suggesting increases in maximum precipitation. Generally, maximum precipitation was projected to
increase across the basin with anticipated increases on average ranging between 35 mm and 130 mm
under both RCP 4.5 and RCP 8.5 and values exceeding 600 mm being possible. This was with the
exception of Bucyrus, OH and Defiance, OH, for which decreases in maximum precipitation of between
12 mm and 97 mm were predicted by most of the models under both scenarios. Except for Bowling
Green, OH and Sandusky, OH, the average maximum dry period length computed from the nine
different climate projections was expected to increase compared to the observed data.

Higher daily temperatures could be anticipated under both climate scenarios across the basin
(Table S12). Basin-wide, mean maximum temperatures were projected to increase by between 1.5–3.5 ◦C
under RCP 4.5 and 2.5–5.0 ◦C under RCP 8.5. Absolute maximum temperatures could increase by
less than 1 ◦C in some cases and >10 ◦C in others when compared to current climatic conditions,
potentially putting maximum temperatures at well over 45 ◦C. Heat stress and heat injury can occur
when temperatures rise above 32.2 ◦C [83,84] and especially if these are sustained. The range of days
for optimal growth of corn may decrease if extreme high temperatures persist. Basin-wide, mean
minimum temperatures were expected to increase by between 1.3–3.6 ◦C under RCP 4.5 and 2.1–5.0 ◦C
under RCP 8.5.

4. Discussion

Reliable climate projections are needed to determine hydrologic and water resource responses
under different future climate projections with reasonable accuracy and particularly at regional or more
localized scales at which actionable policy decisions are made. This can only be achieved if the climate
projections for precipitation and air temperature are free from as much bias as possible [15,85]. Biases
in climate projections occur mainly because of flawed or faulty ideational boundary assumptions, thus,
the use of uncorrected climate projections from downscaled climate models in hydrologic modeling or
any other applications can lead to a lot of uncertainty [86–88]. Precipitation estimates are particularly
vulnerable to bias, while temperature values can often be used without much correction, if any [50].
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Of the two sources of climate projections that were evaluated (GDO and MACA), outputs from
MACA were found to be better with or without any treatment to correct the bias. Though the metadata
files from the GDO source suggested that the historic period was 1950–2015, this was actually 1950–2005.
Very limited information was available in the source documentation, and care must be taken by users to
properly understand the historic period before applying future projections to any modeling application.
The MACA data used in this study had already been subjected to some bias correction, although
such corrections have been found insufficient for treating the bias while downscaling [89]. Thus, in
this study, data from the MACA source were further evaluated (precipitation and temperature) and
corrected (precipitation only) for bias following which final values were generated for the basin. In
this work, it was assumed that gridded downscaled data stayed the same throughout the grid extent
and could be compared with the corresponding ground-based station.

The conventional method of bias correction, including power transformation for precipitation
outperformed other approaches in this study. Though SWGs have the potential for bias correction
due to their ability to preserve the mean and some climate indices, they did not perform well in this
study. This poor performance of SWGs was possibly attributable to their inability to compute accurate
transitional or conditional probabilities. Thus, the overall efficacy of SWGs in bias correction could be
improved if this aspect can be improved.

5. Conclusions

This study suggested that it is important to develop a framework to evaluate and correct
bias/error associated with simulated climate output from the most reliable and easy to access statistical
downscaled models available in the public domain. With depleting water resources and increasing
concern of harmful algae blooms, a reliable future (2006–2099) climate information is needed for
use with hydrologic and water resources applications in the WLEB. This would help to determine
hydrologic and water resource responses under different future climate projections with reasonable
accuracy and particularly at regional or more localized scales at which actionable management
decisions are made. The precipitation climate projections require rescaling of the distribution to
polarize/unpolarize the impact of extreme precipitation events (both low and high) simulated with
bias by regional climate models using boundary conditions. The temperature dataset also requires
attention but is well simulated by the climate models. Bias-corrected climate data analysis for WLEB
projected a substantial increase in maximum precipitation basin-wide. Temperatures would also be
affected at the extremes leading to an overall warmer climate and potential for increases in conditions
associated with adverse effects such as heat stress and heat injury. Projected increases in minimum
temperatures could, however, result in longer growing seasons, which could be beneficial, although
potential benefits could be counteracted by other responses to increasing temperatures such as earlier
snowmelt, higher evapotranspiration rates, and heat stress. This study showed that the means and
standard deviations are not the only criteria needed to evaluate the performance of downscaling or
bias correction methods, rather, other statistical properties and essential characteristics such those
related to extremes should also be evaluated. The results from this study were very useful in creating a
reliable climate database for the entire WLEB, which can be used in further assessments looking at the
impact of changing climatic patterns on water resources in the basin. This study is a step forward in
quantifying and correcting the bias in climate (precipitation) projections to support water resource
planning and management, an important aspect for hydrologic and water resources studies worldwide.

6. Data Availability

Primary datasets used in this study were obtained from two sources: (1) GDO (authors created
acronym for Global Downscaled Climate and Hydrology Projections), available at the URL: https://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/; and (2) MACA (Multivariate Adaptive Constructed
Analogs), available at the URL: https://climate.northwestknowledge.net/MACA/. Daily summaries
of climate data from ground-based climate stations were downloaded from https://www.ncdc.noaa.

