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Abstract: In this research, three different evolutionary algorithms (EAs), namely, particle swarm
optimization (PSO), genetic algorithm (GA) and differential evolution (DE), are integrated with the
adaptive neuro-fuzzy inference system (ANFIS) model. The developed hybrid models are proposed to
forecast rainfall time series. The capability of the proposed evolutionary hybrid ANFIS was compared
with the conventional ANFIS in forecasting monthly rainfall for the Pahang watershed, Malaysia.
To select the optimal model, sixteen different combinations of six different lag attributes taking into
account the effect of monthly, seasonal, and annual history were considered. The performances of the
forecasting models were assessed using various forecasting skill indicators. Moreover, an uncertainty
analysis of the developed forecasting models was performed to evaluate the ability of the hybrid
ANFIS models. The bound width of 95% confidence interval (d-factor) and the percentage of observed
samples which was enveloped by 95% forecasted uncertainties (95PPU) were used for this purpose.
The results indicated that all the hybrid ANFIS models performed better than the conventional
ANFIS and for all input combinations. The obtained results showed that the models with best input
combinations had the (95PPU and d-factor) values of (91.67 and 1.41), (91.03 and 1.41), (89.74 and
1.42), and (88.46 and 1.43) for ANFIS-PSO, ANFIS-GA, ANFIS-DE, and the conventional ANFIS,
respectively. Based on the 95PPU and d-factor, it is concluded that all hybrid ANFIS models have an
acceptable degree of uncertainty in forecasting monthly rainfall. The results of this study proved that
the hybrid ANFIS with an evolutionary algorithm is a reliable modeling technique for forecasting
monthly rainfall.
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1. Introduction

It is worth mentioning that rainfall is the only input element source for the hydrologic cycle.
However, excessive rainfall and the scarcity of it on Earth affect the tremendous flooding and severe
drought that occur over short and long intervals [1]. Rainfall forecasting, therefore, can prevent
the many natural disasters, thereby saving human lives. The accuracy of rainfall forecasting can
also help the preparation of efficient structural and non-structural designs for disaster management.
The accuracy of rainfall time series forecasting depends on the methods used (e.g., stochastic or
deterministic) for uncertainty mitigation. Deterministic dynamical forecasting models are developed
based on the physical laws related to land–ocean–atmosphere interactions and are thus able to predict
changes in rainfall due to changes in Earth’s atmosphere. However, the forecasted rainfall provided by
dynamical models is often prone to large error at the local scale [2]. Statistical models are simple to
implement and operate and have been found to forecast more efficiently the smooth changes in rainfall
at the local scale. Therefore, statistical models are often preferred for rainfall forecasting at the local
scale [3–6]. Time series modeling has been a very interesting topic not only for hydrological problems,
but also for numerous science and engineering applications [7,8]. For this research, the motivation was
to explore reliable and robust hybrid intelligence models that were capable of mimicking the existing
non-linear pattern in rainfall by analyzing the historical information and understanding the internal
mechanism of the time series data.

Research studies on hybrid techniques using data-driven models, such as artificial neural networks
(ANNs), genetic programming (GP), and adaptive neuro-fuzzy inference systems (ANFISs), integrated
with different optimization methods (e.g., particle swarm optimization (PSO), genetic algorithm
(GA), and differential evolution (DE) algorithm) [9] have been published over the past decades and
demonstrated positive outcomes for solving hydrology and water resource problems, such as rainfall
runoff, river stage, evaporation, sediment, and groundwater, etc. [10–15]. Abrahart et al. [16] used
a pruning algorithm (PA) and a genetic algorithm (GA) to optimize data-driven models for runoff
forecasting. They compared model performances using different forecasting methods. Chau [17]
applied a particle swarm optimization (PSO) algorithm to train ANNs for river stage prediction.
He found that PSO could optimize the applied ANNs. In other research, Chau [18] developed a
split-step particle swarm optimization (SSPSO) algorithm to train a multilayer perceptron (MLP) for
forecasting river stage using different lag times. The author concluded that MLP-SSPSO forecasted the
river stage more accurately compared to MLP-PSO. Chen and Chang [19] applied GA and a scaled
conjugate gradient algorithm (SCGA) to train feedforward neural networks (FFNN) for forecasting
reservoir inflow. They demonstrated that the accuracy of FFNN-GA and FFNN-SCGA was superior to
stochastic models. A combined artificial bee colony (ABC) algorithm with ANNs was conducted by [20]
to demonstrate the discharge–suspended sediment relationship. They concluded that ANNs-ABC
can derive the relationship between discharge and suspended sediment more effectively compared
with ANFIS, ANNs, and the rating-curve model. Asadnia et al. [21] developed the improved particle
swarm optimization (IPSO) algorithm to train ANNs for predicting river stage. They concluded that
the results of ANNs-IPSO were better compared to those of ANNs-PSO, ANNs-conjugate gradient
(ANNs-CG), ANNs-gradient descent (ANNs-GD), and ANNs-Levenberg Marquardt (ANNs-LM),
respectively. Sudheer et al. [22] applied PSO to train support vector machines (SVMs) for forecasting
river discharge. They compared SVMs-PSO with autoregressive moving average model (ARMA) and
ANNs and concluded that SVMs-PSO was better than ARMA and ANNs. Taormina and Chau [23]
introduced the multi-objective fully informed PSO (MOFIPSO) to train ANNs for predicting river
discharge. They showed that the results of ANNs-MOFIPSO were better than ANNs-SPSO. Kalteh [24]
combined wavelet GA (WGA) with the support vector regression (SVR) for forecasting long-term
discharge. The author reported that SVR-WGA provided better forecasting compared to SVR-GA.
Annaty et al. [25] used PSO to train ANFIS for predicting scour depths. They found that ANFIS-PSO
was better than ANNs-PSO, FDOT, and HEC-18, respectively.
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Although there have been previous research studies on the joint use of data-driven models and
optimization methods, specific investigations on rainfall forecasting using hybrid methods have been
limited so far. The hybridization of evolutionary algorithms with a data-driven model showed a
remarkable enhancement in the modeling of hydrological processes [26–29]. Hence, to the best of the
authors’ knowledge, and for the first time, a hybrid ANFIS model integrated with three evolutionary
algorithms is developed for forecasting rainfall process in a tropical environment.

