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Abstract: Hydro-infrastructural systems (e.g., flood control dams, stormwater detention basins, and
seawalls) are designed to protect the public against the adverse impacts of various hydrologic
extremes (e.g., floods, droughts, and storm surges). In their design and safety evaluation,
the characteristics of concerned hydrologic extremes affecting the hydrosystem performance often
are described by several interrelated random variables—not just one—that need to be considered
simultaneously. These multiple random variables, in practical problems, have a mixture of
non-normal distributions of which the joint distribution function is difficult to establish. To tackle
problems involving multivariate non-normal variables, one frequently adopted approach is to
transform non-normal variables from their original domain to multivariate normal space under
which a large wealth of established theories can be utilized. This study presents a framework for
practical normal transform based on the third-order polynomial in the context of a multivariate
setting. Especially, the study focuses on multivariate third-order polynomial normal transform
(TPNT) with explicit consideration of sampling errors in sample L-moments and correlation
coefficients. For illustration, the modeling framework is applied to establish an at-site rainfall
intensity–duration-frequency (IDF) relationship. Annual maximum rainfall data analyzed contain
seven durations (1–72 h) with 27 years of useable records. Numerical application shows that the
proposed modeling framework can produce reasonable rainfall IDF relationships by simultaneously
treating several correlated rainfall data series and is a viable tool in dealing with multivariate data
with a mixture of non-normal distributions.

Keywords: polynomial normal transform; multivariate modeling; sampling errors; non-normality;
extreme rainfall analysis

1. Introduction

In hydrosystem design, performance evaluation, and simulation, the problems often involve
multiple random variables that are correlated with a mixture of non-normal marginal distributions.
Under this condition, it is generally difficult, if not impossible, to establish an analytical joint probability
distribution for these variables. In comparison with univariate distributions, there are relatively few
analytical multivariate distribution functions under special combinations of parametric marginal
distributions, and most of them are of the same type, which can be found in [1,2]. Examples of using
analytical multivariate distributions in hydrology are bivariate Gamma distribution [3] and bivariate
generalized extreme distribution [4]. Their use is somewhat limited to many practical problems
because of different marginal distributions.
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Due to the difficulty in establishing a truly multivariate joint distribution model for problems
involving mixtures of several correlated, non-normal variables, approximated approaches, such as
copula or normal transform, are often used by preserving marginal distributions or moments, including
the correlation features among the variables. However, one should realize that, unlike using a true
multivariate joint distribution function, preservation of the marginal distributions and dependence
structure represents the retention of partial information of the concerned multivariate random variables
in the analysis [5].

The concept of copula is one type of approximated multivariate approaches that has recently
received tremendous attention and applications by researchers in various disciplines, including in
hydrology [6]. Some examples of applying copula in multivariate hydrologic modeling can be found
in analyzing floods [7,8], droughts [9–12], dam safety [13], and extreme rainfalls [14,15]. Most of
the copula-based applications deal with bivariate problems and some trivariate problems under
some restrictive conditions on correlation structures [8]. Applications of copula to higher dimension
multivariate problems are rare primarily because there are only a few copula families that are rather
restrictive in describing the dependence structure. Recently, the introduction of vine copulas has shown
the advantage of overcoming the limitation of currently used copulas in multivariate analysis [16–19].
A copula-based approach is parametric by nature in that analytical marginal distribution models for
the involved variables are specified.

Alternatively, another viable scheme in treating multivariate problems involving correlated
non-normal random variables is to apply a NORTA (normal-to-anything) algorithm [20]. By a NORTA
algorithm, normal transformation of an individual non-normal variable is made by preserving its
marginal probability content in the normal variable domain as Φ(z) = Fx(x) with Φ(·) and Fx(·),
respectively, being the cumulative distribution functions (CDFs) of the standard normal variable Z and
the original variable X. In addition, a relationship must be established to allow the determination of an
equivalent correlation coefficient, ρzj ,zk , of a pair of normal transformed variables, Zj and Zk, from the
correlation coefficient, ρxj ,xk , of the corresponding random variables, Xj and Xk, in the original space.

Once the correlation matrix of standard normal variables Z’s,
{

ρzj ,zk

}
, is obtained from that of the

non-normal variables X’s,
{

ρxj ,xk

}
, appropriate orthogonal transformation can be implemented to

transform the original correlated variables into uncorrelated standard normal space for analysis.
The determination of ρzj , zk from ρxj , xk is made through the Nataf transform [21], which requires

solving an implicit non-linear equation in the form of a double integration involving marginal
distributions of a pair of random variables,Xj and Xk, under consideration:

ρxj ,xk =
∫ ∞

−∞

∫ ∞

−∞

(
xj − µj

σj

) (
xk − µk

σk

)
φjk

(
zj, zk

∣∣∣ρzj ,zk

)
dzj dzk (1)

where xj = F−1
j
[
Φ
(
zj
)]

, and φjk(·) = bivariate standard normal joint probability density function
(PDF). Lebrun and Dutfoy [22] provide an insightful analysis of Nataf transform and uncover that it is
a special modeling of dependence structure using Gaussian copula. To facilitate practical engineering
applications, a set of empirical equations for 10 commonly used distribution functions has been
established to relate ρzj ,zk to ρxj ,xk and their distribution properties [23]. Such empirical relations were
applied to reliability analysis of engineering systems [5,24]. Later, computationally more efficient
methods based on root finding and linear search [25], the false position method [26], and the artificial
neural network method [27] were proposed to solve Equation (1) for ρzj ,zk from the known ρxj ,xk and
marginal PDFs of Xj and Xk.

