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Abstract: Wildfire can have significant impacts on hydrological processes in forested catchments,
and a key area of concern is the impact upon water quality, particularly in catchments that supply
drinking water. Wildfire effects runoff, erosion, and increases the influx of other pollutants into
catchment waterways. Research suggests that suspended sediment and nutrient levels increase
following wildfire. However, past studies on catchment water quality change have generally focused
on the short term (1–3 years) effects of wildfire. For appropriate catchment management, it is
important to know the long-term effect of wildfire on catchment water quality and the recovery
process. In this study, a statistical analysis was performed to examine the effect of 2001/2002 Sydney
wildfire on catchment water quality. This research is particularly important, since the catchments
studied provide drinking water to Sydney. Linear mixed models were used in this study in an analysis
of covariance (ANCOVA)-type change detection approach to assess the effect of wildfire. We used
both burnt and unburnt catchments to aid the interpretation of the results and to help disentangle
the effects of natural climate variation, as well as of the wildfire. The results of this study showed
persistent long-term (10-year) effects of wildfire, including increases in total suspended sediment
concentrations (64% higher than in unburnt catchments), total nitrogen concentrations (48% higher),
and total phosphorus (40% higher).

Keywords: wildfire; change detection; water quality; linear mixed models; total suspended sediment;
total phosphorus; total nitrogen

1. Introduction

Wildfire can have a significant impact on the hydrologic cycle of forested catchments due to
changes in the surface vegetation and canopy cover, combined with ash sealing of soil pores [1,2].
This is of particular concern for water quality (WQ) in forested catchments [3,4], as in many cases
these catchments supply drinking water to urban communities [5]. The frequency of wildfire is
expected to increase due to climate change [6]. In response, there has been an increase in the number
of studies on the effect of wildfire on catchment hydrology [7–9]. Suspended sediment and nutrients
(phosphorus and nitrogen) are two important measures of catchment water quality [10]. Increases in
total suspended sediment (TSS) in rivers limits light penetration, hampering primary productivity
within the river [11]. Increases in total phosphorus (TP) and total nitrogen (TN) levels can result in
excessive algal growth [12].

Increases in TSS and nutrient levels arise from the effects of wildfire on erosion, runoff,
infiltration, and the combustion of organic matter. When a catchment is burnt the wildfire removes
surface vegetation, which increases the percentage of rainfall available for runoff. Furthermore it
decreases evapotranspiration, which increases overland flow, and subsequently the amount of flow

Water 2019, 11, 533; doi:10.3390/w11030533 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-5505-3869
http://www.mdpi.com/2073-4441/11/3/533?type=check_update&version=1
http://dx.doi.org/10.3390/w11030533
http://www.mdpi.com/journal/water


Water 2019, 11, 533 2 of 17

in streams [13]. These conditions promote higher levels of soil erosion. Erosion can also be driven
by the reduction in infiltration as ash seals, soil pores and soil heating produces hydrophobic soil
layers [14–16]. Additionally, during a wildfire, burning and heating of organic matter releases charcoal,
ash, heavy metals and other stable nutrients that might be previously unavailable for transport into
waterways [17].

Table 1 presents a summary of studies that assessed the impact of wildfire on WQ with a focus
on TSS, TP, and TN. Most only examined the effects 1–4 years post-wildfire, which identifies a gap
in knowledge about the long term impacts. This is especially important given that some studies
have shown wildfire can impact flow for decades post-wildfire [18]. Challenges facing long-term
wildfire research are centered around the lack of pre-wildfire water quality data, and more generally
the need for fine-scale spatial and temporal data both before and after the wildfire to increase the
sensitivity of change detection approaches. Shakesby and Doerr [1] identified that aforementioned lack
of pre-wildfire data as a major problem in relating post-wildfire erosion rates to long term conditions.
In some studies such as [19], they were unable to compare their catchment state with catchment
pre-wildfire conditions due to the absence of pre-wildfire WQ data. The exception is Lane, Sheridan
and Noske [7] and Oliver, et al. [20], who both had long term pre-wildfire data. In terms of assessing
the impacts of wildfire on WQ, both a long pre-wildfire and post-wildfire dataset is required.

Another issue with past studies is the nature of sampling in terms of how well they represent
the variation in WQ, which also relates to the validity of the statistical models fitted to the data to
assess change. For example, Oliver, et al. [20] indicated their pre-wildfire WQ data were collected
on a monthly time step, and occasionally during an event. This is a common method used in most
catchments’ WQ monitoring programs [21] due to the high cost of environmental sampling. Past work
has shown that monthly sampling does not reflect the range of hydrological conditions in a catchment,
especially over the short term [22].

