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Abstract: The groundwater level in the Big Sunflower River Watershed (BSRW) in the U.S. has
declined significantly in the past 30 years. Therefore, it is imperative to assess surface water resources
(SWR) availability in BSRW to mitigate groundwater use for irrigation. This research applied the
coupled Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) to
assess SWR in BSRW. This study aimed at: (1) Assessing the reliability of SWAT–MODFLOW in BSRW,
(2) analyzing temporal and spatial variations of SWR, and (3) assessing the potential availability of
SWR in BSRW. Calibration and validation results showed that SWAT–MODFLOW can well simulate
streamflow and groundwater levels in BSRW. Our results showed that BSRW had lower average
monthly total stream resources (MSR = 8.8 × 107 m3) in growing seasons than in non-growing seasons
(MSR = 11.0 × 107 m3), and monthly pond resources (MPR from 30,418 to 30,494 m3) varied less than
stream resources. The proportion of sub-basins in BSRW with stream water resources greater than
700 mm was 21% in dry years (229 to 994 mm), while this increased to 35% in normal years (296 to
1141 mm) and 57% in wet years (554 to 991 mm). The Water Stress Index (WSI) ranged from 0.4 to
2.1, revealing that most of the sub-basins in BSRW have net SWR available for irrigation. Our results
suggested that surface water resources might be supplementary irrigation sources to mitigate the
water resources scarcity in this region.

Keywords: surface water availability; stream; pond; Soil and Water Assessment Tool—Modular
Groundwater Flow model; Big Sunflower River Watershed; Mississippi Delta

1. Introduction

Groundwater levels are decreasing, and this is a serious problem in many regions of the United
States, including Mississippi, where the predominant groundwater consumption is for agriculture
irrigation. The Mississippi River alluvial plain in northwestern Mississippi (the Mississippi Delta)
is one of the most important agricultural regions in the United States, with nearly 81% of the area
being crops, including soybean, corn, cotton, and rice [1]. Over the past 30 years, this region has been
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facing increasingly declining trends in groundwater levels and storage due to the over-extraction
of groundwater for agriculture irrigation [2]. Konikow [3] reported that the aquifer system in the
Mississippi Delta is one of the three largest used aquifers across the U.S., with an annual decline rate
of 8.0 km3 per year. Due to the limited groundwater resources, surface water resources (SWR) may
become supplementary irrigation sources for agriculture production. Thus, it is necessary to quantify
the temporal and spatial variations of SWR in the Big Sunflower River Watershed (BSRW).

Surface water is an important resource for crop production, socio-economic development [4], the
water cycle, and ecosystem services [5,6]. It is imperative to assess SWR availability for better planning
and managing water resources to mitigate the intensity of groundwater use. Assessment of SWR is
able to provide the basis to better manage SWR [7–9]. Wang et al. [10] reported that the subentry
investigation method and hydrological modeling are two major methods for assessing SWR in the
world. By using the subentry investigation method, SWR can be calculated based on the long-term
observed river discharge data [11,12]. However, Wang et al. [13] reported that this method can be
only used in a watershed with less anthropogenic effects and also having good records of water
consumption data. Therefore, the application of this method is limited in some regions, such as in
BSRW, due to the over-extraction of groundwater for irrigation.

Considering this limitation, many researchers worldwide use hydrological models to assess SWR
under varying climate conditions. Wang et al. [10] used the geomorphology-based hydrological
model (GBHM), developed by Yang [14], to assess the annual SWR in the Yongding River
Basin of China from 1956 to 2000. Cong et al. [15] also employed the GBHM model to
simulate the natural SWR in the Yellow River basin, China. In north-eastern Switzerland, the
precipitation–runoff–evapotranspiration–hydrology model developed by Gurtz et al. [16] was applied
to assess the SWR for 12 sub-catchments. Faramarzi et al. [17] used the Soil and Water Assessment
Tool (SWAT) along with the sequential uncertainty fitting program to quantify the SWR in Iran. Sun
and Ren [8] assessed the spatial and temporal variations of SWR in the Hai River basin of China and
found that SWR were mainly impacted by the spatial variations of rainfall and land use. Xu et al. [18]
also applied the SWAT model to simulate SWR in the Chao-Bai River Basin, and reported that SWAT is
a useful tool to provide a scientific basis for water resources planning and management. Vilaysane
et al. [19] also tested the feasibility of the SWAT model to simulate the stream flow in the Xedone River
Basin and reported that SWAT is useful for sustainable development of the country. Duan et al. [20]
assessed future variations of stream flow using the SWAT model and reported that annual mean
streamflow may increase in the next 100 years in the upper Ishikari river basin, Japan.