The above mentioned schemes (i.e., copula, NORTA, and Nataf transform) all require the
stipulation of marginal PDFs. The stipulation of a distribution function implies knowing the complete
statistical information of the random variable, including its moments of all orders. This ideal situation
is attainable only when one has a large amount of data, which generally is not the case in practice.
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Therefore, to relax the information requirement without having to specify the distribution functions,
third-order polynomial normal transform (TPNT) can be used. By TPNT, each individual non-normal
random variable is related to a 3rd-order polynomial function of the corresponding standard normal
variable [28]. The polynomial coefficients are determined by matching the statistical moments or
quantiles of the individual random variables. The multivariate version of TPNT was first proposed
by Vale and Maurelli [29] to simultaneously consider statistical moments and correlation coefficients.
A multivariate TPNT procedure has been applied to different fields including, but not limited to, Monte
Carlo simulation for generating multivariate random variates [24,30–33], wind power modeling [34],
load computation in power network planning [35], and reliability analysis [36,37].

It should be noted that the great majority of multivariate TPNT applications are done under
the assumption of known marginal statistical moments (i.e., product-moments and L-moments)
and correlation coefficients. However, in real-life hydrologic applications, the amount of available
data generally is not sufficiently large to reliably ascertain the true marginal probability distribution
functions, statistical moments, and correlation coefficients. Therefore, the sample statistical moments
and correlation coefficients used could be subject to sampling errors. In this study, a procedure
is proposed to (1) optimally estimate multivariate TPNT coefficients by explicitly incorporating
sampling errors associated with the sample moments and correlation coefficients, and (2) comply
with a one-to-one monotonicity increasing relation between quantiles of the original and normal
transformed variables. The procedure is illustrated by analyzing annual maximum rainfall data series
involving seven different durations to establish at-site rainfall intensity–duration–frequency (IDF) and
depth–duration–frequency (DDF) relationships.

2. Methods

2.1. Third-Order Polynomial Normal Transform (TPNT)

2.1.1. Univariate TPNT

By TPNT, a univariate non-normal random variable, X, is approximated by the standard normal
variable, Z, in the form of a 3rd-order polynomial functional relation as [28]

X = TPNT(Z
∣∣∣ a0, a1, a2, a3) = a0 + a1Z + a2Z2 + a3Z3 (2)

where TPNT(Z | a0, a1, a2, a3) denotes the 3rd-order polynomial transform with a0, a1, a2, and a3

being the transformation coefficients. The TPNT coefficients can be determined by several methods of
varying mathematical complexity. By preserving the first four product-moments, the TPNT coefficients
are related to the first four product moments of the standardized variable, X′ = (X− µx)/σx, as [28]

0 = a0 + a2 (3)

1 = a2
1 + 6a1a3 + 2a2

2 + 15a2
3 (4)

γx = 2a2

(
a2

1 + 24a1a3 + 105a2
3 + 2

)
(5)

κx = 3 + 24
[

a1a3 + a2
2

(
1 + a2

1 + 28a1a3

)
+ a2

3

(
12 + 48a1a3 + 141a2

2 + 225a2
3

)]
(6)

in which γx = skew coefficient; κx = kurtosis of the original random variable X. Alternatively, the TPNT
coefficients in Equation (2) can also be related to the first four L-moments as [38]

a0 + a2 = λ1 (7)

0.5642a1 + 1.4104a3 = λ2 (8)

0.5513a2 λ3 (9)
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0.0692a1 + 0.8078a3 = λ4 (10)

in which λm = the mth order L-moment [39] of the original non-normal random variable, X.
Other than the above two moment-matching methods, TPNT coefficients can also be determined by the
quantile-based least square method and the Fisher–Cornish asymptotic expansion (FC) method [40].
Chen and Tung [41] investigated the performance of different methods in determining the TPNT
coefficients with regard to their accuracy and robustness in capturing the probabilistic features of
the random variable X under the condition that the population distribution is known. It was found
that, among the various methods for estimating TPNT coefficients, the L-moment based method is
computational simplistic and can yield a satisfactory performance under a wide range of distribution
conditions. The product-moment method can also yield a satisfactory normal transformation provided
that accurate estimations of skew coefficient and kurtosis in Equations (3)–(6) can be made. However,
when the statistical moments are to be estimated from finite data, the sample L-moments have been
proven to be more stable and robust than those of product-moments [42], especially when the sample
size is not large.

By referring to Equations (3)–(6), one also realizes that determining TPNT coefficients based on
the product-moments requires solving a system of non-linear equations. It is expected that solving
Equations (3)–(6) would be more difficult than solving L-moments based on Equations (7)–(10), which is
linear. Sometimes, the solution to the system of non-linear equation may not be attainable. According
to Equations (7)–(10), TPNT coefficients can be easily obtained in terms of L-moments as

a0 = λ1 − 1.8138λ3 (11)

a1 = 2.2552λ2 − 3.9376λ4 (12)

a2 = 1.8138λ3 (13)

a3 = −0.1931λ2 + 1.5751λ4 (14)

In the transformation process, it is necessary to preserve probability content in both original space
and standard normal space, i.e., Fx

(
xp
)
= Φ

(
zp
)
= p. This implies that quantiles of the two variables

should satisfy the following relationship:

xp = a0 + a1zp + a2z2
p + a3z3

p (15)

where xp and zp = pth-order quantiles of random variable X and standard normal random variable,
Z, respectively, that is, xp = F−1(p) and zp = Φ−1(p). Furthermore, inherently embedded in
Equation (15) is a requirement of one-to-one monotonically increasing relations between xp and zp.
This, then, requires that TPNT coefficients must comply with the following conditions:

a3 > 0 and a2
2 − 3a1a3 < 0. (16)

It should be noted that the TPNT coefficients obtained from solving Equations (3)–(6),
Equations (7)–(10), or other methods mentioned above do not guarantee the compliance of the
monotonicity condition stipulated in Equation (16). This is especially a major concern when sample
statistics are used in determining TPNT coefficients.