This paper proposes the hybrid models by combining the ANFIS model and different optimization
methods (e.g. particle swarm optimization algorithm (PSO), genetic algorithm (GA), and differential
evolutionary (DE) algorithm) for forecasting monthly rainfall. The primary objective focuses on
the development of hybrid models, namely, ANFIS-PSO, ANFIS-GA, and ANFIS-DE, which have
not been investigated previously for rainfall forecasting. The feasibility of the proposed models is
validated against the conventional ANFIS model. The modeling performances are evaluated using
model efficiency indices and graphical comparisons. The applied hybrid methods can be used for
flood management and analysis in the Pahang River, Malaysia. Located in a tropical environment
of Malaysia, the river basin has experienced a few serious floods in the past two decades which
emphasizes the need for rainfall trend forecasting.

2. Methodology

2.1. Adaptive Neuro-Fuzzy Inference System

The fuzzy set approach was first introduced by Zaheh [30], based on a combination of neural
network (NN) and the concept of fuzzy logic (FL), so that it could possibly catch the advantages of
both in a solitary structure. The integration of FL with fuzzy inference systems (FISs) can be used for
model development with fewer or ambiguous data. Among all the fuzzy systems, Sugeno’s system is
the most prevailing approach [31]. In contrast to NN, FL has a higher ability in the learning procedure
to adjust its condition. Consequently, the NN can be utilized to naturally change the membership
function (MFs) and decrease the error rate in the designation of rules in FL.

The development of the ANFIS model structure is based on two components, (i) the learning
process (nodes) in which the use of the membership function (MF) in the conversion of the input attributes
to the fuzzy values that vary between 0 and 1 is usually conducted [32] and (ii) the ANFIS model uses
fuzzy rules (i.e., IF-THEN conditions) to certify the relationship between the inputs and the target. The
MF is the main part that influences the predictability performance of the ANFIS model and, therefore,
the appropriate selection of the MF is one of the predefined stages for the modeling [33]. The structure of
an ANFIS network includes five different layers: fuzzification, product, normalization, de-fuzzification,
and output. These are shown for a network with two input variables (x1 and x2) in Figure 1a.Water 2019, 11, x FOR PEER REVIEW 4 of 27 

 

 
 

(a) 

Figure 1. Cont.



Water 2019, 11, 502 4 of 23
Water 2019, 11, x FOR PEER REVIEW 5 of 27 

 

 
Figure 1. (a) Adaptive neuro-fuzzy inference system model architecture for 2 inputs and 1 output, (b) 
General flow chart of a hybrid ANFIS model for different scenarios. 

(b) 

Figure 1. (a) Adaptive neuro-fuzzy inference system model architecture for 2 inputs and 1 output,
(b) General flow chart of a hybrid ANFIS model for different scenarios.



Water 2019, 11, 502 5 of 23

In the first layer, each node adjusts to a function parameter. The output of the “fuzzification” layer
is a value of membership degree that is estimated using the inputs of MFs.

O1,i = µAi (x) i = 1, 2 (1)

O1,i = µBi−2(x) i = 3, 4 (2)

where Ai and Bi are fuzzy sets, whereas µAi and µBi−2 are the MF degree for Ai and Bi.
The ordinarily used MFs are triangular-shaped, trapezoidal-shaped, generalized bell-shaped and

Gaussian. In the current study, the Gaussian MF is used due to the lower parameters of this MF in
relation to the generalized bell-shape MF. The Gaussian-shape MF is defined as follows:

µAi (x) = exp

[
−
(

x− ci
2σi

)2
]

(3)

where {ci and σi} is the set of MF parameters that can alter the MF shape. The parameters in this layer
are referred to as antecedent parameters.

The rules in the ANFIS network are designated due to the premise and consequent parts and
are put away in fuzzy rule-based systems. The nonlinear premise and linear consequent parameters
are related to layers 1 and 2, respectively. To attain an optimum model, the values of these linear
and nonlinear parameters must be adjusted using an optimization algorithm. Due to the classical
algorithm’s drawbacks, such as being stuck in local minima and slow convergences, three different
evolutionary algorithms, namely, PSO, GA, and DE, are employed in this study to optimize the ANFIS
model’s design.