In order to detect change, least-square regression is used to fit a regression model of some form
in nearly all cases. However this assumes the data has been collected using a probabilistic sampling
design, which in this context involves randomization of the sample times. This allows us to assume
that the observations are independent, and this makes a least-squares model fitting valid. However,
in the studies in Table 1, the fixed interval sampling or event-based sampling is not randomized.
Therefore, we need to account for potential auto-correlation by using model-based approaches as
exemplified by linear mixed models (LMM) [23]. This approach calculates an unbiased estimate of the
variances, and allows statistically valid hypothesis testing which is crucial in change detection studies.

In terms of detecting WQ change a typical approach is to account for differences in discharge
between pre- and post-wildfire periods, with an analysis of covariance (ANCOVA) model, which
compares two regression lines to detect whether there is a difference between the model parameters;
e.g. slope, for the pre- and post-wildfire periods [24,25]. Alternatively, a paired approach may be
adopted where a neighboring unburnt catchment is used. During the pre-wildfire period a regression
model between WQ from these two catchments is created, the model is then used to predict the
burnt catchment’s WQ for the post-wildfire period. The observed prediction error indicates a possible
wildfire effect. Importantly, a paired study requires high similarities between the paired catchments in
terms of slope, soil, land use and climate conditions. An issue with this approach, and an ANCOVA,
is that the regression model which uses discharge only to model WQ may be overly simplistic,
and does not represent antecedent conditions and hysteresis, i.e., rising/falling limbs, which control
the discharge-WQ relationship [26].

Additionally, most past studies (such as studies mentioned above) used empirical models for
water quality predicting and monitoring, this process ignored the topographic differences e.g., soil,
topography, in the modeling process [27]. However, these models require high level of input spatial
and climate data, which is not always available for most studies. Thus, this method is not discussed in
this study.
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Table 1. Past Studies on wildfire effect on WQ.

Study Description Pre-Wildfire
Data/Post-Wildfire Data Method 1 Limitation

Lane, Sheridan and Noske [7] Severe wildfire burnt over 1 million ha
of forested land in Australia 10 years/2 years post-wildfire ANCOVA

(with control) 2
Long term impact were hard to compare due to the high

variations in climate and the effect of logging.
Bladon, Silins, Wagner, Stone,
Emelko, Mendoza, Devito and

Boon [19]

The effect of wildfire on post-wildfire
nitrogen concentration with 3 burnt

catchments and 2 unburnt catchments
NA/3 years ANCOVA

(with control)
Lack of pre-wildfire WQ data and there is a shortage in assessing
the initial wildfire effect on WQ and recovery of the catchments.

Mast and Clow D.W [28] Post-wildfire WQ change after a
wildfire in Glacier National Park, USA 5 years/4 years Compare average

concentration

No control (unburnt) catchment studed.
Result effected by snow melt event (first flow released during

long period of time).

Townsend and Douglas [12]

The effect of a wildfire on stream WQ
and catchment water yield in a tropical

savanna (North Australia) excluded
from wildfire for 10 years

3 years/10th year post-wildfire ANCOVA
(No control)

Only the WQ 10 years post-wildfire was described, no earlier
observation was compared with pre-wildfire data.

Malmon, et al. [29] Sediment change post-wildfire in
New Mexico 2 years/3 years ANCOVA

(No control) Only 2 years pre-wildfire data was used in the study.

Kunze and Stednick [30] Sediment change post-wildfire in
2 burnt catchments in Colorada, USA. NA/3 years ANCOVA

(with control)

No available pre-wildfire data.
First year post-wildfire, WQ and quantity data were collected

only after events.
Oliver, Reuter, Heyvaert and

Dahlgren [20]
Analyisis the WQ change post a severe

wildfire in lake Tahoe basin, USA 10 years/2 years ANCOVA Pre-wildfire sample collected monthly and during events, no
information on daily or annual discharge.

Hauer and Spencer [31] Phosphorus and nitrogen concentration
change after wildfire in Columbia NA/5 years Compare average

concentration
Lack of pre-wildfire data

Limited data were collected at some sites due to funding limit.
1 ANCOVA method: using regression model to account for the effect of flow on WQ. 2 Unburnt catchment is used as a control, the pre- and post-wildfire WQ and quantity change
are compared.
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In summary, gaps in existing research are:

• Lack of studies showing >5 years post-wildfire impact on WQ;
• lack of studies with adequate pre- and post-wildfire data;
• past studies predominantly use least-square regression models for change detection without

accounting for auto-correlation in the data, and therefore hypothesis testing is erroneous;
• past studies rely on simple discharge-WQ models to detect change due to wildfire.