2.1.2. Multivariate TPNT

The TPNT coefficients can be determined by preserving the statistical moments of individual
random variables. Specifically, L-moments are used herein to determine the multivariate TPNT
coefficients due to simple, linear functional relationships between the TPNT coefficients and the
L-moments as shown in Equations (11)–(14). Furthermore, sample L-moments have several desirable
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sampling properties over the product-moments as proven by Hosking [42]. In the context of fitting the
first four L-moments of a total of N correlated variables, Equations (7)–(10) can be re-written as

a0j + a2j = λ1j (17)

0.5642a1j + 1.4104a3j = λ2j (18)

0.5513a2j λ3j (19)

0.0692a1j + 0.8078a3j = λ4j (20)

in which λmj = the mth order L-moment of the jth random variable Xj for j = 1, 2, . . . , N.
In addition to preserving marginal statistical moments of involved variables, multivariate TPNT

must also simultaneously preserve the statistical dependence between random variables in the
transformation. The correlation coefficient of any two correlated random variables, Xj and Xk,
is imbedded in their 2nd-order cross-product moment of which Vale and Maurelli [29] had shown the
explicit expressions in terms of TPNT coefficients as

CPj,k

(
aj, ak; ρzj , zk

)
= E

[
XjXk

]
= µjµk − ρxj , xk σjσk

=
(

6a3ja3k

)
ρ3

zj , zk
+
(

2a2ja2k

)
ρ2

zj , zk
+
[(

a1j + 3a3j

)
(a1k + 3a3k)

]
ρzj , zk +

[(
a0j + a2j

)
(a0k + a2k)

] (21)

in which ρxj , xk , ρzj , zk = correlation coefficient of random variables
(
Xj, Xk

)
and its equivalent

(
Zj, Zk

)
in normal space; µj and σj = mean and standard deviation of random variable Xj, respectively.
The correlation coefficient in the original scale, ρxj , xk , is related to its counterpart in the normal
space, ρzj , zk , in a 3rd-order polynomial relationship through TPNT coefficients.

Upon the determination of TPNT coefficients for the two concerned random variables,
the correlation coefficient in the normal space, ρzj , zk , corresponding to that in the original space,
ρxj , xk , can be obtained by finding the real root of Equation (21). The mathematical relations between
the two correlation coefficients are [20]

ρxj , xk × ρzj , zk > 0;
∣∣∣ρxj , xk

∣∣∣ ≤ ∣∣∣ρzj , zk

∣∣∣ (22)

Equation (21) is used repeatedly to solve for ρzj , zk for all pairs of correlated random variables to
establish the correlation matrix in multivariate normal space.

2.2. Optimization Framework for Determining Multivariate TPNT Coefficients

2.2.1. Objective Function

To determine the multivariate TPNT coefficients that best preserve the known values of
L-moments, the least-square criterion is used in the study by which the objective function can be
expressed as

Minimize
4

∑
m=1

N

∑
j=1

δ2
mj (23)

where δmj = a decision variable defining the deviation between the mth-order TPNT-based L-moments
computed by the left-hand side of Equations (17)–(20) and the known values, λmj, of the jth random
variable, Xj. Of course, other forms of objective function, such as minimizing the sum of absolute
deviations, can be used.
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2.2.2. Constraints

Several constraints are essential to make sure that multivariate TPNT coefficients obtained
are able to preserve the known statistical features and mathematical relationships of concerned
random variables.

(a) Preservation of L-moments for the individual variable Xj:

The deviation δmj in the objective function defining the degree of preserving the known values of
the first-four L-moments of individual variable Xj can be written, according to Equations (17)–(20), as

a0j + a2j + δ1j = λ1j (24)

0.5642a1j + 1.4104a3j + δ2j = λ2j (25)

0.5513a2j + δ3j = λ3j (26)

0.0692a1j + 0.8078a3j + δ4j = λ4j. (27)

Note that the value of δmj is unrestricted-in-sign, meaning that its value can be negative, zero,
and positive, depending on the relative magnitudes of TPNT-based L-moments and those of the
known values.

In reality, statistical properties of a random variable are estimated from a finite number of sample
data. Consequently, sample L-moments of random variables, Xj, are subject to uncertainty. In practice,
two approaches are used to estimate sample L-moments: plotting position-based estimators and
unbiased estimators. This study adopts the latter by which the first four unbiased estimators of
L-moments, {λ1, λ2, λ3, λ4}, can be computed respectively as [42]

`1 =

(
n
1

)−1

∑n
i=1 xi:n (28)

`2 =
1
2!

(
n
2

)−1

∑n
i=1

{(
i− 1

1

)
−
(

n− i
1

)}
xi:n (29)

`3 =
1
3!

(
n
3

)−1

∑n
i=1

{(
i− 1

2

)
− 2

(
i− 1

1

)(
n− i

1

)
+

(
n− i

2

)}
xi:n (30)

`4 =
1
4!

 n

4

−1

∑n
i=1


 i− 1

3

− 3

 i− 1

2

 n− i

1

+ 3

 i− 1

1

 n− i

2

−
 n− i

3

xi:n (31)

in which `m = sample estimator of the mth-order L-moment, λm; xi:n = the ith ranked sample (ascending
order) in a data of size n.

Suppose that the sampling distributions of sample L-moments are derived or approximated.
Proper bounds can then be incorporated into Equations (24)–(27) for determining the suitable and
probabilistically plausible TPNT coefficients for all N random variables X1, X2, . . . , XN. Assuming that
the lower and upper bounds of the L-moments can be determined from their corresponding sampling
distributions, constraint Equations (24)–(27) then can be modified as

`
(L)
1j ≤ a0j + a2j + δ1j ≤ `

(U)
1j (32)

`
(L)
2j ≤ 0.5642a1j + 1.4104a3j + δ2j ≤ `

(U)
2j (33)

`
(L)
3j ≤ 0.5513a2j + δ3j ≤ `

(U)
3j (34)
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`
(L)
4j ≤ 0.0692a1j + 0.8078a3j + δ4j ≤ `

(U)
4j (35)

for j = 1, 2, . . . , N. In Equations (32)–(35), `(U)
mj and `

(L)
mj are, respectively, the upper and lower bounds

containing the unknown population mth-order L-moment of random variable Xj, λmj. The derivation
of bounds for unknown population L-moments is described in Section 2.3.1.

(b) Preservation of the monotonic probability–quantile relationship for individual variable Xj:

a3j > 0; a2
2j − 3a1ja2j < 0, for j = 1, 2, . . . , N (36)

(c) Preservation of the correlation between all pairs of different variables, Xj and Xk:

Based on Equation (21), any pair of two correlated random variables Xj and Xk must satisfy the
following equation.