2.2. Particle Swarm Optimization (PSO)

Kennedy and Eberhart [34] introduced the particle swarm optimization, which was modeled after
the social characteristics of birds and fish. The main advantages of PSO are the simple procedure,
the small amount of calculation, and instant convergences, which have made it suitable for solving
different complex and nonlinear engineering problems. Briefly, PSO considers that every particle
changes its position in the search space concerning the best position that it has ever been in and the
best position near its neighbor. For particles to achieve an optimal or limited circumstance calculation,
they usually change their positions within the multi-dimensional search space. PSO determines the
initial particle swarm, P(k), in such a way that each particle’s xis(k) position (Piε P(k)) in the hyperspace
equals k = 0, which is the first step. This is followed by the second step where each particle’s F function
performance is evaluated using the position of the particle (xi(k)):

i f F(xi(k)) < pbesti then

{
pbesti = F(xi(k))
xpbesti

= xi(k)
(4)

where pbest is the best position of the ith particle.
The optimal performance of individual particles is evaluated in the third step in the

following ways:

i f F(xi(k)) < gbesti then

{
gbesti = F(xi(k))
xgbesti

= xi(k)
(5)

where gbest is the global best value attained by the different particles of swarm.
In the fourth step, the velocity vector of each particle is changed using the equation:

vi(k) = wvi(k− 1) + r1C1(xpbesti
− xi(k)) + r2C2(xgbesti

− xi(k)) (6)
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where r1 and r2 represent random parameters which lie within 0 and 1; and the parameters (C1 and
C2 = 2) [27]. In Equation (6), w represents the inertia weight parameter. A balance between the local
and global swarm performance can be achieved by a careful selection of these parameters to reduce
the number of iterations. As per [34], the value of w can be determined as follows:

w = wmax −
wmax − wmin

itermax
.iter (7)

where the initial and final weights are represented as wmin and wmax, respectively, while the maximum
iteration value and iteration number are represented by itrmax and itr, respectively. The particles are
transformed to their new locations in the fifth stage using the following equation:

xi(k) = xi(k− 1) + vi(k) (8)

2.3. Genetic Algorithm (GA) Optimization

The conceptual structure of the genetic algorithm (GA) was first introduced by [28], based on
Darwin’s theory. The GA as a derivative-free stochastic method of optimization is one of the most
well-known and oldest evolutionary algorithms and most widely employed EA approach in solving
many engineering problems. It can be used to solve nonlinear, stochastic, and non-differentiable
problems that may seem impossible by using gradient-based methods [35]. Goldberg and Holland [36]
asserted that the population points for each iteration in the GA are randomly generated, and the
best population point desires the optimum solution similar to the final outcome. The number of the
population size for this algorithm was selected similarly to the process considered in the PSO which is
equal to 100. The basic steps of GA include three important components. The first component is the
creation of an initial population using the randomly selected mth individual, giving rise to the first
population. Entering the mth individual and generating the output is the second component. Each of
the outputs is evaluated based on the objective function known as a fitness function. The expected
demand from each individual to achieve the desired objective is determined by the evaluation. From the
fittest individual in the previous generation, a new generation is created.

In the reproduction process, the selection of chromosomes from the current generation based on
the fitness of each chromosome to produce new generation offspring is done using the “selection”
operator. The chromosomes with higher probabilities are chosen to modify and be employed in the
next generation. Finally, the crossover operator which is a pivotal operator in the genetic algorithm
is defined to generate child chromosomes from two different parent chromosomes. Indeed, using
this operator, two new chromosomes are generated which have a higher fitness than the two entering
chromosomes (parents). The crossover explores and exploits the new and old solutions, respectively,
using a trial and error procedure. The crossover rate in this study is considered 0.75.

2.4. Differential Evolution (DE) Optimization

Storn and Price [37] presented the differential evolution (DE), a random population-based
algorithm [31]. This method is differentiated from the other methods because it uses differential
mutation. When a population problem with n-dimensional space must be solved, the fixed vector
numbers are randomly created to understand the different search spaces as well as to reach the
minimum objective function through evolution over time. In DE, a mutation function (F: Iµ → Iµ)
involves the production of a mutated vector (µ) using the equation:

→
v i =

→
a r1 + F(

→
a r2 −

→
a r3) i = 1, 2, . . . , µ (9)

where r1, r2, r3 ∈ [1, 2, ..., µ] are randomly designated. F ∈ [0,2] is a fixed parameter which affects
the vector’s differential variation. The capacity of the global search algorithm is usually increased by
larger F or population size (µ) quantities. In DE, the crossover operator (CR: Iµ → Iµ) modifies the
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vectors (
→
v i = [

→
v 1i,

→
v 2i, . . . ,

→
v di]) with a target function (

→
a i = [

→
a 1i,

→
a 2i, . . . ,

→
a di]) to generate a trial

combination of vectors using the following formula:

a′ ji =

{
vji i f (randb(j) ≤ CR) or j = rnbr(i)
aji i f (randb(j) > CR) and j 6= rnbr(i)

j = 1, 2, . . . , d i = 1, 2, . . . , µ (10)

where randb(j) ∈ [0,1] equals the randomized generator evaluation by the jth, while rnbr (i) (rnbr (i) ∈
1,2, ..., d) is a random selection index. CR ∈ [0,1] represents the crossover parameter which increases
the individual variations in the population. The population size for DE is considered similar to PSO
and GA, equal to 100. The mutation and crossover constants which are obtained using a trial and error
process are equal to 0.25 and 0.85, respectively.