The 2001/2002 wildfires around Sydney provide an opportunity to address all of these issues due
to the fact that they were widespread and predominantly in water supply catchments, meaning that
the pre- and post-wildfire WQ data was numerous. More specifically this work aims to:

• Assess the medium-term impacts of wildfire on WQ in the forest catchments around Sydney
based on a 10 years pre-wildfire and 10 years post-wildfire dataset;

• present an approach using LMM to detect change based on sparse (as compared to discharge)
WQ observations to address the shortcomings identified previously.

2. Materials and Methods

2.1. Study Area

In the period between 3 December 2001 and 14 January 2002, wildfire burnt an area of
approximately 7333 km2 (2831 m2) around Sydney, Australia [32]. Much of the area burnt was located
in the catchment area of Lake Burragorang, which is impounded by Warragamba Dam. It provides 80%
of Sydney’s drinking water, and within the catchment there are approximately 200,000 residents [33].
Due to its importance, many streams in the area are monitored for water quality by a government
agency, WaterNSW, and have WQ measurements before and after the wildfire. The criteria used to
select monitoring stations include: Have adequate WQ data pre- and post-wildfire, and also have
extensive forest cover (>65%) in the catchment area above each monitoring station, which yielded a
total of seven monitoring stations. These criteria were used here because the focus of this work is the
impact of wildfire on the WQ of forested catchments. The location of the seven catchments is presented
in Figure 1, where four catchments were unburnt (control) and 3 catchments were burnt.

The four burnt catchments have an area ranging from 56 km2 to 436 km2, had forest cover
from 69–97% pre-wildfire, and annual rainfall ranged from 694 mm to 1182 mm. The three unburnt
catchments have areas that range from 72 km2 to 1447 km2, had forest cover from 73–90% pre-wildfire,
and annual rainfall range from 889 mm to 1263 mm. A summary of the key features of the study
catchments is presented in Table 2.

10 years pre-wildfire and 10 years post-wildfire flow and WQ data were provided by WaterNSW.
For each catchment, flow was recorded at an hourly interval for the entire study period (1991–2011).
For most catchments, WQ data were sampled on a monthly basis before 2000. After 2000, automatic
event samplers were installed at most of the sites, which are designed to automatically collect samples
during event-flow. Flow values that exceed the annual 90th percentile of stream flow were defined as
event-flow. In this work we focus on total suspended sediment (TSS), total phosphorus (TP) and total
nitrogen (TN), (analyzed using acid digestion method) as the response variables.
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Figure 1. Study area.

Table 2. Catchment characteristics.

Catchment Area
(km2) % Burnt % Grass

Land % Forest % Urban Annual Rainfall
(mm)

Mean Flow
(ML/day)

C1 719 0 9 90 0 932 3,445,519
C2 72 0 0 85 14 1263 341,462
C3 1447 0 25 73 1 886 2,968,759
B0 436 57 12 86 1 857 576,706
B1 104 100 2 97 0 824 137,954
B2 88 83 4 95 0 1182 420,889
B3 56 79 29 69 1 694 240,910

2.2. Wildfire Severity

In this study, the three catchments not burnt during this wildfire were used as control catchments
(C1, C2 and C3) to interpret the change detection results rather than being strict experimental controls.
The four other catchments were heavily impacted by the wildfire of 2001 [34], especially catchment B1.
The wildfire severity map derived from differenced Normalized Difference Vegetation Index (dNDVI)
was extracted from Heath, et al. [35] based on the satellite interpretation of the wildfire behavior in the
burnt catchments.

The fire severity map is showed in Figure 2. Catchment B1 was intensely affected by extreme
wildfire, as shown in Table 2, and 100% of the catchment was burnt in this wildfire with the most
intense wildfire occurring next to the monitoring station. Similar to B1, catchment B0 was significantly
affected by extreme wildfire near the monitoring station. However, compared to B1, the percentage
of area burnt in B0 catchment (57% burnt), is smaller than B2 (83% burnt), which also experienced
less severe wildfire around the monitoring station compared to the other burnt parts of the catchment.
The wildfire severity of catchment B3 (79% burnt), was more evenly distributed.
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2.4. Change Detection Method

In order to assess the medium term effect of wildfire on WQ, a linear mixed model (LMM) was
used, with the focus being on modeling TSS, TN, and TP concentrations. The use of this LMM allows
for an auto-correlation in the residuals to be modeled [33]. This is crucial, as the WQ samples have
been collected systematically, so we cannot assume we have independent observations which would
allow us to use least-squares regression [23]. The impact of this incorrect assumption would be biased
standard errors, which has follow on effects on variable selection and hypothesis testing [33].