CPj,k

(
aj, ak; ρzj , zk

)
−
(

µjµk − ρxj , xk
σjσk

)
= 0, for all variable pairs j 6= k (37)

where CPj,k

(
aj, aj′ ; ρzj , zk

)
= E

(
Xj, Xk

)
= cross-product moment of variables, Xj and Xk, defined in

Equation (21), which are functions of the corresponding TPNT coefficients aj =
(
a0j, a1j, a2j, a3j

)
and

ak = (a0k, a1k, a2k, a3k); ρxj , xk
and ρzj , zk

= correlation coefficients of random variables, Xj and Xk,
and their normal equivalents, Zj and Zk, respectively; µj, σj = mean and standard deviation of random
variable Xj, respectively.

Similarly, constraint Equation (37) on correlation coefficients can be modified as

r(L)
xj , xk ≤

CPj,k

(
aj, ak; rzj , zk

)
−mj

(
aj
)
mk(ak)

sj
(
aj
)
× sk(ak)

≤ r(U)
xj , xk , for all variable pairs j 6= k (38)

in which r(L)
xj , xk , r(U)

xj , xk = lower and upper bounds, respectively, of the unknown population correlation
coefficient, ρxj ,xk

, between the random variables Xj and Xk (see Section 2.3.2); rzj , zk
= equivalent

correlation coefficient of the random variables in the standard normal domain; mj
(
aj
)
, sj
(
aj
)

=
TPNT-based estimation of mean and standard deviation of random variables Xj which can be computed
according to Equations (3) and (4) as

mj
(
aj
)
= a0j + a2j (39)

s2
j
(
aj
)
= a2

1j + 6a1ja3j + 2a2
2j + 15a2

3j. (40)

Equation (38) can alternatively be expressed as

CPj,k

(
aj, ak; rzj , zk

)
−mj

(
aj
)

mk(ak)− r(U)
xj , xk sj

(
aj
)

sk(ak) ≤ 0 (41)

CPj,k

(
aj, ak; rzj , zk

)
−mj

(
aj
)

mk(ak)− r(L)
xj , xk sj

(
aj
)

sk(ak) ≥ 0 (42)

In summary, by considering sampling errors of sample L-moments and correlation coefficients,
the optimization model to determine the most plausible TPNT coefficients for establishing multivariate
relationships can be summarized as follows:

The objective function is expressed in Equation (23) or its variations, which is subject to the
following constraints:

• Equations (32)–(35) for preserving plausible L-moments (8 × N constraints);
• Equation (36) for complying with a probability–quantile monotonic relationship (2×N constraints);
• Equations (41) and (42) for preserving plausible correlation coefficient (N × (N − 1)

constraints); and
• unrestrictive-in-sign of polynomial coefficients (a0j, a1j, a2j, a3j) and deviations δmj.
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2.3. Determination of Bounds for L-Moments and Correlation Coefficients

2.3.1. Bounds for L-Moments

To determine the bounds for L-moments, the sampling distributions corresponding to the
sample L-moments are needed. For independent random samples of size n from a distribution
function Fx(x) having the mth-order population L-moment λm, Hosking [39] showed that the statistic
n1/2(`m − λm), with `m being the sample L-moment of order m, is unbiased, having a sampling
distribution asymptotically converge to the normal distribution with the mean zero and variance Λmm.
Therefore, the variance of the mth-order sample L-moment, `m, has the variance of σ2(`m) = Λmm/n.
For the first four orders of sample L-moment, the value of Λmm can be computed by

Λ11 =
x

x<y
(y− x)2du dv (43)

Λ22 =
x

x<y
[(3− 4v)(1− 4u)](y− x)2du dv (44)

Λ33 =
x

x<y

[(
7− 24v + 18v2

)(
1− 12u + 18u2

)]
(y− x)2du dv (45)

Λ44 =
x

x<y

[(
−13 + 84v− 150v2 + 80v3

)(
−1 + 24u− 90u2 + 80u3

)]
(y− x)2du dv (46)

in which u = Fx(x) and v = Fx(y). To estimate the values of Λmm based on the ranked sample
observations, the double integration stated in Equations (43)–(46) can be carried out numerically as

Λ̂11 =
1

n(n− 1)

n−1

∑
i=1

n

∑
k=i+1

[
x(k) − x(i)

]2
(47)

Λ̂22 =
1

n(n− 1)

n−1

∑
i=1

n

∑
k=i+1

{
(3− 4pk:n)(1− 4pi:n)

[
x(k) − x(i)

]2
}

(48)

Λ̂33 =
1

n(n− 1)

n−1

∑
i=1

n

∑
k=i+1

{(
7− 24pk:n + 18p2

k:n

)(
1− 12pi:n + 18p2

i:n

)[
x(k) − x(i)

]2
}

(49)

Λ̂44 =
1

n(n− 1)

n−1

∑
i=1

n

∑
k=i+1

{(
−13 + 84pk:n − 150p2

k:n + 80p3
k:n

)(
−1 + 24pi:n − 90p2

i:n + 80p3
i:n

) [
x(k) − x(i)

]2
}

(50)

in which x(i) = the ith ranked sample in ascending order, i.e., x(1) < x(2) < . . . < x(i) < . . . <

x(k) < . . . < x(n); pi:n = estimated cumulative probability for the ith ranked sample, i.e., Pr
[

X ≤ x(i)
]
,

by using the well-known Weibull plotting position formula, pi:n = i/(n + 1). Makkonen [43] has
shown that the Weibull plotting position formula [44] provides the best estimate for the underlying
non-exceedance probability. The superiority of the Weibull formula gets more pronounced with a
decreasing sample size. By adopting the normality distribution assumption, the α-confidence interval
for the unknown population λk can be obtained as

(
`
(L)
m , `(U)

m

)
=

(
`m − zα/2

√
Λmm

n
, `m + zα/2

√
Λmm

n

)
(51)

in which zα/2 = Φ−1(1− α/2), a standard normal quantile with an exceedance probability of α/2,
with Φ−1(·) being the inverse standard normal CDF.
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2.3.2. Bounds for Correlation Coefficients