2.5. Hybridization of ANFIS Model

This subsection describes the hybridization of the ANFIS model with three evolutionary
algorithms (i.e., PSO, GA, and DE). The hybrid ANFIS models, encoded in the MATLAB environment,
were used for rainfall time series forecasting. The structure of the proposed hybrid techniques is
presented in Figure 1a. For the modeled rainfall time series, the initial hybrid models (ANFIS-PSO,
ANFIS-GA, and ANFIS-DE) were developed for the study area using a training dataset. Subsequently,
each previously mentioned evolutionary algorithm was adopted to optimize the ANFIS models by
looking for the optimum values of premise and consequent parameters. After finding the optimum
values of premise and consequent parts, the evolutionary-based hybrid methods of ANFIS regression
were inferred and employed in rainfall time series forecasting.

The rainfall time series was split into two subsets: training and testing. All the employed monthly
rainfall datasets were collected during the period 2000–2014. In this study, the first nine years of
datasets were considered as training datasets and the rest of the data (2009–2014) were employed as
testing datasets. Moreover, the number of inputs in the training phase varied from 1 to 6 lag times
(antecedent months), which are presented in 16 different input combination structures as follows:

Model 1: t−1 (11)

Model 2: t−1, t−2 (12)

Model 3: t−1, t−3 (13)

Model 4: t−1, t−6 (14)

Model 5: t−1, t−12 (15)

Model 6: t−1, t−2, t−3 (16)

Model 7: t−1, t−2, t−6 (17)

Model 8: t−1, t−2, t−12 (18)

Model 9: t−1, t−3, t−6 (19)

Model 10: t−1, t−3, t−12 (20)

Model 11: t−1, t−2, t−3, t−6 (21)

Model 12: t−1, t−2, t−3, t−12 (22)

Model 13: t−1, t−2, t−6, t−12 (23)

Model 14: t−1, t−2, t−3, t−6, t−12 (24)

Model 15: t−1, t−2, t−3, t−12, t−24 (25)
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Model 16: t−1, t−2, t−3, t−6, t−12, t−24 (26)

All forecasting models have only one output (i.e., rainfall as the objective variable). The antecedent’s
values are obtained using the auto-correlation function statistical approach.

After determining the training dataset and input combinations, the model configuration was
presented. Using training datasets, an initial ANFIS-EA (PSO, GA, and DE) was generated. As the
premise and consequent parameters related to the initial ANFIS models were not optimized, the value
of these parameters was optimized through an optimizing process using EA (PSO, GA, and DE). In this
study, the fuzzy c-means (FCM) clustering approach was considered to generate the fuzzy inference
system (FIS). Using different clusters, the fuzzy if-then rules were produced, and the optimum values
of premise and consequent parameters were obtained during the optimization process performed
by the PSO, GA, and DE algorithms. Moreover, it should be noted that the Gaussian membership
function (MF), which is smooth and has the lowest parameters in relation to other smooth MFs such as
the bell-shape MF, was used. Readers are recommended to look over the literature on the adapted
hybrid models for more informative details [38].

2.6. Modeling Performance Indicators

Predictive models such as mathematical models (i.e., machine learning models) are usually
evaluated using numerical indicators. The hybrid models developed in this study were inspected
using four statistical metrics, including root mean square error (RMSE), mean absolute error (MAE),
correlation coefficient (CC), and Willmott’s index (WI) [39–41]. The mathematical expression can be
presented as follows:

RMSE =

√
1
N

n

∑
t=1

(
Ro − R f

)2
(27)

MAE =
1
N

n

∑
t=1

∣∣∣Ro − R f

∣∣∣ (28)

CC =
∑N

i=1
(

Ro − Ro
)(

R f − R f

)
√

∑N
i=1
(

Ro − Ro
)2

∑N
i=1

(
R f − R f

)2
(29)

WI = 1−

 ∑N
i=1

(
Ro − R f

)2

∑N
i=1

(∣∣∣R f − Ro

∣∣∣+ ∣∣Ro − Ro
∣∣)2

, 0 ≤WI ≤ 1. (30)

where Ro and R f are the observed and forecasted values of rainfall data, whereas Ro and R f are the
mean value of the observed and forecasted values of rainfall data.

2.7. Uncertainty Analysis

The Monte Carlo simulation (MCS) was used in this study to estimate the uncertainty bounds of
a predictor model. Indeed, MCS was simulated using ANFIS-based methods.

