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Abstract: The delineation of homogeneous regions is primarily based on long-term overall rainfall
characteristics and therefore does not necessarily consider the homogeneity of event-based rainfall
characteristics. However, event-based rainfall characteristics including antecedent dry days, rainfall
intensity, total rainfall and total duration of rainfall events are critical for Water Sensitive Urban Design
(WSUD). Accordingly, this study presents a novel approach to objectively identify homogeneous
rainfall regions based on event-based rainfall characteristics. This approach uses cluster analysis
and Hosking–Wallis heterogeneous tests collectively to test the homogeneity of event-based rainfall
characteristics. A case study conducted for southeast Queensland (SEQ), Australia is also presented
in this article. This study compares the results of the novel modified approach against results of the
conventional approach for the delineation of homogeneous regions. It was evident from the results
that the entire SEQ could be treated as a homogeneous rainfall region based on the conventional
approach. In contrast, based on the modified approach, the coast and the inland of SEQ were
identified as separate homogeneous regions. Further, antecedent dry days and rainfall intensity were
recognized as the deciding rainfall characteristics in the delineation of homogeneous rainfall regions.

Keywords: rainfall homogeneous regions; WSUD; event-based rainfall analysis

1. Introduction

The critical features of Water Sensitive Urban Design (WSUD) are estimated by taking historical
rainfall records of a representative rainfall station into account. Therefore, selection of an appropriate
rainfall station that best represents the characteristics of regional rainfall is important for the design of
WSUD. Typically, rainfall stations are selected by identifying potential homogeneous rainfall regions.
A homogeneous rainfall region represents a region that has statistically similar rainfall everywhere in
the region over a long period of time [1].

There are a range of methods available to identify rainfall homogeneous regions. These methods
can be broadly classified into four, namely, geographical convenience, subjective partitioning, objective
partitioning and multivariate analysis [1]. Geographical convenience refers to the demarcation of
possible homogeneous regions based on administrative boundaries or based on major geographical
and physical groupings. This approach is essentially arbitrary and often considered misleading.
Subjective partitioning refers to the demarcation of possible homogeneous regions by the inspection
of the rainfall characteristics and established prior knowledge about the study area [2]. Objective
partitioning involves identifying a group of similar meteorological stations by minimizing a with-in
group heterogeneous criterion. Typical heterogeneous criteria used by researchers include with-in
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group variation of sample coefficients of variation, with-in group variation of sample L-skewness
and likelihood-ratio statistics [1,3–5]. Multivariate analysis, in particular cluster analysis (CA) and
principal component analysis (PCA), are prevalently used across various research studies to group
meteorological stations with similar observations [4,6–8]. In this regard, a multivariate data matrix
that includes critical variables defining the characteristics of the meteorological stations within the
study area is used in analysis so that the stations are grouped based on the similarities among them.

Subjective partition approaches are commonly used in identifying the rainfall homogeneous
regions in the context of WSUD in Australia. For example, the Brisbane City Council and Moreton Bay
Waterways [9] suggest the demarcation of rainfall homogeneous regions for southeast Queensland
purely based on the established knowledge of the spatial variation of mean annual rainfall and
the number of rain days per year. Similarly, the Northern Territory Department of Planning and
Infrastructure [10] recommend single rainfall station data for Darwin, Australia, based on the
assumption that the rainfall characteristics across Darwin Region is uniform. There are also instances
where the nearest rainfall station has been used to study different aspects of WSUD [11–13].