To quantify the lower and upper bounds of a correlation coefficient, Fisher transform is often used
by which the sampling distribution of the inverse hyperbolic tangent function of sample correlation
approximately follows a normal distribution as [45,46]

tanh−1(r) =
1
2

ln
(

1 + r
1− r

)
∼ Normal

(
1
2

ln
(

1 + ρ

1− ρ

)
,

1
n− 3

)
(52)

in which r, ρ = sample and population correlation coefficients, respectively; n = number of sample
pairs. With a specified confidence level α, the corresponding lower and upper bounds for the unknown
population coefficient ρ can be obtained as[

r(L) , r(U)
]
=

[
tanh

(
tanh−1(r)− zα/2√

n− 3

)
, tanh

(
tanh−1(r) +

zα/2√
n− 3

) ]
(53)

where the hyperbolic tangent function is defined as tanh(θ) = (e2θ − 1)/
(
e2θ + 1

)
.

2.4. Solution Algorithm

A recursive procedure is proposed to solve the above optimization models for determining
multivariate TPNT coefficients. The procedure consists of four steps of initialization, optimization,
validation, and updating. Solution algorithm for determining multivariate TPNT coefficients
considering sampling errors of L-moments and correlation coefficients is detailed below and outlined
in Figure 1.
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Step (1): Initialization—Since the problem involves a nonlinear optimization model, an initial
solution would be needed. One straightforward and sound initial solutions for the TPNT coefficients,
a(0)j , are those provided by Equations (11)–(14) for all variables j = 1, 2, . . . , N. The initial TPNT
coefficients obtained this way will automatically satisfy the constraint Equations (24)–(27). However,
they do not necessarily comply with the monotonicity constraint Equation (36). As for the initial
normal correlation coefficients, rather than arbitrarily choosing a set of initial correlation coefficients,
let
{

ρ
(0)
zj , zk

}
=
{

rxj , xk

}
in which rxj , xk

is the sample correlation coefficient between random variables

Xj and Xk. Alternatively, obtain a feasible set of initial
{

ρ
(0)
zj , zk

}
by solving the 3rd-order polynomial

function of ρzj , zk
in Equation (21) according to the initially assumed TPNT coefficients, a(0)j .

Step (2): Optimization—Based on the initially adopted TPNT coefficients, a(0)j , and the normal

transformed correlation coefficients
{

ρ
(0)
zj ,zk

}
, solve the optimization model with objective function

Equation (23) and constraint Equations (32)–(35), (36), and (41)–(42) for the optimal TPNT coefficients
a∗j =

(
a∗0j, a∗1j, a∗2j, a∗3j

)
for random variable Xj, j = 1, 2, . . . , N.

Step (3): Validation—From the optimal feasible TPNT coefficients a∗j =
(

a∗0j, a∗1j, a∗2j, a∗3j

)
for j

= 1, 2, . . . , N obtained from Step (2), determine the equivalent normal variates corresponding to the
sample data by solving the 3rd-order polynomial function:

a∗0j + a∗1j zj,i + a∗2j z2
j,i + a∗3j z3

j,i = xj,i , for all j = 1 ∼ N; i = 1 ∼ n (54)

where zj,i = unknown normal variate corresponding to the ith observation of the jth random variable

xj,i under the optimal set of TNPT coefficients a∗j =
(

a∗0j, a∗1j, a∗2j, a∗3j

)
. From the normal-transformed

data series of two different variables, zj =
(
zj,1, zj,2, . . . , zj,n

)
and zk = (zk,1, zk,2, . . . , zk,n),

the corresponding correlation coefficient, ρ∗zj , zk
, in the normal space is calculated.

Step (4): Updating—Compare the discrepancies between the initialized ρ
(0)
zj , zk and validated ρ∗zj , zk

for all different pairs of concerned random variables. If the discrepancy in any pair of durations is
judged to be significant, update the initial normal correlation as ρ

(0)
zj , zk = ρ∗zj , zk

and TPNT coefficients

a(0)j = a∗j , and the process from Steps (2)–(4) is repeated. Otherwise, the optimal solutions are obtained
and the iteration stops.

With regard to the optimization step presented in Step (2), the sequential quadratic programming
(SQP) algorithm is implemented [47]. The SQP tackles a nonlinear optimization problem by
successively finding the approximated optimum solution to the quadratic programming (QP)
representation of the original problem. The approximated solution is improved iteratively by solving
the QP problem. Boggs and Tolle [48] elaborated some useful properties of the SQP algorithm.
The subroutine “sqp.m” in Matlab is used in this study to solve the optimization model.

3. Numerical Example

In this section, at-site rainfall intensity–duration–frequency (IDF) and depth–duration–frequency
(DDF) relations are established to demonstrate the proposed multivariate TPNT method and
examine its general performance. Rainfall IDF relations are widely used in the planning, design,
and management of hydrosystem infrastructures, such as stormwater sewer systems and detention
basins [49,50]. Such relations at a given location involves at-site frequency analysis of annual maximum
rainfall intensity (or depth) data of several selected durations. The conventional approach in rainfall
frequency analysis chooses a proper parametric probability distribution model to individually fit the
observed annual maximum rainfall data of different durations. The choice of a distribution model for
the rainfall intensity–frequency relations is largely statistical without much physical justification [51].

By the conventional approach, resulting rainfall intensity–frequency curves of different durations
could sometimes intersect within the probability range of practical application. The crossover
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phenomenon often occurs when data record length is relatively short. According to the physical
reality, rainfall intensity–frequency curves of different durations should not crossover or intersect.
Porras and Porras [52] attributed the occurrence of crossover of rainfall IDF curves to short record data
of questionable representation in which a significant amount of sampling errors existed in the estimated
rainfall quantiles by frequency analysis. One other plausible reason for the possible crossover of IDF
curves is that frequency analysis of rainfall data is performed separately for each duration without
considering the inter-correlations that are intrinsically embedded in rainfall data of different durations.
Haktanir [53] earlier pointed out that rainfall frequency analysis of different durations in the process
of establishing IDF relationships should not be performed independently of each other, but did not
propose a mechanism to handle the correlation directly. Recently, Gräler et al. [54] applied D-vine
copula, along with the generalized extreme value distributions, to derive rainfall IDF relationships
based on rainfalls of five durations. You and Tung [55], under the TPNT framework, developed a
constrained least square model to simultaneously considering rainfall data of seven durations for
establishing at-site rainfall IDF relations. However, their model does not explicitly take into account
the correlation among rainfall data of different durations.