To achieve a range of numbers, where the results of a model can be located on that range,
a result-dependent factor called the uncertainty analysis is used. Indeed, the uncertainty analysis
represents the probability bounds in the model estimations that envelopes the values of target
parameters in its range. Two different indices which are considered in uncertainty analyses are
95 percent predicted uncertainties (95PPU) and the d-factor. The 95PPU indicates that estimated
percentage of predicted data that is limited by 95 percent predicted uncertainties and the d-factor
assesses the average of the confidence band width.
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3. Case Study and Hydrological Data Description

Malaysia is considered a tropical region that experiences several events of monsoon rainfall.
Rainfall process is the main trigger for flood events that consequently affect society infrastructure and
human lives directly. Hence, establishing a hybrid intelligence predictive model can provide the basic
knowledge for protecting the studied watershed. In this research, Pahang watershed metrological
information was used to build the predictive model. The Pahang watershed is located in Pahang,
the largest state of Peninsular Malaysia. It is limited by Kelantan in the north, Johor in the south,
Terengganu and the South China Sea in the east and Selangor and Negeri Sembilan in the west.
The total area of the watershed is approximately 36,137 km2 (Figure 2). The climate of the area is
dominated by the northeast monsoon rainfall influence. The average annual rainfall ranges between
1609 and 2132 mm in the basin. In general, the extreme rainfall events occur between November and
March. In this study, the monthly rainfall data for the period 2000–2014 were used for the development
of hybrid models. The rainfall time series was obtained from the Department of Irrigation and
Drainage (DID). It is worth mentioning that the modeling carried out in this research was based on
the univariate concept that included only the rainfall information to forecast the rainfall itself. This is
highly significant, especially in a watershed that comprises several metrological information sources.
The highly stochastic behavior of rainfall patterns often produces floods, and thus the main motivation
for this research was to develop an accurate model for rainfall forecasting, which could be used for
anticipating the possible occurrence of floods. For this purpose, ANFIS combinations with a couple of
evolutionary algorithms were developed.Water 2019, 11, x FOR PEER REVIEW 11 of 27 
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4. Application and Analysis

ANFIS learning process implementation was conducted based on the RMSE criterion to determine
the optimal number of membership functions of the ANFIS model. The statistical performance of
hybrid and classical ANFIS models during training and test phases are tabulated in Table 1a–d. It can
be seen from the table that the performance of different models significantly increased when all inputs
were incorporated (i.e., model 16), compared to other input combinations.
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Table 1. Statistical performance of the predictive models in forecasting monthly rainfall during the
training and testing phases.

(a) ANFIS-based model

Models RMSE
(mm)

MAE
(mm) CC WI RMSE

(mm)
MAE
(mm) CC WI

Training phase Testing phase
Model 1 4.23 3.16 0.492 0.564 5.32 3.69 0.439 0.478
Model 2 4.02 2.85 0.575 0.698 4.04 2.73 0.749 0.788
Model 3 2.96 2.22 0.799 0.882 3.00 2.31 0.864 0.913
Model 4 3.41 2.43 0.723 0.810 4.69 2.91 0.627 0.714
Model 5 2.87 1.95 0.820 0.888 4.54 2.82 0.664 0.759
Model 6 3.08 2.30 0.780 0.865 2.63 2.00 0.897 0.938
Model 7 3.40 2.26 0.724 0.806 3.17 2.28 0.848 0.911
Model 8 3.05 2.07 0.793 0.871 3.03 2.13 0.866 0.922
Model 9 3.20 2.13 0.760 0.850 4.16 2.14 0.723 0.801

Model 10 3.06 2.20 0.796 0.880 3.72 2.42 0.807 0.850
Model 11 2.18 1.50 0.896 0.941 2.20 1.49 0.930 0.962
Model 12 2.73 1.83 0.842 0.911 2.46 1.87 0.924 0.947
Model 13 2.78 1.94 0.832 0.903 2.51 1.66 0.915 0.946
Model 14 1.92 1.20 0.923 0.960 1.73 1.12 0.960 0.978
Model 15 2.10 1.36 0.897 0.943 1.13 0.75 0.984 0.991
Model 16 1.40 0.91 0.956 0.976 0.99 0.65 0.987 0.994

(b) ANFIS-PSO

Models RMSE
(mm)

MAE
(mm) CC WI RMSE

(mm)
MAE
(mm) CC WI

Training phase Testing phase
Model 1 4.24 3.17 0.488 0.561 5.31 3.67 0.444 0.483
Model 2 3.63 2.66 0.671 0.782 4.31 2.92 0.692 0.756
Model 3 2.66 1.93 0.841 0.908 2.63 2.02 0.895 0.939
Model 4 3.25 2.31 0.751 0.840 4.46 2.69 0.671 0.755
Model 5 2.76 1.95 0.835 0.898 4.40 2.74 0.689 0.786
Model 6 2.84 1.96 0.816 0.888 2.21 1.53 0.927 0.960
Model 7 3.32 2.33 0.740 0.835 2.67 1.92 0.898 0.937
Model 8 2.68 1.75 0.846 0.907 2.75 1.81 0.892 0.939
Model 9 3.11 2.13 0.775 0.861 4.02 2.05 0.745 0.819

Model 10 2.53 1.67 0.864 0.924 3.07 2.18 0.871 0.912
Model 11 2.04 1.33 0.910 0.950 1.81 1.20 0.953 0.975
Model 12 1.77 1.20 0.936 0.965 1.58 1.11 0.967 0.981
Model 13 2.30 1.53 0.891 0.940 2.24 1.36 0.931 0.961
Model 14 1.16 0.75 0.973 0.985 1.14 0.62 0.982 0.991
Model 15 1.44 0.83 0.953 0.975 0.73 0.44 0.993 0.996
Model 16 0.86 0.51 0.984 0.991 0.47 0.28 0.997 0.998