In this work we used a similar approach to Lessels and Bishop [33], who used flow and derivatives
of flow to model WQ. The LMMs were fitted using the geoR package [36] in R [37]. To detect change
due to the wildfire, a wildfire dummy variable (0 for pre-wildfire period, 1 for post-wildfire period)
was created, and used as a predictor in all models irrespective of whether the catchment was burnt or
unburnt. Our assumption is that: In the burnt catchments, the presence of the wildfire dummy variable
in the final model indicates that there was an impact from the wildfire. The value of the coefficient
associated with the wildfire dummy variable indicates the mean change in WQ between pre- and
post-wildfire periods, assuming all of the other predictors are held to be constant. The interpretation
of this has to be considered in the context of the unburnt catchments, which in an idealized situation
would have a non-significant wildfire dummy variable, and therefore the coefficient would equal 0.
This approach is analogous to an analysis of covariance (ANCOVA), except that here we use a more
complex model to account for differences in flow and flow-related variables between the pre- and
post-wildfire period, which are also related to WQ.

In addition to the wildfire dummy variable, the predictors we considered were event direction,
event distance, discount flow (DF), and flow. The event distance is the time since the last event flow.
An extended dry period will cause a buildup of easily erodible material in the catchment, which will
cause higher concentrations (in terms of sediments and nutrients) during the first flow, and generally
in the rising limb [38].

The event direction specifies whether the stream is in base flow conditions, the rising limb, or
the falling limb of an event. The discount factor (DF) value, introduced by Wang, Kuhnert and
Henderson [38], represents a weighted average of past flow that provides a measure of antecedent
conditions. If the sequence q̂ up to time j, is (q̂m)1 ≤ m ≤ j, then the DF value with discount factor d is
defined as;

DF(d) =
∑

j
i−1 dj+1−i q̂j

∑
j
i−1 dj+1−i

(1)

In summary, a weight, d, is given to historical observations to calculate a temporally weighted
average of past flow. This weight diminishes exponentially with time at a rate that varies with the DF
value. In general, a smaller DF value indicates that recent flows have more weighting, while a large
DF value indicates the DF flow represents longer term flow conditions [38]. For the LMM, five levels
of DF (0.50, 0.75, 0.9, 0.95 and 0.99) were considered as candidate predictor variables. The predictors
were selected using backward elimination based on Wald tests using a p-value of 0.05 as the criteria
for keeping predictors in the model.

After the model is predicted, the partial regression coefficient of the “wildfire” dummy variable
was back-transformed to assess the impact of any wildfire in terms of the proportional increase or
decrease in its effect on WQ on the original scale.

2.5. Assessment of Model Quality

Leave-one-out cross-validation was used to assess the model quality of the LMM. Measures of
model quality were assessed by the mean and median standardized-squared prediction error (SSPE),
mean error (ME), root-mean-square error (RMSE) and Lin’s Concordance Correlation Coefficient (Lin’s
CCC). The SSPE for time, i, is
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SSPE(i) =
{z(i)− Ẑ(i)}2

σ2
i

(2)

where z is the observed value, Ẑ is the predicted value, and σ2
i is the prediction variance. A mean

SSPE value close to 1 indicates that model estimates of uncertainty (the prediction variances) match
the prediction errors, meaning that this model correctly represents the variation in WQ [23]. This is
crucial, as the variance estimates associated with the partial regression coefficients are used to perform
variable selection, and ultimately assess the change in WQ attributable to wildfire.

Root-mean-square error (RMSE) is the standard deviation of the residuals, and is a measure of the
accuracy of the model. As the predictions get better, the RMSE becomes closer to 0.

The mean error is a measure of the bias of the model (3);

ME =
1
n ∑n

i=1 z(i)− Ẑ(i). (3)

It measures the average tendency of the predicted values to be larger or smaller than the observed
values. The optimum value is 0.