In addition to the inherent subjectiveness in the existing approach, there are also those based on
overall rainfall characteristics such as average annual rainfall, average number of wet days per year or
average number of dry days per year [9]. However, the delineation of homogeneous rainfall region
based on these variables may be misleading for WSUD [11,13]. In the context of WSUD, event-based
rainfall characteristics are perceived with more importance than the overall rainfall characteristics.
Rainfall event characteristics such as antecedent dry days, rainfall intensity, total rainfall and rainfall
duration are critical characteristics of rainfall that are directly related to the stormwater quality and
quantity. Stormwater quantity is directly linked to the total rainfall depth, duration and rainfall
intensities [13–17]. Stormwater quality is primarily influenced by the pollutant processes, namely,
build-up and wash-off. Build up is primarily a function of antecedent dry days [18], and wash-off is
a function of rainfall intensity [18,19]. In addition, concentrations of different pollutants are found
to be associated with different rainfall characteristics. For example, Wang et al. [20] found that the
nitrogen concentration in stormwater runoff is inversely proportional to the rainfall duration. Lee and
Bang [21] suggested that the concentration of suspended solids and chemical oxygen demand (COD)
are proportional to the rainfall durations. In addition, in the context of climate change, the event-based
rainfall characteristics are expected to change in most parts of the world while the average rainfall
conditions remain more or less the same.

Therefore, it is critical to incorporate event-based rainfall characteristics in defining the
homogeneous regions and thereby selecting the representative rainfall station for the design of WSUD.
This paper presents a novel approach to objectively demarcate the rainfall homogeneous regions based
on event-based rainfall characteristics.

2. Materials and Methods

2.1. Study Area

Southeast Queensland was selected as the study area. Southeast Queensland has an extensive
meteorological station network with measurements taken in daily, 3 h, 30 min and 1 min (pluviography)
formats. For this study, pluviographic rainfall data for 17 stations were collected from the Weather
Station Directory of the Bureau of Meteorology (BoM), Australia, for the period between 2011 and 2015
primarily based on the availability of data. The stations used for this analysis and their geographical
information are presented in Table 1.

2.2. Event Seperation

Individual events were separated, and variables such as antecedent dry days, maximum rainfall
intensity, total rainfall depth and the rainfall duration of each event were determined. These event-based
rainfall characteristics are critical rainfall characteristics that influence stormwater quality and quantity.
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For example, pollutant build-up is primarily influenced by the antecedent dry days [11,13–15], while
the pollutant wash-off is influenced by the rainfall intensity [11,13] or total rainfall depth [22], which are
the two processes that ultimately determine the stormwater quality. In addition, the total rainfall depth
and duration of a rainfall event are directly related to the quantity of stormwater generated from a
catchment [13,17]. Therefore, a demarcation of homogeneous regions based on the event-based rainfall
characteristics such as antecedent dry days, rainfall intensity, total rainfall depth and rainfall duration is
more appropriate.

Table 1. Summary of the selected meteorological stations for analysis.

Serial No. Station No. Station Latitude Longitude No. of Events
(2011–2015)

1 40004 Amberley AMO −27.6297 152.7111 265
2 40043 Cape Moreton Lighthouse −27.0314 153.4661 350
3 40082 University of Queensland −27.5436 152.3375 274
4 40093 Gympie −26.1831 152.6414 379
5 40211 Archerfield Airport −27.5717 153.0078 358
6 40717 Coolangatta −28.1681 153.5053 501
7 40764 Gold Coast Seaway −27.939 153.4283 455
8 40842 Brisbane Aero −27.3917 153.1292 377
9 40861 Sunshine Coast Airport −26.6006 153.0903 471

10 40908 Tewantin RSL Park −26.3911 153.0403 426
11 40913 Brisbane −27.4808 153.0389 380
12 40922 Kingaroy Airport −26.5737 151.8398 249
c 40958 Redcliffe −27.2169 153.0922 385

14 40983 Beaudesert Drumley St −27.9707 152.9898 297
15 40988 Nambour Daff—Hillside −26.6442 152.9383 506
16 41525 Warwick −28.2061 152.1003 213
17 41529 Toowoomba Airport −27.5425 151.9134 275

The following criteria were considered in separating individual rainfall events:

• An event was considered independent only if the consecutive event was separated by at least 3 h
antecedent duration. Otherwise, those events were treated as a single event. There is no guideline
or literature available to suggest an accurate value for minimum antecedent dry period to consider
two consecutive events as independent events. Therefore, 3 h was selected as a reasonable value
based on previous experience and expert advice.