The hydrological modeling approach for assessing SWR also has limitations. Steele et al. [21]
reported that streams and ponds are the two major SWR for agriculture, industry, and public
use [22–25]. However, these modeling studies only defined streams as SWR, regardless of pond
resources in agriculture watersheds [26–28]. Therefore, it is necessary to estimate SWR including
both stream and pond water resources. In addition, several studies reported that stream water
was influenced by groundwater flow [29,30]. For example, Miguez-Macho et al. [31] evaluated
the effects of groundwater flow on surface water dynamics, and found that groundwater is the
dominant source of streamflow due to the varying water table depth. However, these modelling
studies ignored the influence of groundwater flow on SWR assessment. Therefore, a coupled surface
and groundwater hydrological model that includes pond water resources is needed for better SWR
assessment. Furthermore, some studies reported that the sustainable use of SWR relies greatly on
environmental flow, and therefore, environmental flow should be considered in the assessment of
SWR [32–34]. For example, Kuriqi et al. [35] employed hydrological e-flow methods to analyze the
influence of environmental flow on physical habitat conditions, and reported that environmental flow
is a foundation for water resources management actions.

The Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) is
a coupled hydrologic model that combines surface water hydrology of SWAT and the groundwater
hydrology of MODFLOW for a watershed [36]. Many studies have focused on the coupling of
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SWAT and MODFLOW. Sophocleous and Perkins [37] integrated the SWAT and MODFLOW at
three agriculture-dominated watersheds in Kansas, USA, to assess the impacts of land use, irrigation
development, and climate change on both surface and groundwater resources. Guzman et al. [38] also
employed the coupled SWAT–MODFLOW model to evaluate the long-term anthropogenic impacts on
agro-ecosystems in the Fort Cobb Reservoir experimental watershed of southwestern Oklahoma, USA.
Ni and Parajuli [39] used the SWAT–MODFLOW to determine the effects of management practices on
surface and groundwater resources in the BSRW. Chunn et al. [40] also used the SWAT–MODFLOW
to study the influence of climate change on the interactions between surface and groundwater.
SWAT–MODFLOW was adopted in our study for the following two reasons: (1) SWAT–MODFLOW
integrates the surface water hydrology and groundwater hydrology with the consideration of pond
resources, and (2) SWAT or MODFLOW have been individually applied in the Mississippi Delta, which
can provide some available information for the model calibration and validation [2,3,41].

Limited information is available regarding the temporal and spatial variations of SWR in the
Mississippi Delta, especially in BSRW (Figure 1). The objectives of this study were to: (1) Assess the
reliability of the SWAT–MODFLOW model in BSRW based on calibration and validation; (2) analyze
the temporal and spatial variations of stream and pond water resources in BSRW using the coupled
SWAT–MODFLOW model, and (3) estimate the potential availability of SWR for agriculture irrigation
in BSRW.
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Figure 1. Location of the study area, sub-basins, United States Geological Survey (USGS) gauge stations,
weather stations, and observation wells.

2. Materials and Methods

2.1. Study Area

The BSRW is located in north-western Mississippi, USA, and lies between latitude 32◦ to 35◦ N
and longitude 91◦ to 90◦ E, with an area of 10,488 km2 (Figure 1). It is relatively flat, and slope ranges
from 5.7 to 7 cm km−1 in BSRW [42,43]. The BSRW is a highly productive agricultural region in the
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Mississippi Delta, owing to fertile soils and long growing seasons. Nearly 80% of the total land use
in BSRW is used for crops, including soybean, corn, rice, and cotton [44]. Over 90% of the soil types
in this region are Alligator, Sharkey, Dowling, Forestdale, and Dundee, which have high clay and
silt content [41]. The climate of BSRW is subtropical, with a mean annual precipitation of 1371 mm
and annual average temperature of 18 ◦C between 2000 and 2016 [32]. Only 30% of annual rainfall
occurs during the growing seasons. As a result, irrigation is needed for soybean, corn, cotton, and
rice in this region. Carvajal et al. [45] reported that impounded water in on-farm ponds is one of the
available resources for supplying water for the irrigation required by those crops. Ouyang et al. [23]
also demonstrated that farm ponds can provide multiple benefits, such as recharging groundwater,
storing rain water, and collecting runoff. Due to the increasing demand of surface and groundwater
resources in the Mississippi Delta, many farm ponds have been recently built for agriculture irrigation
in this region [23].

2.2. Definition of Stream Water Resource, Pond Water Resource, and SWR

SWR in this study is defined as the volume or depth of stream and pond water in each
sub-basin [46], and the unit of SWR is given as m3 or mm [8]. The volume or depth of stream
and pond water was calculated by the following equations [46]:

Vstream = 1000 × Astream × Lstream (1)

Depthstream =

√
Astream

Zstream
+

(
Wbtm

2·Zstream

)2
− Wbtm

2·Zstream
(2)

Vpond = Vstored + Vf lowin − Vf lowout + Vpcp − Vevap − Vseep (3)

Depthpond =
Vpond

SAsubba sin
(4)

VSWR = Vstream + Vpond (5)