Lin’s CCC (ρc) is a measure of how far pairs of observed and predicted values deviate from the
line of perfect concordance, that is the 45◦ line of a scatter plot of observed versus predicted. It is
scale-independent, and allows comparisons between properties with different magnitudes or units.
The perfect value of Lin’s CCC is 1. When the two variables compared have a length of N, ρc is
calculated as shown below (4);

ρc =
2sxy

s2
x + s2

y + (x− y)2 (4)

where x and y are the corresponding mean, s2
x and s2

y are variance, sxy is the covariance.
The flow and WQ data were log transformed to meet the assumption of normality for the LMM.

3. Results

3.1. Exploratory Data Analysis

A summary of the available water quality and quantity data is shown in Table 3. The number
of observations for WQ data is limited to around one per month; therefore, 200–300 observations
are available for each catchment during both the pre-wildfire and post-wildfire period. Some big
exceptions are C1, which had 500+ observations during the post-wildfire period and B1, which only
had 69 observations collected in the post-wildfire period. For catchment B1, because most available
data were collected before 2007, this might have resulted in a higher maximum and mean TSS value in
this catchment because the catchment has had less time to recover during the post-wildfire period.

During 2001 to 2009, in the post-wildfire period, the studied catchments were affected by the
millennium drought [39], especially during the first five years post-wildfire. The millennium drought
was described as the worst drought on record for southeastern Australia: The Commonwealth Science
and Industrial Research Organization (CSIRO) [40] found the lowest average precipitation since 1900
during this drought period. The millennium Drought is the longest uninterrupted series of years with
below median rainfall in southeastern Australia since 1900 [39]. Table 4 presented the average annual
rainfall estimated for each catchment using Thiessen polygons with data obtained from nearby Bureau
of Meteorology weather stations. As summarized in Table 4, all catchments experienced a rainfall
decrease during the first five years post-wildfire period. The decreases in catchment B0, B1, and B2 are
most severe.
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Table 3. Summary of flow and WQ data.

Flow (ML/day) TSS (mg/L) TN (mg/L) TP (mg/L) Available Data

Catchment Pre/Post-wildfire Min Max Median Min Max Median Min Max Median Min Max Median

C1
pre 0.88 65,000 181.51 0.5 3829 1.00 0.03 7.52 0.20 0.001 2.42 0.01 244
post 0.23 16,673.89 908.45 0.5 532 4.00 0.005 2.25 0.31 0.003 0.34 0.02 536 *

C2
pre 5.66 6238.66 31.51 0.5 1316 3.00 0.2 15.8 1.13 0.001 1.5 0.16 220
post 1.736 2202.96 87.48 0.5 536 6.00 0.005 2.08 0.36 0.002 0.39 0.01 284

C3
pre 11.11 101,778.8 191.10 0.5 2807 1.00 0.06 7.84 0.18 0.001 0.92 0.01 213
post 3.28 8879.39 646.18 0.5 2149 5.00 0.05 13.2 0.30 0.002 1.92 0.01 331

B0
pre 0.54 2.39 0.62 0.5 15110 1.00 0.05 6.3 0.32 0.001 0.53 0.02 288
post 0.53 0.99 0.56 0.5 1998 7.00 0.17 11.8 0.42 0.003 2.3 0.02 126

B1
pre 1.57 6828.59 6.77 0.5 97 1.00 0.005 9.4 0.10 0.001 0.26 0.004 218
post 0.34 1126.86 5.48 0.5 3950 1.00 0.05 21.2 0.20 0.003 2.45 0.005 69 *

B2
pre 3.43 7491.3 21.80 1 149 1.00 0.03 0.79 0.16 0.001 0.17 0.009 157
post 1.54 4067 55.77 0.5 35 1.25 0.005 0.95 0.17 0.001 0.06 0.008 381

B3
pre 0 14,299.22 9.565 0.5 803 4.0 0.05 6.8 0.42 0.001 0.73 0.01 233
post 0 1184.46 32.29 0.5 496 7.0 0.005 2.65 0.44 0.003 0.5 0.02 351

*: Outliers compared to other catchments. Abbreviations: C = Control; B = Burnt; TSS = Total Suspended Sediment; TN = Total nitrate; TP = Total phosphate.
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Table 4. Annual rainfall during pre-wildfire, 1–5 years post-wildfire and 6–10 years post-wildfire for
all catchments (ML/day).