The multivariate TPNT-based model presented above was applied to establish at-site rainfall IDF
relations using annual maximum hourly rainfall data of various durations at a raingauge in Zhongli
City of Taoyuan County, Taiwan. Annual maximum rainfall intensity data cover the record period
of 1988–2015, but the year 1992 was excluded from the analysis due to long periods of registers with
technical issues. Hence, only 27-year data (n = 27) with seven (N = 7) durations (i.e., 1, 2, 6, 12, 24, 48,
and 72 h) are used in this illustration (see data in Table 1). The sample values of the mean, standard
deviation, and first-four L-moments of rainfall data of different durations are tabulated in Table 2.
Furthermore, the standard error values corresponding to the first four sample L-moments, according
to Equations (47)–(50), are listed in Table 3. The sample correlation coefficients of all rainfall intensity
pairs of different durations in the original and normal-transformed domains are shown in Tables 3
and 4, respectively. Based on the information given in Tables 2 and 4, one is able to define the lower
and upper bounds for the L-moments and correlation coefficients according to the desired confidence
level, α, by Equations (51) and (53), respectively. Table 5 lists the values of correlation coefficients in
normal-transformed space, rzj , zk

, provided by the solution to constraint Equations (41) and (42) in the
optimization model.

Under different constraint types and confidence levels for the L-moments and correlation
coefficients, the corresponding optimal multivariate TPNT coefficients can vary. With the confidence
level of α = 90% for both L-moments and correlation coefficients, Table 6a–d list the optimal TPNT
coefficients under four different constraint types, including “LM” for L-moments by Equations
(32)–(35), “Mono” for monotonicity by Equation (36), “Corr” for correlation by Equations (41) and (42),
and “NC” for no-crossover by Equation (56). Once the optimal TPNT coefficients associated with each
rainfall duration are obtained from solving the multivariate TPNT model, the rainfall IDF relations,
according to Equation (15), can be established as

i∗t,T = a∗0,t + a∗1,tzT + a∗2,tz
2
T + a∗3,tz

3
T (55)

where i∗t,T = estimated t-h, T-year rainfall intensity; a∗0,t, a∗1,t, a∗2,t, and a∗3,t = optimum TPNT coefficients
corresponding to rainfall of duration t (h); zT is the standard normal quantile corresponding to return
period T-year having an annual exceedance probability of 1−Φ(zT) = 1/T.
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Table 1. Annual maximum rainfall intensities (mm/h) at Zhongli Station, Taiwan.

Year 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1988 48.0 41.0 18.1 9.0 4.6 2.9 2.2
1989 83.5 69.5 38.2 19.9 10.0 6.1 4.1
1990 89.0 51.3 25.1 14.0 8.1 5.7 3.8
1991 52.5 36.3 13.1 6.8 4.4 3.9 2.9
1993 73.0 50.5 25.8 15.5 8.1 4.3 3.0
1994 44.5 31.0 19.1 11.7 8.7 5.0 3.3
1995 87.5 59.0 27.1 13.7 7.0 4.7 3.5
1996 80.5 40.3 14.0 10.3 8.0 4.6 3.1
1997 35.5 22.8 16.4 11.0 6.3 3.7 2.7
1998 70.5 35.3 21.2 11.1 7.8 4.5 3.0
1999 58.5 29.3 12.2 7.7 5.5 2.9 2.0
2000 43.5 25.8 19.8 14.0 11.2 8.2 5.8
2001 49.5 43.5 28.0 21.5 14.3 12.4 8.7
2002 35.0 28.3 12.4 6.9 5.0 2.7 1.8
2003 30.5 20.5 9.2 7.1 4.7 2.6 1.7
2004 51.5 35.3 19.4 13.3 9.6 6.1 4.1
2005 38.0 30.3 14.8 9.3 7.6 4.6 3.7
2006 48.5 32.3 19.7 13.8 7.7 5.3 4.6
2007 65.5 60.5 24.9 12.6 8.4 6.5 5.3
2008 42.0 32.3 13.5 9.5 7.1 5.5 4.8
2009 33.0 29.3 14.9 10.7 6.2 3.2 2.6
2010 47.5 35.0 13.6 9.3 7.0 3.6 2.4
2011 71.5 48.8 21.0 12.6 7.1 3.7 2.6
2012 72.0 47.8 43.4 34.3 17.6 8.8 5.9
2013 52.0 46.0 25.8 14.5 7.6 6.7 4.5
2014 41.0 26.3 15.0 11.3 7.9 4.9 3.6
2015 35.5 25.5 15.6 10.3 5.6 3.2 2.1

Table 2. Sample moments (in mm/h) of rainfall intensity data.

Moments 1 h 2 h 6 h 12 h 24 h 48 h 72 h

µ̂ 54.80 38.26 20.04 12.65 7.89 5.05 3.63
σ̂ 17.8 12.4 7.9 5.6 2.9 2.2 1.5

`1 54.80 38.26 20.04 12.65 7.89 5.05 3.63
`2 10.21 7.02 4.25 2.67 1.46 1.13 0.83
`3 1.673 1.393 1.110 0.879 0.389 0.317 0.200
`4 0.322 0.715 0.706 0.863 0.460 0.246 0.148

Table 3. Standard errors (in mm/h) of sample L-moments of rainfall intensity data.