• An event that constituted less than 1 mm total rainfall for a period greater than 1 h was not
considered as a storm event and not considered for the analysis.

• The maximum rainfall intensity (in mm/h) of the events was estimated by calculating the moving
total of 1 h rainfall throughout the rainfall duration.

• Any event having data entries of false quality based on quality classifications of BoM was
discarded from the study.

2.3. Cluster Analysis

A cluster can be referred to as the formed group of objects with similar attributes in which the
objects within the particular clusters are more relatable to each other and are clearly different from any
objects from a different cluster. The higher the closeness of objects within the cluster and the higher
the difference between different clusters will make the cluster analysis sound and accurate.

Many studies have opted for cluster analysis in identifying homogeneous rainfall regions,
e.g., Terassi et al. [23], Lyra et al. [24], Goyal et al. [25] and Oliveira-Junior et al. [26]. However,
the approaches and the algorithms used to perform the cluster analysis are inherently different.
Among the commonly used cluster analyses, k-means clustering and hierarchical clustering are the
most predominantly used clustering approaches [27].
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2.3.1. k-Means Clustering

The number of clusters in k-mean clustering is user-defined and referred to as k. Once the k is
defined, k number of random centroids are selected, and each object is assigned to the closest centroids
to form clusters. The closest centroid is assigned based on the smallest Euclidean distance to the
centroids as given by:

dist(x, c) =
√

∑n
i=1(xi − ci)

2, (1)

where x = (x1, x2, x3, . . . , xn) and c = (c1, c2, c3, . . . , cn) denote the objects and the centroids of the
clusters, and dist(x, c) denotes the Euclidean distance between x and c. Then, the centroids of the
clusters are again calculated and used as the new centroids. The objects are then assigned to the closest
new centroids. This process is repeated until the centroids remain unchanged.

The quality of the k-means clustering can be expressed by an objective function that can be
determined by the proximities of the objects to the cluster centroids. The Sum of Square Error (SSE),
also referred to as scatter, is the most common index used to measure the quality of the clustering. SSE
calculates the Euclidian distance of each object to their closest centroids, and the computation of SSE
can be given by:

SSE = ∑k
i=1 ∑xεci

dist(ci, x)2, (2)

where c denotes the centroids and x denotes the objects assigned to that particular centroid.

2.3.2. Hierarchical Clustering

Hierarchical clustering initially considers every single object as an individual cluster and
successively merges the closest next cluster based on the Euclidean distance, as given in Equation
(1), until they form a single cluster. This formation is typically presented in a dendrogram, which
displays all sub-clusters and the order in which they merge. The proximity among the clusters is
defined by three different approaches, namely, simple link, complete link and group average. Single
link defines the proximities of the clusters based on the Euclidean distance between the closest two
points of different clusters while the complete link defines the proximities based on the farthest points
of different clusters. The group average determines the average pairwise Euclidean distance (for all
objects) to measure the proximity of clusters.

2.4. Hosking–Wallis Heterogeneity Test

The Hosking–Wallis heterogeneity test is commonly applied for identifying the homogeneous
rainfall regions in regional rainfall frequency analysis [28–30]. The Hosking–Wallis heterogeneity test
has been opted into this research to objectively test the rainfall homogeneity of a region. This test
primarily compares the variations in the L-moment ratios between the meteorological stations of the
actual regions and a set of artificially created homogeneous regions (based on the average rainfall
characteristics of the region).

In an ideal situation, every station in a homogeneous region should have the same L-moment
ratios. However, in practice, the L-moments ratio are different for every meteorological station due to
differences in their observations. Nevertheless, they can be reasonably treated as homogeneous if the
differences in the L-moment ratios of the meteorological stations are statistically insignificant [1].