Catchment Pre-Wildfire 1–5 years Post-Wildfire 6–10 years Post-Wildfire

C1 912.79 796.50 1111.44
C2 1214.06 1080.18 1556.01
C3 851.94 757.99 1091.89
B0 903.51 697.83 914.69
B1 869.25 671.38 880.01
B2 1246.38 962.65 1261.80
B3 670.72 592.18 849.14

As a result, all the catchments showed a lower maximum flow value in the post-wildfire period
compared to the pre-wildfire period (Table 3). A lower TSS maximum value is also observed in most
catchments except catchment B1. Catchment B1 had a larger maximum TSS concentration during the
post-wildfire period. This significant difference might be a result of the wildfire effect. In contrast
to the maximum value, a higher post-wildfire median flow value is observed in most catchments
except B0 and B1. A higher post-wildfire median TSS concentration is observed in all catchments,
as compared to the pre-wildfire period. A higher post-wildfire maximum value of TN is observed in
C3, B0, B1, and B2, as compared to the pre-wildfire period. In terms of TP a higher post-wildfire value
is observed in C3, B0, and B1. Most catchments observed a higher median TN and TP value during the
post-wildfire period, except catchment C2.

The change in the maximum values might indicate a change in flow duration curve; this might
result in a WQ concentration change. An example of duration curves pre- and post-wildfire is shown for
catchments C1 and B0 in Figures 4 and 5. During the post-wildfire period, the catchments experienced
a change in the distribution of flow and WQ as represented by the duration curves. The flow duration
curve for catchment C1 shows that compared to the pre-wildfire period, the post-wildfire period
showed a decrease in flow for the top decile, and an increase in the middle decile of the graph. This
explained the increase in median value of the data as summarized in Table 3. The bottom decile of the
flow duration curve showed a similar pattern to the pre-wildfire period. A similar pattern was also
evident in the WQ duration curves for the control catchments; a decrease in top and bottom deciles of
the curve, and an increase in the middle decile. Catchment B0 experienced a greater rainfall decrease,
which resulted in a more obvious decrease in both peak flow and base flow in the flow duration curves
as shown in Figure 5. Opposite to the control catchment, a decrease in flow in the middle decile of the
graph is observed. However, an upshift of the WQ duration curves was observed in all WQ duration
curves for catchment B0. The change in the maximum and median flow value and the change in
duration curves shows the WQ change might be effected by the change of flow, and it is important to
account for flow when detecting the effect of wildfire on WQ.
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3.2. Linear Mixed Modelling

All models showed a mean SSPE close to 1 and a negligible bias (Table 5), indicating a good model
performance. This means that we can be confident that the variances are unbiased, and our variable
selection is valid. The model performance was also quite consistent between catchments and WQ
variables, as evidenced by the Lin’s CCC values ranging from 0.65–0.85 for all models. Each catchment
had a different combination of predictors for predicting TSS, TN and TP (Tables 6–8). All models found
flow to be a significant predictor for predicting WQ. Furthermore, models for predicting TSS generally
found event direction to be a useful predictor. Much less (two models in TN and three models in
TP prediction) catchments found this to be significant in models predicting TN and TP. One possible
reason is that TN and TP includes soluble N and P, which are not as tightly coupled to runoff and
erosion events. The models for C2 and B2 as shown in Table 6 have indicated both event direction
and event distance as a predictor for TSS, while other models included either event direction or event
distance. C3, B0, B1 and B3 models indicated wildfire as a predictor for TSS. For total nitrogen, model
C2, B0, B1, B2 and B3 predicted a wildfire effect. For total phosphorus, catchments C2, B1, and B2
indicated that wildfire is a significant predictor.

Table 5. Model performance.

TSS TN TP

Catchment Mean
SSPE ME RMSE Lin’s

CCC
Mean
SSPE ME RMSE Lin’s

CCC
Mean
SSPE ME RMSE Lin’s

CCC

C1 0.96 −0.03 0.94 0.79 0.96 −0.03 0.43 0.85 0.96 −0.04 0.61 0.83
C2 1.02 0.00 1.12 0.76 0.97 0.01 0.59 0.81 1.03 0.00 0.87 0.84
C3 0.99 −0.03 0.97 0.76 1.03 −0.02 0.55 0.78 0.99 −0.01 0.69 0.73
B0 0.98 −0.01 1.04 0.81 0.96 −0.01 0.51 0.73 0.90 −0.01 0.69 0.78
B1 0.98 −0.01 0.89 0.74 0.97 −0.01 0.87 0.71 0.97 0.00 0.84 0.70
B2 1.00 0.01 0.73 0.65 1.05 −0.01 0.48 0.74 0.98 0.00 0.54 0.70
B3 1.00 −0.03 0.93 0.77 0.96 −0.03 0.43 0.77 0.94 −0.01 0.53 0.81

Abbreviations: C = Control; B = Burnt; TSS = Total Suspended Sediment; TN = Total Nitrate; TP = Total Phosphate.