Std. Error 1 h 2 h 6 h 12 h 24 h 48 h 72 h

se(`1) 3.423 2.386 1.519 1.071 0.554 0.415 0.296
se(`2) 1.110 0.952 0.750 0.682 0.324 0.226 0.148
se(`3) 1.005 0.660 0.447 0.389 0.159 0.127 0.089
se(`4) 0.713 0.404 0.209 0.182 0.088 0.066 0.050

Table 4. Sample correlation coefficients between rainfall intensity of different durations.

Duration 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1 h 1.000
2 h 0.826 1.000
6 h 0.624 0.760 1.000
12 h 0.421 0.496 0.910 1.000
24 h 0.306 0.335 0.762 0.915 1.000
48 h 0.210 0.338 0.635 0.732 0.869 1.000
72 h 0.161 0.324 0.576 0.671 0.812 0.976 1.000
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Table 5. Correlation coefficients of normal-transformed rainfall intensity of different durations.

Duration 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1 h 1.000
2 h 0.849 1.000
6 h 0.654 0.768 1.000

12 h 0.511 0.569 0.918 1.000
24 h 0.430 0.440 0.736 0.870 1.000
48 h 0.396 0.462 0.713 0.796 0.903 1.000
72 h 0.323 0.438 0.670 0.755 0.854 0.979 1.000

Table 6. Multivariate TPNT coefficients obtained under different constraints with α = 0.90.

(a) Constraints: L-moments only (LM)

TPNT Coefficients 1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.76 35.73 18.03 11.06 7.19 4.47 3.27
a1 21.76 13.02 6.80 2.62 1.47 1.58 1.29
a2 3.03 2.53 2.01 1.59 0.70 0.58 0.36
a3 −1.465 −0.230 0.292 0.843 0.444 0.170 0.072

a3 > 0 −1.46 * −0.23 * 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 104.8 * 15.4 * −1.90 −4.09 −1.46 −0.47 −0.15

(b) Constraints: L-moments and Monotonicity (LM/Mono)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.99 35.81 18.03 11.06 7.19 4.47 3.27
a1 17.52 11.98 6.80 2.62 1.47 1.58 1.29
a2 2.80 2.45 2.01 1.59 0.70 0.58 0.36
a3 0.150 0.167 0.292 0.843 0.444 0.170 0.072

a3 > 0 0.15 0.17 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 −0.01 −0.01 −1.9 −4.1 −1.5 −0.5 −0.1

(c) Constraints: L-moments, Monotonicity, and Correlation (LM/Mono/Corr)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.76 35.81 18.03 11.06 7.19 4.47 3.27
a1 17.14 11.98 6.80 2.62 1.47 1.58 1.29
a2 3.03 2.45 2.01 1.59 0.70 0.58 0.36
a3 0.382 0.167 0.292 0.843 0.444 0.170 0.072

a3 > 0 0.38 0.17 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 −10.4 −0.01 −1.9 −4.1 −1.5 −0.5 −0.1

(d) Constraints: L-moments, Monotonicity, Correlation, and No Crossover (LM/Mono/Corr/NC)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.99 35.81 18.01 11.06 7.19 4.48 3.26
a1 17.52 11.98 6.80 2.62 1.47 1.61 1.25
a2 2.80 2.45 2.03 1.59 0.71 0.57 0.37
a3 0.150 0.167 0.292 0.843 0.444 0.159 0.089

a3 > 0 0.15 0.17 0.29 0.84 0.44 0.16 0.09
a2

2 − 3a1a2 < 0 −0.01 −0.01 −1.8 −4.1 −1.5 −0.4 −0.2

Note: * indicates a violation of monotonicity condition.

4. Results and Discussions

By varying the value of zT for different return periods in Equation (55), in conjunction with the
optimal TPNT coefficients listed in Table 6a–d, one can establish IDF curves as shown in Figures 2
and 3. Part (a) of Table 6 and Figures 2–4 (denoted by “LM”) shows the results from considering only
the bounding constraints of L-moments, Equations (32)–(35). In fact, the optimal TPNT coefficients
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corresponding to each duration can be obtained separately from the exact solutions using sample
L-moments in Equations (11)–(14). Note that the TPNT coefficients obtained from each rainfall duration
at this stage do not necessarily comply with a one-to-one monotonic increasing relation of rainfall
quantile and probability. This can be clearly seen in Table 6a for 1 and 2 h rainfalls for which the two
monotonicity constraints are violated (shown by *). Part (b) (denoted by “LM/Mono”) shows the results
by considering both L-moment constraints, Equations (32)–(35), and the monotonicity constraints,
Equation (36), for each rainfall duration. In this case, both results presented in Parts (a) and (b) in Table 6
and Figures 2–4 can be obtained separately by treating rainfall data of different durations without
considering their inter-correlations. Results in Part (c), denoted by “LM/Mono/Corr,” were obtained
by incorporating correlation constraints of rainfall data with different durations, Equations (41) and
(42), in determining the multivariate TPNT coefficients.Water 2019, 11, x FOR PEER REVIEW  14 of 20 
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Figure 2. Multivariate TPNT modeling of rainfall intensity–duration relationships of varying
return periods under different constraints which consider: (a) L-moments only; (b) L-moments and
monotonicity; (c) L-moments, monotonicity and correlation; (d) L-moments, monotonicity, correlation
and no crossover.

To show the degree of goodness-of-fit of normal transformed rainfall data by the proposed
multivariate TPNT procedure, a normal probability plot of 24 h rainfall data (after normal
transformation) with the fitted line and 95% confidence band are shown in Figure 5 as an example.
The goodness-of-fit test shown in Figure 5 was achieved by the Anderson–Darling test [56] by which
the test statistic is 0.535 with a p-value of 0.155. Figure 5 represents the worst case among the seven
durations considered. The range of p-value varies from 0.155 (for 72 h) to 0.933 (for 2 h), which are
higher than the generally adopted significance level of 0.05. This indicates that the normal transform
by the proposed multivariate TPNT procedure is quite adequate.
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Figure 4. Multivariate TPNT modeling of rainfall depth–frequency relationships of varying durations
under different constraints which consider: (a) L-moments only; (b) L-moments and monotonicity; (c)
L-moments, monotonicity and correlation; (d) L-moments, monotonicity, correlation and no crossover.
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Figure 5. Probability plot of normalized 24 h rainfall data.