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://climate.northwestknowledge.net/MACA/
https://www.ncdc.noaa.gov/cdo-web/datasets
https://www.ncdc.noaa.gov/cdo-web/datasets
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gov/cdo-web/datasets. Data generated through this study are published at https://purr.purdue.
edu/ [33,34,37,38].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/3/581/s1.
Table S1: Statistical properties of daily precipitation (mm) for Adrian, MI; Fort Wayne, IN; and Norwalk, OH from
the different climate projection sources in comparison with observed values, Table S2: Performance evaluation in
simulating number of wet days in a month by two different climate projection source (GDO and MACA) data for
Adrian, MI, Fort Wayne, In, and Norwalk, OH, Table S3: Performance evaluation in simulating number of dry
days in a month by two different climate projection source (GDO and MACA) for Adrian, MI, Fort Wayne, In,
and Norwalk, OH, Table S4: Extreme event and general climate indices analysis for Adrian, MI; Fort Wayne, IN;
and Norwalk, OH from the climate projection sources in comparison with values from observed data, Table S5:
Statistical properties of daily maximum air temperature (◦C) for Adrian, MI; Fort Wayne, IN; and Norwalk, OH
from the climate projection sources in comparison with observed data, Table S6: Statistical properties of daily
minimum air temperature, ◦C, for Adrian, MI; Fort Wayne, IN; and Norwalk, OH from the climate projection
sources in comparison with observed data, Table S7: Performance evaluation in simulating Growth Degree
Days (GDD) by two different climate projection sources (GDO and MACA) for Adrian, MI, Fort Wayne, IN, and
Norwalk, OH, Table S8: Statistical properties of daily precipitation for Adrian, MI, Fort Wayne, IN, and Norwalk,
OH based on the different bias correction methods presented on a daily and seasonal basis, Table S9: Statistical
properties of daily precipitation, mm, presented on a seasonal basis for Adrian, MI, Fort Wayne, IN, and Norwalk,
OH from the MACA climate projections for two different future climate scenarios (RCP 4.5 and RCP 8.5), treated
with power transformation bias correction method and original dataset for period from 2006–2099 compared
with observed data, Table S10: Extreme event and general climate indices analysis for Adrian, MI; Fort Wayne,
IN; and Norwalk, OH from the MACA climate projections for two different future climate scenarios (RCP 4.5
and RCP 8.5), treated with power transformation bias correction method and original dataset for period from
2006–2099 compared with observed data, Table S11: Performance evaluation in simulating number of wet and
dry days in a month for Adrian, MI, Fort Wayne, IN, and Norwalk, OH from the MACA climate projections for
two different future climate scenarios (RCP 4.5 and RCP 8.5), treated with power transformation bias correction
method and original dataset for period from 2006–2099 compared with observed data, Table S12: Details of
select statistical properties computed from nine different climate model projections for precipitation (mm) and
maximum and minimum temperature (◦C) under medium and high emission scenarios (RCP 4.5 and RCP 8.5) for
eight different stations in WLEB, Figure S1: (A) (a) Density distribution charts for Fort Wayne, IN for count of
monthly precipitation totals, mm, in each year (b) Distribution of annual precipitation totals, mm, with range
bound from different climate model outputs. (For the period from 1966–2015 for GDO (right frame) and 1966–2005
for MACA (left frame)); (B) (a) Density distribution charts for Norwalk, OH for count of monthly precipitation
totals, mm, in each year (b) Distribution of annual precipitation totals, mm, with range bound from different
climate model outputs. (For the period from 1966–2015 for GDO (right frame) and 1966–2005 for MACA (left
frame)), Figure S2: (A) Q-Q Plots to evaluate the performance of different bias-correction methods for the period
between 1966 and 2005 to reduce the bias in simulating values for daily maximum temperature, ◦C and present
future climate scenarios (2006–2099) for Adrian, MI; (B) Q-Q Plots to evaluate the performance of different bias
correction methods for period between 1966 and 2005 to reduce the bias in simulating values for daily maximum
temperature, ◦C and to present the future climatic scenarios (2006–2099) for Fort Wayne, IN; (C) Q-Q Plots to
evaluate the performance of different bias correction methods for period between 1966 and 2005 to reduce the
bias in simulating values for daily maximum temperature, ◦C and to present the 48 future climatic scenarios
(2006–2099) for Norwalk, OH; (D) Q-Q Plots to evaluate the performance of different bias correction methods for
period between 1966 and 2005 to reduce the bias in simulating values for daily minimum temperature, ◦C and
to present the future climatic scenarios (2006–2099) for Adrian, MI; (E) Q-Q Plots to evaluate the performance
of different bias correction methods for period between 1966 and 2005 to reduce the bias in simulating values
for daily minimum temperature, ◦C and to present the future climatic scenarios (2006–2099) for Fort Wayne, IN;
(F) Q-Q Plots to evaluate the performance of different bias-correction methods for the period between 1966 and
2005 to reduce the bias in simulating values for daily minimum temperature and present future climate scenarios
(2006–2099) for Norwalk, OH, Figure S3: (A) Comparison of GDO and MACA climate projection sources for
different climate indices for Fort Wayne IN between 1966 and 2005 (GDO_NT: GDO No Treatment; MACA_NT:
MACA No Treatment); (B) Comparison of GDO and MACA climate projection sources for different climate indices
for Norwalk, OH between 1966 and 2005 (GDO_NT: GDO No Treatment; MACA_NT: MACA No Treatment).
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