Table 6. Selected predictors for model predicting total suspended solids.

TSS Log
Flow

Event
Direction

Event
Distance DF50 DF75 DF90 DF95 DF99 Wildfire

C1
C2
C3
B0
B1
B2
B3

Abbreviations: C = Control; B = Burnt; TSS = Total Suspended Sediment; DF = Discount Flow.

Table 7. Selected predictors for model predicting total nitrogen.

TN Log
Flow

Event
Direction

Event
Distance DF50 DF75 DF90 DF95 DF99 Wildfire

C1
C2
C3
B0
B1
B2
B3

Abbreviations: C = Control; B = Burnt; TN = Total Nitrate; DF = Discount Flow.
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Table 8. Selected predictors for model predicting total phosphorus.

TP Log
Flow

Event
Direction

Event
Distance DF50 DF75 DF90 DF95 DF99 Wildfire

C1
C2
C3
B0
B1
B2
B3

Abbreviations: C = Control; B = Burnt; TP = Total Phosphate; DF = Discount Flow.

The back-transformed model coefficients are showed in Table 9. Among the three control
catchments, catchment C3 showed an increased in TSS during the post-wildfire period. The lower
amount of available data for the C3 catchment may have contributed to this result (Table 3). This is
because pre-wildfire there were no auto-samplers, so the number of event samples would have been
small, resulting in an under-estimation of the mean WQ values in the pre-wildfire period. This would
not be case in the other catchments, since with more samples, the entire range of flow conditions is
represented as found by the work of [27] in the same catchments. Additionally, catchment C2 showed
a decrease in both TN and TP levels (Table 9). Catchment C2 is located downstream from a sewage
treatment plant (STP) which was upgraded around the time of the wildfire, so that this upgrade
would have improved the WQ in catchment C2 and effected our results. Thus, the results from C2
were removed before calculating the mean effect for Table 9. However, the TN and TP decreases
observed in the modeling process gives confidence in our approach, and shows its applicability to
change detection studies in general. All burnt catchments except B2 showed a wildfire effect on TSS.
Catchment B1 showed the largest TSS increase during the post-wildfire period. The wildfire effect
on TSS in catchment B2 was not observed. Table 9 also presents the average of the back transformed
regression coefficient for the control and burnt catchments. The burnt catchments show a 40–87%
increase in TN, TP and TSS for the post-wildfire period, whereas the control catchments observed a
23% increase in TSS, and no change for either TN or TP.

Table 9. Back-transformed model coefficients for wildfire dummy variable, indicating effects of wildfire
on WQ.

Catchment TSS TN TP

C1 X X X
C2 X 0.37 0.1
C3 1.46 X X
B0 3.32 1.35 X
B1 1.84 2.88 2.45
B2 X 0.7 1.13
B3 1.32 X X

Average for control *,1 1.23 1 1
Average for burned * 1.87 1.48 1.40

Net change
(burnt-control) 0.64 0.48 0.40

* for calculating the Average, when the effect of wildfire was not significant a value of 1 was used. 1: catchment C2
was not used to calculate the mean due the STP upgrading during the post-wildfire period.

4. Discussion and Conclusions

An increase in TSS value after a wildfire is a main observation in many studies [8]. It is also
observed in this study on a decade scale. In terms of individual catchments there were fluctuations
in the impacts of the wildfire. On average, in the 10 year post-wildfire period, catchment B0 showed
the highest increase in TSS (3.32 fold more than pre-wildfire), followed by B1 (1.84 fold increase over
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pre-wildfire) and catchment B3 showed a relatively lower effect (1.32 fold increase over pre-wildfire).
Catchment B2 did not show a statistically significant TSS concentration change. This can be caused
by several reasons: Firstly, catchment B2 had a small amount of pre-wildfire data relative to the
post-wildfire data. Therefore, the standard errors associated with the dummy wildfire variable would
be large, making it less likely to find a significant difference. Secondly, this result could also be caused
by the lower wildfire severity in the catchment. Finally, the monitoring station is located further away
from most severely burnt parts of the catchment (Figures 1 and 2), which possibly make changes in
WQ, being modeled less sensitive to wildfire effects.