(c) ANFIS-GA

Models RMSE
(mm)

MAE
(mm) CC WI RMSE

(mm)
MAE
(mm) CC WI

Training phase Testing phase
Model 1 4.24 3.17 0.488 0.561 5.31 3.67 0.442 0.481
Model 2 3.59 2.62 0.679 0.791 4.28 2.85 0.697 0.758
Model 3 2.91 2.10 0.805 0.881 2.84 2.28 0.876 0.928
Model 4 3.43 2.37 0.720 0.822 4.12 2.47 0.738 0.794
Model 5 2.60 1.78 0.856 0.911 3.55 2.28 0.812 0.890
Model 6 2.77 2.02 0.826 0.895 2.40 1.72 0.915 0.951
Model 7 3.42 2.15 0.718 0.812 2.98 2.02 0.868 0.922
Model 8 2.90 2.01 0.816 0.884 3.36 2.28 0.833 0.900
Model 9 3.11 2.07 0.774 0.860 4.12 2.12 0.728 0.806

Model 10 2.50 1.63 0.872 0.930 3.26 2.27 0.851 0.898
Model 11 2.37 1.60 0.876 0.930 2.40 1.53 0.917 0.954
Model 12 2.33 1.59 0.885 0.935 1.83 1.35 0.954 0.975
Model 13 2.40 1.57 0.880 0.932 2.06 1.30 0.942 0.967
Model 14 1.50 0.93 0.956 0.976 1.38 0.78 0.974 0.986
Model 15 1.55 0.92 0.945 0.970 0.92 0.56 0.989 0.994
Model 16 1.21 0.69 0.967 0.982 0.83 0.51 0.991 0.995

(d) ANFIS-DE

Models RMSE
(mm)

MAE
(mm) CC WI RMSE

(mm)
MAE
(mm) CC WI

Training phase Testing phase
Model 1 4.17 3.20 0.513 0.600 5.29 3.60 0.449 0.486
Model 2 3.66 2.61 0.666 0.781 4.07 2.61 0.736 0.791
Model 3 2.71 2.00 0.834 0.900 2.75 2.17 0.885 0.935
Model 4 3.42 2.41 0.720 0.819 4.05 2.61 0.741 0.813
Model 5 2.62 1.86 0.853 0.913 2.73 2.03 0.894 0.940
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Table 1. Cont.

(d) ANFIS-DE

Models RMSE
(mm)

MAE
(mm) CC WI RMSE

(mm)
MAE
(mm) CC WI

Training phase Testing phase
Model 6 2.74 1.89 0.830 0.895 2.35 1.66 0.917 0.955
Model 7 3.32 2.09 0.740 0.824 3.04 2.07 0.862 0.919
Model 8 2.85 1.91 0.824 0.889 2.88 1.96 0.881 0.934
Model 9 3.17 2.18 0.763 0.850 4.20 2.16 0.715 0.797

Model 10 2.51 1.70 0.867 0.930 3.12 2.23 0.865 0.908
Model 11 2.22 1.42 0.893 0.940 2.12 1.40 0.936 0.965
Model 12 2.43 1.68 0.875 0.930 2.09 1.65 0.941 0.966
Model 13 2.50 1.68 0.866 0.923 2.32 1.51 0.925 0.956
Model 14 1.36 0.92 0.963 0.980 1.37 0.76 0.974 0.987
Model 15 1.58 0.99 0.943 0.970 0.70 0.46 0.994 0.997
Model 16 1.14 0.67 0.971 0.985 0.73 0.38 0.993 0.996

* Bold numbers present the best input combination accuracy results.

The RMSE values were found to vary in the range of 0.99–5.32, 0.47–5.31, 0.83–5.31, and
0.70–5.29 mm for ANFIS-based, ANFIS-PSO, ANFIS-GA, and ANFIS-DE models, respectively.
In quantitative analysis, the hybrid ANFIS-PSO model enhanced the performance of the absolute error
measures (RMSE and MAE) over the ANFIS-based model by 38–43% during training and 52–56%
during testing phases. The ANFIS-GA model showed an enhancement over the ANFIS-based model by
14–24% during the training phase and 16–21% during the testing phase, whereas ANFIS-DE displayed
an enhancement over the ANFIS-based model by 18–26% during the training phase and 26–41% over
the testing phase. It can be observed that the major increase in the quantitative measures was presented
for the ANFIS-PSO. It important to indicate that the root mean square error is the essential numerical
indictor to determine the performance of machine learning modeling for time series forecasting [42–45].
The minimum values of RMSE obtained for the ANFIS-PSO, ANFIS-GA, and ANFIS-DE were 0.47, 0.83,
and 0.70 mm, respectively. The results attained for all hybrid ANFIS models showed an acceptable
error level that could be managed by water resource and climatology decision makers using the
threshold-based design [46].