DepthSWR = Depthstream + Depthpond (6)

where Vstream is the volume of stream water resources in each sub-basin (m3), Astream is the
cross-sectional area of stream in each sub-basin (m2), Lstream is the stream length (km) in each sub-basin,
Depthstream is the depth of stream water resources in each sub-basin for a given time step, Zstream is the
inverse of the stream side slope, Wbtm is the bottom width of the stream in each sub-basin (m), Vpond is
the volume of pond water resources at the end of the day (m3), Vstored is the volume of water stored in
the pond water body at the beginning of the day (m3), Vflowin is the volume of pond water entering the
water body during the day (m3), Vflowout is the volume of pond water flowing out of the water body
during the day (m3), Vpcp is the volume of precipitation falling on the pond water body during the day,
Vevap is the volume of water removed from the pond water body by evaporation during the day (m3),
Vseep is the volume of water lost from the pond water body by seepage (m3), Depthpond is the depth of
pond resources during the day in each sub-basin, and SAsub-basin is the surface area of each sub-basin.
VSWR and DepthSWR are the volume and depth of SWR in each sub-basin, respectively. There are only
three gauge stations in BSRW. Therefore, we applied SWAT–MODFLOW to estimate availability of
stream and pond water resources on a sub-basin scale.

2.3. Model Description

2.3.1. SWAT

SWAT is a continuous, semi-distributed, process-based hydrological model, and it was developed
by the United States Department of Agriculture–Agriculture Research Service. The first version of
SWAT was released in the 1990s and this model was incorporated into the geographic information
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system (GIS) interface for preparing the input data and running the model [47]. The input data for
the SWAT model consist of a digital elevation model (DEM), land use, soil chemicals, physical and
hydrological properties, weather data (daily precipitation, maximum and minimum air temperature,
solar radiation, average daily wind speed, and daily relative humidity), and land management and
operation information. SWAT can be applied to simulate the volume and depth of stream and pond
water [47] by dividing the watershed into sub-basins, which can be further categorized into a number
of hydrological response units (HRU) with same land use, soil type, and slope. Groundwater recharge
in SWAT can be calculated as:

wrchrg,i =

(
1 − exp

[
− 1

δgw

])
·wseep + exp

[
− 1

δgw

]
·wrchrg,i−1 (7)

where wrchrg,i is the amount of recharge entering the aquifers on day i (mm), δgw (days) is the delay time
or drainage time of the overlying geologic formations, wseep is the total amount of water exiting the
bottom of the soil profile on day i (mm), and wrchrg,i−1 is the amount of recharge entering the aquifers
on dayi−1 (mm).

2.3.2. MODFLOW

MODFLOW is a finite-difference groundwater model based on the physical and mathematical
concepts of groundwater flow theory [48]. It can be used to simulate groundwater recharge, vadose
zone percolation, evapotranspiration, pumping, and interactions between surface and groundwater.
The groundwater aquifer system in MODFLOW is discretized into finite-difference cells, with a linear
equation written for each cell and solved for groundwater head at each time step [48]. The simulation
of MODFLOW is based on modular packages. For example, the river package in MODFLOW is used to
simulate the exchange of water between the aquifer and river through the river bed. The well package
is designed to simulate wells that withdraw water from or add water to the aquifer at a constant rate
during a stress period. Groundwater level and discharge can be simulated on a cell scale as follows:

QRIVn = CRIVn

(
HRIVn − hi,j,k

)
(8)

where QRIVn is the flow between the river and the aquifer (mm), taken as positive if it is directed
into the aquifer; HRIVn is the water level in the river (m); CRIVn is the hydraulic conductance of the
river–aquifer interconnection (cm day−1); and hi,j,k is the groundwater level at the node in the cell
underlying the river reach. MODFLOW can represent multiple aquifer conditions, including confined,
unconfined, leaky, delayed yield, and variably confined/unconfined conditions. Both steady state and
transient conditions can be simulated [49].

2.3.3. SWAT–MODFLOW

There are limitations if only SWAT or MODFLOW is applied. Therefore, we applied the coupled
SWAT–MODFLOW, which was developed by [36]. Compared to the previous SWAT–MODFLOW
model, this model has a wide range of advantages. It has geographically located HRU and an efficient
HRU grid mapping scheme. In addition, the unconfined groundwater–flow equation in the model
was improved by using the Newton formulation of MODFLOW-2005 [36]. The key procedure of the
coupled SWAT–MODFLOW model simulation is: SWAT passes its deep percolation to MODFLOW
as recharge in each grid cell, and MODFLOW provides groundwater discharge to SWAT in each
sub-basin. There are three major procedures for linking SWAT and MODFLOW. Firstly, HRUs are
spatially disaggregated in preprocessing GIS routines to provide a geographic location for each HRU.
Secondly, these disaggregated HRUs (DHRUs) are then intersected with MODFLOW grid cells to
specify HRU–cell relationships. Thirdly, the MODFLOW river cells are grouped by SWAT sub-basin so
that MODFLOW-calculated groundwater/surface water exchange rates can be passed to the correct
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sub-basin channel in preparation for streamflow routing. Full details regarding SWAT–MODFLOW
are provided in Bailey et al. [36].