An increase in TSS value after wildfire is a main observation in many past studies [8]. However,
the study results varies: Malmon, Reneau, Katzman, Lavine and Lyman [29] observed a 33-fold increase
in TSS in their study on the water quality change three months post-wildfire; Sheridan, et al. [41]
observed a 32-fold increase in TSS after one year of the wildfire. Conversely, some catchments were
less effected by wildfire, for example, Gallaher, et al. [42] observed a 1.76-fold increase in TSS level
five months post-wildfire. Past studies also showed that the recovery time of a catchment varies
between studies based on different burnt severity and other catchment conditions, for example at one
extreme, Hicke, et al. [43] found that catchment recovery to pre-wildfire conditions took three months
post-wildfire. On the other side, another study indicates complete catchment flow condition recovery
may take as long as 150 years [9]. Compared to past studies focused on the WQ in the first three
years post-wildfire, our study tested the 10 years average effect. As a result, our predictions of the
effect of wildfire on TSS in the medium term are considerably smaller than studies using short-term
post-wildfire data. Compare to Townsend and Douglas’ study [12] on the 10th year post-wildfire
WQ, their study observed no obvious WQ change, while our study on 10 years average WQ change
observed a more obvious change. This can be explained by a few reasons: Firstly, the fire severity in
their catchments was low: Their catchment was burnt in May, which is a wet season for the catchment.
Secondly, only three years pre-wildfire data were used in their study, which may not fully reflect the
pre-wildfire conditions of the catchment. Thirdly, their study tested the WQ collected on the 10th year
after wildfire, and this will make the WQ change observation less intense than our test on the 10 year
average of post-wildfire period, which includes the early years post-wildfire when the change would
be larger.

Relative to TSS, the impact of wildfire on TN and TP is less pronounced [19,44–46]. Past studies
have shown small declines to minor increases of TN and TP (0.2, 2 fold respectively) and also large
increases (between 20 to 432 fold) [12,28,47]. Our LMM results showed in a medium term a 2.88 fold
increase in TN for the most severely burnt catchment, catchment B1, and 2.45 fold increase in TP.
Catchment B1 has a shorter record of post-wildfire available data (up to six years post-wildfire
only), which might be the reason for the large change in WQ. Additionally, the higher averaged
change in six year averaged WQ concentration change compared to longer (10 years) average change,
demonstrated a sign of catchment recovery as WQ concentrations recover towards the pre-wildfire
level. This also indicates that this catchment was still significantly impacted by the wildfire up to
six years post-wildfire. This is far longer than several other studies which found that TN and TP
concentration returns to the pre-wildfire level 1–2 years post-wildfire, and TN may decrease in the
medium term [8,48,49]. A decrease in TN was also reported by our catchment B2. The increases in TN
and TP concentration during the post-wildfire period may result from the remobilization of sediment
store in colluvial deposits, channels and floodplain, as well as from atmospheric and runoff inputs of
ash [8]. The nutrient losses from unburnt forested catchments are usually low [14]. In contrast, wildfire
volatilizes nutrients from vegetation and soil. These nutrients are either released into atmosphere or
remain in the ash deposited on the soil surface [43]. Nutrients that remain in the surface ash layer
may be transported into streams during run-off and erosion events [14]. The amount of N and P
lost from soil is directly related to the amount of organic matter destroyed during a wildfire [50].
One observation from our study is post-wildfire TN and TP is sensitive to flow, but less sensitive
to event type (event duration and event antecedent condition) than TSS. This might indicate that
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the post-wildfire TN and TP are less related to catchment erosion and runoff from the surface layer
during rainfall events, because rather a large proportion of TN and TP is transferred into streams
from infiltration.

One major limitation of this study is ignoring the effect of wildfire on different parts of the
hydrograph, for example base flow vs. event flow. Further research should focus on examining the
effect of wildfire on event WQ, and also distinguish between short term (0–2 years post-wildfire) and
medium term (2+ years post-wildfire) impacts on WQ. Additionally, in this study, only empirical
models has been reviewed and used for detecting change. Empirical models, compared to any
physical-based distributed model, requires less data and processing time.

However, the empirical methods used here lack the ability to incorporate within-catchment spatial
variability, e.g., soil, topography, into the modeling process [27]. Future research should consider the
use of a distributed model for analysis of fire effects on water quality so the topography differences
can be included in the modeling/analysis process.

In this study we have used LMM to compare 10 years pre- and post-wildfire TSS, TN and TP
change after a wildfire in Australia. On average, there is a 64% TSS concentration increase, a 48% TN
concentration increase and 40% TP increase during the 10 years post-wildfire period. This study has
shown that wildfires can have a significant effect on water quality over long-term, decadal timescales.
For efficient catchment monitoring and management, a long term (10+ years) water quality monitoring
is essential.
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