Accordingly, the Hosking–Wallis heterogeneity test estimates the degree of heterogeneity of a
group of meteorological stations using a set of statistical indexes called H indexes. H indexes compare
the between-station dispersion of L-moment ratios for a group of stations with what would be expected
for an artificially developed homogeneous region. The artificial homogeneous region is developed by
repeated simulations that generate synthetic rainfall data with the same record lengths of the actual
meteorological stations based on the regional average L-moments. The regional weighted average



Water 2019, 11, 570 5 of 12

of L-CV—t(R), L-skewness—t3
(R), and L-kurtosis—t4

(R) in the Hosking–Wallis heterogeneity test are
calculated as:

tR =
∑N

j=1 njtj

∑N
j=1 nj

, (3)

t3
R =

∑N
j=1 njt3

j

∑N
j=1 nj

, (4)

t4
R =

∑N
j=1 njt4

j

∑N
j=1 nj

, (5)

where N denotes the number of stations in the region and nj denotes the record length of station j.
In order to measure the heterogeneity of the meteorological stations, the Hosking–Wallis

heterogeneity test suggests three dispersion measures, namely, V1, V2 and V3 based on the L-coefficient
of variation, L-coefficient of variation and L-skewness and L-skewness and L-kurtosis, respectively, as
given by:

V1 =

∑n
j=1 nj

(
tj − tR)2

∑n
j=1 nj


1/2

, (6)

V2 =
∑n

j=1 nj

{(
tj − tR)2

+
(
t3

j − t3
R)2
}1/2

∑n
j=1 nj

, (7)

V3 =
∑n

j=1 nj

{(
t3

j − t3
R)2

+
(
t4

j − t4
R)2
}1/2

∑n
j=1 nj

. (8)

In order to simulate the dispersion measurements for the artificial homogeneous region,
a four-parameter kappa distribution is fitted to the regional average L-moment ratios (1, tR, t3

R

and t4
R) to simulate Nsim realizations of artificial homogeneous regions (with the same record lengths

of the actual meteorological stations). The mean µv and the standard deviation σv of the dispersion
measurements of the artificially simulated homogeneous region are calculated. Then, the dispersions
of the actual and simulated homogeneous regions are compared using the statistical index Hi (for i = 1,
2 and 3) as given by:

Hi =
(Vi − µv)

σv
. (9)

Accordingly, three statistical indexes, H1, H2 and H3, are calculated based on the corresponding
dispersion measures V1, V2 and V3. The region is declared acceptably homogeneous if Hi < 1, possibly
heterogeneous if 1 ≤ Hi < 2 and definitely heterogeneous if Hi ≥ 2 [1].

Furthermore, Hosking et al. [1] suggested that dispersion index H1 alone can be used to identify
homogeneous regions as it has higher discriminatory power than other indexes. However, many
studies use all three dispersion indexes or at least the first two dispersion indexes to identify
homogeneous regions [31,32]. Therefore, in this study, only the first two indexes, H1 and H2, have
been used to assess the degree of homogeneity of the region. The dispersion indexes were generated
using an R package named ‘homtests’ [32].

3. Results and Discussion

The delineation of homogeneous regions in southeast Queensland was carried out using the
conventional approach and the modified approach specifically designed to suit the requirements for
WSUD, considering event-based rainfall characteristics.
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3.1. Conventional Approach

In the conventional approach, the rainfall data of a set of the selected meteorological stations
are tested for homogeneity purely based on the probabilistic characteristics of the continuous
rainfall records. The method does not necessarily consider probabilistic characteristics of individual
rainfall events.

Firstly, we performed the Hosking–Wallis heterogeneous test for the selected 17 stations in SEQ.
The statistical indexes of heterogeneity, H1 and H2, were calculated for 500 simulations of realizations
using the R-package ‘homtests’ [32]. The results suggested that the entire region could be treated as
homogeneous, with H1 = 0.6483 and H2 = 0.9142. The codes executed to run the package are provided
in Appendix A.

3.2. Modified Approach

Although the overall rainfall characteristics of the entire SEQ were homogeneous, the event-based
rainfall characteristics of the region may be different. For example, an event with intense rainfall for
a short period of time and an event with less intense rainfall for a longer period of time may result
in similar overall (average) rainfall characteristics. However, these events can potentially produce
completely different stormwater quality and quantity scenarios. Therefore, it was important to consider
the homogeneity of rainfall stations based on event-based rainfall characteristic when selecting the
representative meteorological stations for WSUD. Table 2 presents the outcomes of the Hosking–Wallis
heterogeneity tests performed for individual rainfall characteristics. The results suggest that the study
area was potentially heterogeneous based on the H1 and H2 values.