2.4. SWAT–MODFLOW Input

2.4.1. SWAT Input

Topography data were obtained in the form of a digital elevation model (DEM) at 10 m resolution
from the United States Geological Survey (USGS) (http://viewer.nationalmap.gov/basic/?basemap=
b1&category=ned,nedsrc&title=3DEP%20View). The DEM data are used to delineate our study area
into 23 sub-basins and stream networks. The landuse data in 2016 were obtained from the United
States Department of Agriculture–National Agriculture Statistics Service (NASS) (https://nassgeodata.
gmu.edu/CropScape/) at 30 m resolution, and then was resampled to 10 m resolution. The soil
data were downloaded in the form of a 30 × 30 m raster layer from the soil survey geographic
(SSURGO) database from the Natural Resources Conservation Service (NRCS), and also resampled
into 10 m resolution. The daily maximum and minimum air temperatures, solar radiation, relative
humidity, and wind speed of 20 weather stations in our study region were downloaded from the NRCS
(http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2064) during the periods of 2000 to 2016 (Figure 1).
The missing data for these 20 stations were generated using the weather generator model in SWAT.
Table 1 shows the monthly irrigation amounts for soybean, corn, cotton, and rice in our study region.
Irrigation data were obtained from Dakhlalla et al [41], which were calculated from the Mississippi
Delta annual report summarized by the Yazoo Mississippi Delta Joint Water Management District
(http://www.ymd.org/).

Table 1. Irrigation amounts for soybean, corn, cotton, and rice production in the Big Sunflower
River Watershed.

Crop Type
Irrigation Amount (mm)

May June July August Total

Soybean 30 122 91 91 334
Corn 61 122 61 / 244

Cotton / 61 91 30 182
Rice 305 366 336 30 1037

2.4.2. MODFLOW Input

The MODFLOW model domain is the entire Mississippi Delta region, an area of 17,866 km2.
The observed groundwater level data from 2000 to 2016 were obtained from the Yazoo Mississippi
Delta Joint Water Management District (http://www.ymd.org). Groundwater levels in each year were
recorded in the beginning of April and October. The locations of 46 wells were displayed in Figure 1.
The river stage data used for the river package were obtained from the U.S. Corps of Engineers
website (www.rivergages.com). DEM and landuse data in SWAT were also taken as the input data for
simulating groundwater recharge.

The left boundary of the BSRW was set as the specific head boundary, while the right boundary of
the BSRW was set as general head boundary. The finite-difference grid in BSRW consists of 297 rows
and 112 columns, with cell grid size of 1 × 1 km and with daily time steps and monthly stress periods.
The parameters required by MODFLOW were hydraulic conductivity in the horizontal direction,
vertical anisotropy, specific storage, specific yield, recharge multipliers, streambed conductance, and
horizontal flow barriers. The specific values of these parameters can be found in the literature reported
by Clark et al. [2]. The aquifer in BSRW consists of Quaternary-age sand and gravel deposits overlying
an erosional Tertiary-age surface. Although BSRW has multiple sources of recharge to the aquifer,
including rainfall, leakage from the Mississippi river, and interflow from Bluff Hills, the recharge rate
is 64 mm year−1, which is 5% of the mean annual rainfall in this region [50].

http://viewer.nationalmap.gov/basic/?basemap=b1&category=ned,nedsrc&title=3DEP%20View
http://viewer.nationalmap.gov/basic/?basemap=b1&category=ned,nedsrc&title=3DEP%20View
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2064
http://www.ymd.org/
http://www.ymd.org
www.rivergages.com
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2.5. Model Calibration and Validation Method

The model was calibrated from 2000 to 2008 and validated from 2009 to 2016 using USGS
daily and monthly observed streamflow data at 3 gauge stations in our study region (Figure 1):
Merigold (07288280), Sunflower (07288500), and Leland (07288500). Since streamflow is an important
component of water balance, we calibrated and validated streamflow to assess the performance of the
SWAT–MODFLOW model in BSRW. The model was also calibrated and validated using groundwater
level data from 2000 and 2016. Each sub-basin has two wells, of which one was used for calibration
and the other for validation.

The calibration and uncertainty analysis tool (SWAT–CUP) with the sequential uncertainty
fitting (SUFI-2) algorithm was employed to perform calibration and validation for streamflow and
groundwater levels in this study. Arnold et al. [47] reported that input parameters in SWAT are
process-based and should be set in a reasonable uncertainty range. Based on the previous studies
conducted by Dakhlalla et al. [41] and Jayakody et al. [51] in BSRW, five hydrological parameters
were selected for calibration. They were the Manning’s roughness coefficient for the main channel
(CH_N2), soil conservation service curve number (CN2), surface runoff lag time (SURLAG), saturated
hydraulic conductivity of the soil layers (SOL_K), and the threshold depth of water in the shallow
aquifer (GWQMN).