The proficiency of the different models was also examined using some graphical presentations,
such as observed rainfall values versus forecasted values in scatterplot graphs and Taylor diagrams.
The time variation and scatterplots of observed versus simulated hybrid models are provided in
Figure 3. It is obvious form the figures that the values given by the ANFIS-PSO, ANFIS-GA, and
ANFIS-DE are closer to the observed values than those of the ANFIS-based model for most of the input
combinations. Based on the presented scatterplots of observed and forecasted rainfall and assuming
the trend line as y = ax + b (a and b are the coefficients of fit line), it can be seen that for the hybrid
ANFIS-PSO, ANFIS-GA, and ANFIS-DE, the a and b coefficients are closer to 1 and 0 with a higher
determination of coefficient values.
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Figure 3. Time series and scatterplot of observed and forecasted rainfall by three hybrid models, 
namely, ANFIS-particle swarm optimization (PSO), ANFIS-genetic algorithm (GA), and ANFIS-
differential evolution (DE), and the classical ANFIS model for different input combinations over the 
testing phase of the models. 

Figure 4 shows a graphical presentation using Taylor diagrams [47]. A Taylor diagram is a 
method for graphically condensing how intently a model (or several models) matches observations. 
The similarity between the predictive models and the observation records is quantified in terms of 
their correlation coefficient and standard deviations. The figures outline the proposed hybrid models 
and the comparable ANFIS-based model in terms of the mentioned indictors to denote the degree of 
the prediction skills. The distance from the reference point (observed) is a measure of the centered 
RMSE [47]. Accordingly, a perfect model (being in full concurrence with the observations) is set apart 
by the reference point with the correlation coefficient equivalent to 1, and a similar abundancy of 
varieties contrasted with the observations [48]. The visualization of results revealed that the ANFIS-

Figure 3. Time series and scatterplot of observed and forecasted rainfall by three hybrid models, namely,
ANFIS-particle swarm optimization (PSO), ANFIS-genetic algorithm (GA), and ANFIS-differential
evolution (DE), and the classical ANFIS model for different input combinations over the testing phase
of the models.

Figure 4 shows a graphical presentation using Taylor diagrams [47]. A Taylor diagram is a
method for graphically condensing how intently a model (or several models) matches observations.
The similarity between the predictive models and the observation records is quantified in terms of
their correlation coefficient and standard deviations. The figures outline the proposed hybrid models
and the comparable ANFIS-based model in terms of the mentioned indictors to denote the degree of
the prediction skills. The distance from the reference point (observed) is a measure of the centered
RMSE [47]. Accordingly, a perfect model (being in full concurrence with the observations) is set apart by
the reference point with the correlation coefficient equivalent to 1, and a similar abundancy of varieties
contrasted with the observations [48]. The visualization of results revealed that the ANFIS-PSO model
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results were closer to the observation points than the ANFIS-GA, ANFIS-DE, and ANFIS-based model
results, reaffirming the better accuracy of the hybrid ANFIS-PSO.
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Figure 4. Taylor diagrams for the graphical presentation of the performance of three hybrid models,
namely, ANFIS-PSO, ANFIS-GA, and ANFIS-DE, and the classical ANFIS model for different input
combinations during the testing phase of the models.

As previously discussed, one of the main aims of this study was to examine the uncertainty
analysis of the different ANFIS-based methods using d-factor and 95PPU criteria. The reduction in
average values of lower and upper bounds (lower than the standard deviation (SD) of observed data)
and the increase in observed data in 95PPU in uncertainty result in a more desirable uncertainty for
each model. The uncertainty indices of d-factor and 95PPU for testing samples are presented in Table 2
for 64 models (four ANFIS-based models and 16 different input combinations, Equations (11)–(26)).
In addition, the 95PPU values bracketed for Model 16 of each proposed model are given in Figure 5.
As seen in Table 2 and Figure 5, minimum values bracketed by 95PPU are approximately 11%–12% and
maximum values bracketed by this index are approximately 91.67%, 91.03%, 89.74%, and 88.46% for
ANFIS-PSO, ANFIS-GA, ANFIS-DE, and ANFIS, respectively. Moreover, the maximum and minimum
values of the d-factor for ANFIS-PSO, ANFIS-GA, ANFIS-DE, and ANFIS are 0.14–1.43, 0.14–1.43,
0.14–1.44, and 0.15–1.44, respectively.
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Table 2. Uncertainty indices of different ANFIS-based models during model testing.

Indicators Models ANFIS-PSO ANFIS-GA ANFIS-DE ANFIS

d-factor

Model 1 0.14 0.14 0.14 0.15
Model 2 0.68 0.69 0.69 0.72
Model 3 0.68 0.67 0.67 0.65
Model 4 0.69 0.69 0.68 0.67
Model 5 0.67 0.65 0.65 0.61
Model 6 1.17 1.18 1.18 1.19
Model 7 0.95 0.96 0.96 0.98
Model 8 1.02 1.02 1.02 1.03
Model 9 0.99 0.99 0.99 0.98
Model 10 0.88 0.88 0.88 0.88
Model 11 1.28 1.28 1.29 1.30
Model 12 1.30 1.31 1.31 1.32
Model 13 1.29 1.29 1.30 1.31
Model 14 1.43 1.43 1.44 1.44
Model 15 1.38 1.39 1.40 1.42
Model 16 1.41 1.41 1.42 1.43