Table 2. Heterogeneous index for southeast Queensland. Results based on the current approach.

Event Characteristics H1 H2 Remarks

Antecedent dry days 3.37 1.16 Heterogeneous
Maximum rainfall intensity 1.95 0.59 Possibly heterogeneous

Total rainfall 0.81 0.32 Homogeneous
Duration 0.25 0.10 Homogeneous

Based on the first two dispersion indexes (H1 and H2), antecedent dry day showed a higher level
of heterogeneity compared to other event-based rainfall characteristics. The maximum rainfall was
found to be potentially heterogeneous across SEQ. In contrast, total rainfall and rainfall duration were
homogeneous across SEQ. Overall these results suggest that the entire SEQ cannot be considered
homogeneous based on all event-based rainfall characteristics. Accordingly, homogeneous regions
suggested based on the continuous-rainfall approach may not necessarily be homogeneous based on
individual rainfall characteristics. In addition, it was also noticeable that the antecedent dry days
and the maximum rainfall intensity showed heterogeneity among the rainfall stations while the total
duration and the total rainfall of the events were homogeneous. Therefore, it can be concluded that
antecedent dry day periods and maximum rainfall intensity have higher spatial variation and thus
should be the deciding rainfall characteristics in the delineation of homogeneous regions.

Accordingly, the next step was to identify all potential homogeneous regions inside SEQ and
to assess the degree of homogeneity of the identified potential homogeneous regions (using the
Hosking–Wallis heterogeneity test). This step was performed using cluster analysis. Agglomerative
hierarchical cluster analysis and k-means cluster analysis were performed using R package ‘stats’ [33].
The parameters used for the analysis included 3rd quartile (Q3) values of antecedent dry days,
maximum rainfall intensity, total rainfall and duration of the individual events of each station as
given in Table 3. This was because the average or the median of the rainfall characteristics at the
meteorological stations considered were expected to be similar in nature and therefore may not be
grouped into discrete clusters. In contrast, selecting a higher quartile value may result in too many
unrealistic clusters. Our repeated analysis suggested that the use of the 3rd quartile values provide the
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most appropriate outcomes. The analysis suggested three potential clusters based on the dendrogram
shown in Figure 1. Accordingly, Cluster 1 comprised Stations 9, 7 and 11. Cluster 2 comprised Stations
3, 12, 14, 16 and 17 and Cluster 3 comprised Stations 1, 5, 6, 8, 10, 13 and 15. However, the geographical
locations of the meteorological stations of the clusters as presented in Figure 2 suggested that the
meteorological stations of Cluster 1 and Cluster 2 were located in close proximity to the SEQ coast
and the meteorological stations of Cluster 3 were located inland. Furthermore, Cluster 1 and Cluster 2
stations did not show a clear geographical separation.

Furthermore, scatter plots produced to examine the meteorological stations of the three clusters
based on the considered rainfall characteristics are presented in Figure 3. It can be observed from
Figure 3 that the rainfall stations of Cluster 3 have clear distinctions between the rainfall stations
of Cluster 1 and Cluster 2. In contrast, the rainfall station of Cluster 1 and Cluster 2 showed
no clear separations. These results suggest that Cluster 1 and Cluster 2 can be treated as single
clusters representing coastal SEQ while Cluster 3 represents inland SEQ. Accordingly, two potential
homogeneous regions were identified within the study area, namely, Coastal-SEQ and Inland-SEQ.

Table 3. Third quartile values of antecedent dry days, maximum rainfall intensity, total rainfall and
rainfall duration of the selected 17 stations in southeast Queensland.