2.6. Evaluation Criteria

Statistical parameters of the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE),
Root Mean Square Error (RMSE), and percentage bias (PBIAS) were used to evaluate the performance
of the SWAT–MODFLOW model. The R2 is a measure of strength between simulated and observed
values. NSE is a measure to illustrate the relationship between observed and simulated values along a
1:1 line [52]. RMSE is also a measure for assessing agreement between observed and simulated values.
PBIAS measures whether the simulated results are systematically overestimated (negative PBIAS) or
underestimated (positive PBIAS). Arnold et al. [47] and Coffey et al. [53] suggested that there were
20 statistic methods for evaluating model performance, such as R2, NSE, RMSE, nonparametric tests,
t-test, objective functions, autocorrelation, and cross-correlation. By far, the most widely used statistics
reported for calibration and validation are R2 and NSE. Moriasi et al. [54] suggested that the model
performance would be acceptable when NSE and R2 > 0.5, and Tuppad et al. [55] reported that the
model performance was rated as very good when NSE and R2 > 0.75. Moriasi et al. [54] also reported
that the model performance of streamflow can be rated as very good when PBIAS ≤ 10%, and rated as
satisfactory when ±15% ≤ PBIAS ≤ ±25% [56].

2.7. Water Stress Index and Potential Availability of Surface Water Resources

In order to assess SWR potential for agriculture irrigation, the WSI (Water Stress Index) was
calculated as follows:

WSI =
Annual sur f ace water demand

PSWR
(9)

PSWR SWR − Environmental stream f low depth (10)

where SWR is the sum of stream and pond water resources and PSWR is the potential availability of
surface water resources. Some scientists suggested that stream water resources can be utilized in a
more sustainable way if environmental streamflow regulation is established to prevent stream water
resources from over-withdrawals [32,57]. Ouyang [32] calculated the environmental streamflow of
0.8 m3 s−1, using the frequent-low flow and the conventional 7Q10 method in BSRW. We converted
the environmental streamflow value to environmental streamflow depth for each sub-basin based
on their areas, which ranged from 3.3 to 123.4 mm. Annual surface water demand is the irrigation
amount required by the major crops in the Mississippi Delta (Table 1). In order to clearly show the
whole process of the model application, the flowchart of methodology was presented in Figure 2.
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3. Results and Discussions

3.1. Calibration and Validation

3.1.1. Calibrated and Validated Parameters

The final ranges and reasonable values of the five parameters we selected for calibration and
validation are listed in Table 2. The final calibrated CH_N2 is identical to the value of 0.3 reported
by Dakhlalla et al. [41], which indicates that the surfaces of the channels in the Big Sunflower River
Watershed are relatively rough [58]. The fitted value of CN2 was −0.015, agreeing with the result of
−0.017 reported in the literature [41]. While the fitted value of SURLAG in the study of Dakhlalla
et al. [41] was 1.4, our results had a higher value of 9.5, indicating that more surface runoff in BSRW
should be released to the main channel due to the lower infiltration rate caused by the overlying
clay and fine-grained material in the upper part of the aquifer [22]. Compared to the lower value of
929 mm [41], the fitted value of GWQMN in our study was 1075 mm, which may have been caused by
an absence of rainfall or irrigation return flow during the dry summer months [22].

Table 2. Calibrated results of the parameters based on the objective functions of streamflow and
groundwater levels in the Big Sunflower River Watershed.

Parameter Final Min Final Max Fitted Values

V_CH_N2 a 0.1 0.4 0.3
R_CN2 b −0.1 0.1 −0.015

V_SURLAG c 5.2 13.8 9.5
R_SOL_K d −0.2 0.2 −0.1

A_GWQMN e 287 1350 1075.4
a CH_N2 is the Manning’s roughness coefficient for the main channel; b CN2 is curve number; c SURLAG is the
surface runoff lag time; d SOL_K is the saturated hydraulic conductivity of the soil layers; and e GWQMN is the
threshold depth of water in the shallow aquifer for baseflow to occur.
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3.1.2. Streamflow

Simulated and observed monthly streamflow at three gauges were compared for calibration and
validation in Figure 3. This indicated that the calibrated and validated results were acceptable in
simulating streamflow in the study region. Tuppad et al. [55] reported that the simulated results in
BSRW were in very good agreement with the observed values at Merigold during both calibration
and validation periods, and at Sunflower during calibration (both R2 and NSE > 0.75). Although
not all the simulated streamflow values were close to the observed values, the R2 and NSE values
at the three gauge stations were > 0.5, indicating all the simulated results were acceptable during
both calibration and validation periods [54]. RMSE ranged from 10.19 to 16.82 m3 s−1, suggesting the
simulated results were acceptable within our study region. PBIAS at the three gauge stations ranged
from −22% to 25% during the calibration and validation periods, which suggests the least satisfactory
model performance [54].
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Figure 3. Observed and simulated (by Soil and Water Assessment Tool–Modular Groundwater Flow
model (SWAT–MODFLOW)) monthly streamflow values for calibration and validation at three United
States Geological Survey (USGS) gauge stations (Merigold 07288280, Sunflower 07288500, and Leland
07288500) in the Big Sunflower River Watershed (07288280, 07288500, and 07288500 represent the gauge
station identification numbers).