95PPU

Model 1 12.29 12.29 12.29 12.29
Model 2 60.67 60.67 60.11 60.67
Model 3 57.63 56.50 55.37 50.28
Model 4 58.62 58.05 57.47 55.75
Model 5 65.48 64.88 64.29 61.31
Model 6 76.84 76.84 76.84 75.71
Model 7 66.67 67.24 64.94 65.52
Model 8 76.19 75.60 74.40 72.62
Model 9 70.11 69.54 68.39 65.52

Model 10 73.81 73.21 72.02 70.83
Model 11 79.31 78.74 78.16 77.59
Model 12 85.71 85.71 85.12 85.12
Model 13 82.74 82.14 81.55 81.55
Model 14 85.12 84.52 84.52 83.33
Model 15 89.10 89.10 88.46 85.26
Model 16 91.67 91.03 89.74 88.46

* Bold numbers present the best input combination accuracy results.
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ANFIS-PSO, ANFIS-GA, and ANFIS-DE models.

In accordance with the established research [49], the computed value for 95PPU should be
considered at least 80% of predicted values, whereas, for some areas, the use of 50% of data in the
95PPU bound is acceptable. Due to the values attained for all ANFIS-based models for the d-factor
and 95PPU, it can be derived that all observed and predicted values are within the 95PPU band
for all models except model 1 which used lag 1 as the input variable in rainfall forecasting so that
50% of the observed data fell within this bound. By considering the minimum value of 95PPU as
80% of predicted values, models 12 to 16 for all ANFIS-based models are within this 95PPU level.
Therefore, for all models except model 1 and especially for model 12s to 16, the “passing” degree of
uncertainty is achieved in rainfall forecasting. Simulation results for hybrid ANFIS models are better
than individual ones because the percentages of values bracketed by 95PPU for hybrid evolutionary
ANFIS are higher than those of the ANFIS. In addition, the best and worst uncertainty values are
found for ANFIS-PSO and the ANFIS which have the lowest and highest (respectively) values for
different input combinations.

Generally, there are three kinds of uncertainty in the simulation of a real-world problem—
uncertainty appearing from data, from local knowledge, and from a simulator model—so that the
level of each uncertainty differs considerably with the type of problem. In this study, the uncertainty
arising from data, from local knowledge and from the ANFIS-based models is coming from machine
and human errors and unknown problems.

It is worth highlighting that the performance of models used for forecasting rainfall time series
should be evaluated according to their ability to forecast rainfall on a multiple temporal scale, such
as monthly, seasonally, annually, or inter-annually [50]. However, considering that the stochastic
forecasting models developed in this study were used to forecast monthly rainfall one month ahead,
only the capability of the models in forecasting monthly rainfall is assessed in this study. Hence,
an extension of the current study could be devoted to the investigation of multiple temporal scales.

On the other hand, a general circulation model (GCM) tool could be used to simulate global change
with respect to greenhouse emissions that cause rainfall changes on a continental scale based on global
warming. Simulating climate on a smaller scale (i.e., a river basin area) is complex due to limitations in
the horizontal resolution and parameterization of GCMs [51]. Some techniques were developed for
downscaling the GCM scenarios, such as nesting regional climate models (RCMs) within a GCM and
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statistical methods. RCMs can explicitly handle the physical processes that control the regional climate.
Such physical processes have been applied indirectly using the linkage between large scale parameters
and regional scale climate in statistical models. Statistical techniques are computationally inexpensive
and can be easily used for any GCM output and adapted to a regional area compared to dynamic
models [52]. Dynamic models based on nesting a fine-scale climate model within a coarse-scale model
can produce spatially complete fields of climatological variables (i.e., rainfall) and maintain the spatial
correlation and physical relationship between variables. However, due to the intensive computation of
dynamic methods, their applications are limited and long-period simulations using various global
climate models and multiple greenhouse gas emission scenarios are infeasible [53].

5. Conclusions

The current research investigated particle swarm optimization (PSO), genetic algorithm (GA), and
differential evolution (DE)-based ANFIS models for forecasting monthly rainfall time series. Different
efficient bio-inspired paradigms, namely, PSO, GA, and DE, were compared to identify which method
was more appropriate to train the ANFIS model. A good generalization from the ANFIS basically
depends on the ANFIS training procedure. The use of an evolutionary-based ANFIS to forecast
monthly rainfall was tested for a tropical environment. Rainfall forecasting using an ANFIS trained
by PSO, GA, and DE was compared with the classical ANFIS model. In this study, the developed
hybrid models were used for forecasting monthly rainfall values using antecedent rainfall values.
The obtained results indicated that ANFIS-PSO, ANFIS-GA, and ANFIS-DE were appropriate models
for forecasting monthly rainfall. However, it was found that ANFIS-PSO was superior to ANFIS-GA,
ANFIS-DE, and the pure ANFIS models. Moreover, the dependability of the ANFIS-based model
forecasting was computed using uncertainty analysis. Due to the calculated values of two indices,
95PPU and d-factor, it was concluded that the hybrid evolutionary ANFIS model had an allowable
degree of uncertainty in rainfall simulations. Furthermore, after comparing all ANFIS-based models,
the hybrid ANFIS (especially ANFIS-PSO) indicated a lower degree of uncertainty in comparison with
the classical ANFIS.
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