Serial No. Station No.
3rd Quartile Values—Q3

Antecedent Dry
Day/(days)

Maximum
Intensity/(mm/h)

Total
Rainfall/(mm) Duration (h)

1 40004 6.4 7.1 12.0 5.3
2 40043 5.4 6.7 13.4 6.1
3 40082 8.4 7.6 14.4 5.9
4 40093 6.0 6.0 13.5 5.9
5 40211 5.9 6.8 11.6 4.8
6 40717 3.8 6.4 12.3 5.7
7 40764 5.0 7.0 12.4 6.0
8 40842 6.0 6.6 12.1 5.4
9 40861 4.3 8.2 13.8 7.2

10 40908 3.3 5.9 10.4 5.3
11 40913 6.1 7.4 13.2 5.8
12 40922 9.8 8.2 12.4 6.2
13 40958 6.1 7.3 12.6 5.3
14 40983 7.1 7.6 12.8 5.3
15 40988 4.2 6.2 11.9 6.5
16 41525 7.9 6.6 14.1 5.9
17 41529 8.2 7.8 13.2 5.7

The degree of homogeneity of the identified regions of Coastal-SEQ and Inland-SEQ were
evaluated by performing the Hosking–Wallis heterogeneity tests using event-based rainfall
characteristics. The summary of the results is presented in Table 4. As shown in Table 4, the dispersion
indexes H1 and H2 were found to be less than one for all the rainfall characteristics for both Coastal-SEQ
and Inland-SEQ. Therefore, Coastal-SEQ and Inland-SEQ were identified as two separate homogeneous
regions within SEQ based on the event-based rainfall characteristics.
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Table 4. Dispersion indexes for Hosking–Wallis heterogeneity test for Coastal-southeast Queensland
(SEQ) and Inland-SEQ.

Event Characteristics
Coastal-SEQ Inland-SEQ

H1 H2 H1 H2

Antecedent dry day periods −0.20 1.18 −0.35 0.06
Maximum rainfall intensity 0.78 0.97 −0.61 −0.65

Total rainfall −0.55 0.65 −0.54 −0.10
Duration 0.26 0.32 −1.29 −1.00
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4. Conclusions

The entire southeast Queensland can be treated as a homogeneous region based on the
conventional (continuous-rainfall) approach. However, based on individual rainfall characteristics
such as antecedent dry days, maximum rainfall intensity, total rainfall and duration of the rainfall
events, there were two separate homogeneous regions identified.

This implies that although the characteristics of the continuous rainfall data between stations were
statistically similar, the event-based characteristics can have significant differences among stations.
Therefore, the conventional approach in delineating rainfall homogeneous regions may be misleading
in the context of Water Sensitive Urban Design. The newly proposed approach in this study is
technically more robust and provides reliable results.

The outcomes of this study can also be broadly related in any rainfall homogeneous assessment.
The most common use of homogeneous testing is regional frequency estimations. Many of the regional
frequency analyses are based on the conventional Hosking and Wallis [1] regionalization approach
including the revised Intensity-Frequency-Duration (IFD) estimates for Australia [34], where stations
were grouped with the assumption that all the stations in the homogeneous regions have a similar
probability distribution with a single scaling factor. However, as discussed, the current approach does
not check the homogeneity based on individual rainfall characteristics. Therefore, the method adopted
in this study can be effectively used in identifying homogeneous regions in the regional frequency
analysis especially for studies that depend on the event-based characteristics of rainfall such as Water
Sensitive Urban Design.

The newly proposed approach for identifying homogeneous rainfall region is more suitable in
studies related to climate change. This is because the common outcomes from studies related to
future rainfall trends suggest that although not many changes are expected in the overall rainfall
characteristics, the rainfall patterns and characteristics are expected to change significantly in the
future. Therefore, it will be more appropriate to apply the approach presented in this study in defining
the rainfall homogeneous regions in the context of climate change.
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Appendix A

> install.packages (“homtest”)
> library (homtest)
> HW.tests (rf, sd, Nsim = 500)
# Arguments
# rf—vector representing data from many samples defined with sd
# sd—array that defines the data subdivision among sites
# Nsim—number of simulations
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