The comparison statistics values of NSE, R2, RMSE, and PBIAS between observed and simulated
daily streamflow values by SWAT and SWAT–MODFLOW were also displayed in Table 3. As compared
with the performance of SWAT, SWAT–MODFLOW had higher R2 and NSE but lower RMSE during
both calibration and validation periods. SWAT–MODFLOW significantly improved at Merigold and
slightly improved at Sunflower and Leland. This might have been due to inadequate spatial coverage
of the precipitation inputs [47], as there was only one weather station for Leland, no weather station
for Sunflower, and two weather stations for Merigold. Gupta et al. [59] reported that PBIAS values
for streamflow might vary greatly among different hydrologic models and various auto-calibration
methods, but this would not influence model evaluation if PBIAS values are within the reasonable
range. Although PBIAS changed from negative to positive values for the Sunflower station in our
study, the performance of SWAT–MODFLOW was rated as satisfactory (±15% ≤ PBIAS ≤ ±25%) [56].
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Table 3. Statistical comparison of observed and simulated (by both SWAT and SWAT-MODFLOW models) daily streamflow values at three United States Geological
Survey (USGS) gauge stations (Merigold 07288280, Sunflower 07288500, and Leland 07288500) in the Big Sunflower River Watershed (07288280, 07288500, and
07288500 represent the gauge station identification numbers).

Stations Calibration/Validation
aR2 bNSE cRMSE (m3 s−1) dPBIAS

eSWAT SWAT-MODFLOW SWAT SWAT-MODFLOW SWAT SWAT-MODFLOW SWAT SWAT-MODFLOW

Merigold
(07288280)

Calibration 0.53 0.73 0.49 0.69 24.7 23.44 −72% −2%
Validation 0.55 0.74 0.49 0.74 21.4 19.78 −66% −12%

Sunflower
(07288500)

Calibration 0.60 0.68 0.59 0.64 27.2 26.71 −27% 24%
Validation 0.64 0.66 0.63 0.68 23.2 20.54 −20% 21%

Leland
(07288650)

Calibration 0.68 0.70 0.66 0.68 22.2 20.66 −21% −21%
Validation 0.75 0.77 0.72 0.73 19.4 18.82 −35% 4%

a R2 is the coefficient of determination between observed and simulated daily streamflow; b NSE is the Nash–Sutcliffe efficiency between observed and simulated daily streamflow;
c RMSE is the root mean square error between observed and simulated daily streamflow; d PBIAS is the percentage bias between observed and simulated daily streamflow; and e The
Statistical values for SWAT were obtained from Dakhlalla et al. (2016) [41].
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The comparison of observed and simulated monthly streamflow at three gauges by SWAT and
SWAT–MODFLOW were displayed in Figure 4. Although Dakhlalla et al. [41] reported that SWAT
performed well in BSRW, the high degree of uncertainty has existed in simulating streamflow due to the
overestimation of low streamflow. Figure 4 showed that SWAT overestimated low streamflow values
(10 to 28 m3 s−1) by as high as 93%, while SWAT–MODFLOW overestimated low streamflow by as low
as 12%. Bejranon et al. [30] reported that the low streamflow may be overestimated due to the higher
groundwater discharge simulated by the SWAT model. Barlow and Leake [50] also reported that even
lower groundwater discharge would have significant impacts on streamflow. Therefore, MODFLOW
was incorporated into SWAT, and the SWAT–MODFLOW was further calibrated and validated in our
study, instead of re-calibrating and re-validating SWAT individually. Dakhlalla et al. [41] calibrated
and validated SWAT in BSRW, but they did not simulate groundwater discharge in their study. We
employed SWAT [41] and the SWAT–MODFLOW model to simulate groundwater discharge, and
then made comparisons (Figure 5). Figure 5 displays comparisons of simulated monthly groundwater
discharge between SWAT and SWAT–MODFLOW in BSRW. The monthly groundwater discharges
simulated by SWAT were higher (1.9 to 4.5 mm) than those simulated by SWAT–MODFLOW (0.4 to
2.3 mm). Compared to SWAT, groundwater discharge can be well simulated by SWAT–MODFLOW,
with consideration of groundwater pumping. As a result, the discrepancies between simulated and
observed streamflow values were reduced [50]. Barlow and Clark [22] reported that the average
monthly groundwater recharge in BSRW from the Mississippi river and unsaturated zone were only
0.01 mm, due to the overlying clay and fine-grained material in the upper part of the aquifer. Therefore,
the impact of groundwater recharge on groundwater discharge were neglected in BSRW.
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3.1.3. Groundwater Level

The calibration and validation results of groundwater levels within the 46 wells are presented
in Figure 6, indicating that groundwater levels in our study region were well simulated by
SWAT–MODFLOW based on the 1:1 line fitting diagram. R2 was 0.95 for calibration and 0.88 for
validation, and NSE values were 0.99 and 0.93 for calibration and validation, respectively. The
RMSE values for the calibration and validation periods was 0.51 and 0.59 m, demonstrating a good
relationship between simulated and observed groundwater levels. The observed and simulated spatial
distributions of groundwater levels averaged from April 2000 to October 2014 are displayed in Figure 7.
Both the observed and simulated results showed a similar spatial distribution of groundwater levels in
BSRW, ranging from 14 to 36 m. The groundwater levels were higher in the north of BSRW than in the
south, since extensive irrigation amounts were used in the south where the groundwater storage loss
has reached up to 1.8 × 108 m3 per year [22,41].
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3.2. Temporal and Spatial Variability of Stream and Pond Resources

Tables 4 and 5 show the average monthly total stream resources (MSR), average monthly pond
resources (MPR), annual mean stream water resources (ASR), and pond water resources (APR) in
BSRW during the periods from 2000 to 2016. Our results showed that BSRW had lower MSR values
in growing seasons (MSR = 8.8 × 107 m3) than in non-growing seasons (MSR = 11.0 × 107 m3). This
might be caused by the lower average monthly rainfall (91 mm) and greater evapotranspiration (ET)
(71 mm) during growing seasons, and relatively greater rainfall (111 mm) and less ET (40 mm) during
off-growing seasons in BSRW. Our results also showed that pond resources vary less than stream
resources, since pond resources in our study region were less disturbed by human activities such as
irrigation [24]. In general, Vorosmarty et al. [60] and Stonestrom et al. [61] demonstrated that SWR was
affected by precipitation and landuse. Sun and Ren [8] applied the simple linear regression analysis
between SWR and rainfall, and found that SWR was more influenced by rainfall, since lower rainfall
mainly affects crop water use, rather than SWR. They also indicated that SWR may be underestimated
without considering the effect of landuse changes over time. However, simulation of streamflow
resources still had uncertainties. Wang et al. [10] conducted similar modeling research in a semi-arid
region of China, where the simulated average annual total SWR was 0.86 × 109 m3, which is lower
than our results. Meanwhile, the annual average streamflow resources simulated by Sun and Ren [8]
in a semi-arid region had a higher value of 4.3 × 109 m3 compared to our results. This indicates
that streamflow resources are not determined by rainfall only. As a result, the simulated stream
resources in our study may also be underestimated, as Tao et al. [62] reported that Mississippi has
experienced intensive landuse changes in recent years. Therefore, landuse changes should be taken
into consideration when simulating the SWR.

Table 4. Simulated monthly average stream resources (MSR), monthly average pond water resources
(MPR), and measured rainfall from 2000 to 2016 in the Big Sunflower River Watershed.

Month Stream Water (107 m3) Pond Water (m3) Monthly Rainfall (mm)

January 10.1 30,431 103
February 11.2 30,494 102

March 11.9 30,486 109
April 10.5 30,478 112
May 11.6 30,466 98
June 7.6 30,455 78
July 7.6 30,444 82

August 6.9 30,431 72
September 7.9 30,426 89

October 9.7 30,421 108
November 10.1 30,421 106
December 11.5 30,418 139
Average 9.7 30,448 100
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Table 5. Simulated annual stream resources (ASR), annual pond water resources, (APR) and measured
rainfall in the Big Sunflower River Watershed.

Year Stream Water (109 m3) Pond Water (106 m3) Annual Rainfall (mm)

2000 0.7 4.7 846
2001 1.5 4.7 1199
2002 2.7 4.7 1214
2003 0.7 4.7 1433
2004 1.2 4.7 796
2005 0.6 4.7 1807
2006 0.9 4.7 992
2007 0.5 4.7 1401
2008 0.9 4.7 1157
2009 1.4 4.7 1309
2010 0.5 4.7 1130
2011 0.9 4.7 1306
2012 1.3 4.7 870
2013 2.3 4.7 1404
2014 1.1 4.6 1452
2015 1.2 4.6 889
2016 0.7 4.6 1129

Average 1.1 4.7 1196

Figure 8 shows the spatial distributions of ASR in dry, normal, and wet years in BSRW. The
empirical frequency analysis method was used to categorize 16 years into dry, normal, and wet years.
In general, ASR in the entire BSRW ranged from 365 to 972 mm. ASR of 23 sub-basins in dry years,
normal years, and wet years were 481, 605, and 726 mm, respectively. The proportion of sub-basins in
BSRW with stream resources greater than 700 mm was 21% in dry years (ranging from 229 to 994 mm),
while this increased to 35% in normal years (ranging from 296 to 1141 mm) and 57% in wet years
(ranging from 554 to 991 mm). We focused more on values of 700 mm because only sub-basins 6, 8,
10, and 11 had stream resources >700 mm in dry years. The spatial distributions of pond resources
for the 23 sub-basins in the BSRW are also displayed in Figure 9. The sub-basins with higher pond
resources were found in the northwest of this region (>7.3 mm), since most of the on-farm ponds were
built in this region [21]. Although many studies demonstrated that stream water is the main source for
agriculture irrigation [63–65], stream water might not be sustainably usable for irrigation in BSRW
in the future, due to the stream water depletion caused by climate change and human activities [23].
Instead, on-farm ponds should be constructed in BSRW as an alternative to collect rain and runoff.
Although the annual and monthly pond volumes in BSRW were relatively small compared to stream
water, pond water can play a significant role in irrigation, since Ouyang et al. [23] reported that
10,000 m2 soybean fields could save approximately 542 m3 groundwater each year if the ratio of pond
size to irrigated soybean land was 1:18. Furthermore, irrigation water from streams are conveyed and
disturbed by complex aqueduct systems, since most fields that need irrigation are often not close to
streams. It is expensive to construct such water delivery systems. Ponds can be less expensive than
aqueduct systems to construct adjacent to fields.
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3.3. Assessment of Surface Water Resources

Figure 10 displayed averaged annual WSI and PSWR in each sub-basin in dry, normal, and
wet years. WSI in most of the sub-basins was less than 1.0, ranging from 0.6 to 2.1 for dry years
(Figure 10b), 0.5 to 1.6 for normal years (Figure 10d), and 0.4 to 1.0 for wet years (Figure 10f), indicating
that annual PSWR was higher than annual surface water demand. Therefore, SWR has the potential
to be used for irrigation without adverse impacts on the environment and ecosystems. Girolimetto
and Venturini [66] also estimated WSI in Oklahoma, USA, which has a similar climate as BSRW, and
reported that the WSI in normal years ranged from 0.5 to 0.7. Kar and Kumar [67] reported that WSI
was between 0.61 and 0.63 before application of irrigation. Our results are comparable with those
published results, indicating that WSI can be used in our study area for the assessment of surface
water resources. Figure 10a,c,e showed that PSWR was higher than irrigation demand in most of the
sub-basins in dry, normal, and wet years. The values of PSWR-irrigation ranged from −170 to 651 mm
in dry years, −13 to 712 mm in normal years, and 196 to 651 mm in wet years, indicating that there
was net SWR available for irrigation in BSRW. Groundwater scarcity has been a serious problem in
BSRW, and agriculture irrigation in this region cannot depend only on groundwater resources for a
long time. However, surface water resources might be a supplementary irrigation source to mitigate
the water resources scarcity in this region.
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The coupled SWAT–MODFLOW model has advantages in estimating SWR. Firstly,
SWAT–MODFLOW can be used to estimate SWR, even in an ungauged sub-basin. The Bureau
of Hydrology [68] reported that SWR can be calculated by a subentry investigation method, but
multiple gauge stations are required for this method to estimate stream water resources in each
sub-basin, based on water use data and water balance equations. However, there are 23 sub-basins
but only three different gauge stations in BSRW (Figure 1), and thus it is impossible to obtain reliable
results for all the sub-basins using the subentry investigation method. While SWAT–MODFLOW
can estimate stream water resources in each sub-basin, even in an ungauged sub-basin [40], the
subentry investigation method can only be applied in small anthropogenic-affected watersheds
(Bureau of Hydrology 1986). However, BSRW was greatly influenced by human activities, such
as heavy groundwater pumping. The calibrated and validated SWAT–MODFLOW can simulate SWR,
even in regions similar to BSRW, by taking groundwater discharge into consideration. Thus, it is more
reliable to assess SWR using SWAT–MODFLOW.
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4. Conclusions

The SWAT–MODFLOW model was applied to estimate available amounts of water in streams
and ponds in BSRW. The SWAT–MODFLOW model was calibrated and validated for calculating
streamflow values and groundwater levels from 2000 to 2016, and the statistical parameters R2, NSE,
RMSE, and PBIAS indicated that SWAT–MODFLOW is reliable for assessing SWR in BSRW. The
available SWR calculated by the coupled model was more accurate than that calculated by the SWAT
model alone, since the coupled model is capable of considering interactions between surface water
and groundwater, and groundwater discharges to streams. Then, the calibrated model was applied to
study the temporal and spatial variability of SWR, and indicated that simulated stream resources in
our study may also have been underestimated due to the landuse changes. Our results also showed
that pond water resources play a significant role for irrigation in BSRW. The surface water stress index
was calculated to determine potential SWR availability. The temporal and spatial variability and
availability of SWR and WSI suggested that surface water resources can be used as supplementary
irrigation sources to mitigate groundwater depletion in this region. The approach used for this region
can be applied to other regions. The research demonstrated that the coupled SWAT–MODFLOW
model is a useful tool to assess SWR availability in any region.
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