Note that the solution obtained up to this stage does not necessarily comply with the physical
reality that rainfall intensity (depth) of a given return period is a decreasing (an increasing) function
of duration. In other words, rainfall intensity/depth–frequency curves of different durations should
not intersect or crossover each other. However, in the process of establishing rainfall IDF/DDF
relationships, one does not know in advance if any two resulting two curves would intersect before
the statistical model is developed. Therefore, a special set of intersections avoidance constraints are
imposed in establishing the IDF curves:(

a0,tj − a0,tk

)
+
(

a1,tj − a1,tk

)
zT∗ +

(
a2,tj − a2,tk

)
z2

T∗ +
(

a3,tj − a3,tk

)
z3

T∗ > 0, fordurations tj < tk (56)

where T∗ = upper limit of selected rainfall return period below which no crossover of IDF curves is
permitted to occur; zT∗ = standard normal quantile obtainable from Φ−1

(
1− 1

T∗

)
. Hence, additional

N − 1 no-crossover (NC) constraints are included in the optimization model to solve for multivariate
TPNT coefficients. Part (d) results (denoted by “LM/Mono/Corr/NC”) show the rainfall IDF relations
considering the NC constraints.

Figure 2 shows the rainfall intensity–duration curves corresponding to various frequencies.
For this particular data set, by only preserving sample L-moments, Figure 2a reveals two unusual
features for those curves when return period is high (say, ≥100 years). They are (1) curves that tend
to converge together for rainfall duration in the vicinity of 1 h and (2) the relatively pronounced
undulation of curves for medium and long duration. These features are indications of possible
anomalies that should not appear in a reasonable rainfall IDF relation. The convergence of rainfall
intensity–duration curves in Figure 2a, shown in a different form in intensity–frequency relation
as Figure 3a, reveal that the 1 h curve (in red) clearly does not satisfy the monotonicity condition
according to Equation (36), which requires a rainfall intensity quantile value to increase continuously
with a return period (see also Table 4a). In fact, the 2 h intensity–frequency curve (in gold) also
mildly violates the monotonicity requirement as the curve starts to bend down for high return periods.
The violation of the monotonicity condition can also be observed in the form of the depth–frequency
curve for a 1 h duration (see Figure 4a). In this circumstance, the non-monotonicity of the 1 h rainfall
intensity–frequency relation produces a crossover with the 2 h curve shown in Figure 3a.

Interestingly, Figure 3a also reveals that 6 and 12 h rainfall intensity–frequency curves have
a strong tendency to intersect as rainfall frequency increases. This tendency to intersect could be
attributed to a relatively large undulation of intensity–duration curves in the range of 6–12 h when
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rainfall frequency increases (see Figure 2a). From 6 to 12 h, the gradient of intensity–duration curves
flatten out for larger return periods. The empirical results show some evidence of improvement
(in terms of a decrease in undulation, for large frequencies) when more constraints are considered.
However, the improvement is not significantly enough to remove undulation. In practical engineering
applications, the undulation of rainfall IDF curves such as those shown in Figure 2a–d is removed by
fitting the estimated rainfall intensity–duration data by an empirical IDF model, such as Sherman’s
equation [57].

It is clear that, by considering the monotonicity constraint, Equation (36), the crossover tendency
of intensity–duration curves (see Figure 2b) in the vicinity of 1–2 h disappears (see also Table 6b),
as does that of the 1 h and 2 h intensity–frequency curves in Figure 3b. Correspondingly, the concave
down appearance of the 1 h depth–frequency curve and, to a lesser extent, the 2 h curve is corrected
(see Figure 4b).

Notice that joint consideration of complying with L-moments and the monotonicity condition
does not truly take into account the inter-correlations of rainfall intensity or depth with different
durations. The appearance of undulation in the rainfall intensity–duration curves for medium and
long durations (≥6 h), which satisfy the monotonicity condition, is not affected. Hence, the crossover
tendency of 6 and 12 h intensity–frequency curves (see Figure 3b) and the actual intersection of 48 and
72 h depth–frequency curves (see Figure 4b) remain unchanged.

With further consideration of inter-correlations of rainfalls of different durations, Equations (41)
and (42), the resulting rainfall IDF and DDF curves are shown in Part (c) of Figures 2–4. Figure 2c
shows that the rainfall intensity–duration curves in the range of short duration for a high return
period completely remove the crossover tendency. Both Figures 3c and 4c show that rainfall
intensity–frequency and depth–frequency curves for 1 and 2 h are parallel to each other. Still, the 48
and 72 h rainfall depth–frequency curves intersect (see Figure 4c).

For illustration, this application artificially select T∗ = 5000-year in Equation (56) as the limiting
frequency below which rainfall depth–frequency or intensity–frequency curves of any two durations
are not allowed to intersect. The obvious results of imposing no-crossover constraint is that the 48 h
rainfall depth–frequency curve in Figure 4d would not intersect with the 72 h curve.

As for the effect of confidence level, numerical results indicate that a feasible solution for TPNT
coefficients may not exist when the confidence levels for the unknown true L-moments and correlation
coefficients are too low. This is expected because the width of confidence interval shrinks toward
the sample L-moments and correlation coefficients as the confidence level reduces. At a certain
confidence level, the corresponding width of the confidence band might be too restrictive for the
optimization model to find feasible TPNT coefficients that simultaneously satisfy the monotonicity
constraints. How low the limiting confidence level is depends on the problem. In this numerical
example, the limiting confidence level is about 70%, below which no feasible solution can be found
for multivariate TPNT coefficients. On the other hand, a reasonable confidence interval allows one to
obtain a suitable set of TPNT coefficients to approximate multivariate relations.

5. Summary and Conclusions

Statistical modeling and data analysis in hydrosystems engineering often encounter multiple
correlated random variables following non-normal distributions. Due to the difficulty in establishing
a full joint probability density function for the involved variables, most of the methods tackling
multivariate problems preserve the marginal statistical properties (e.g., distributions or moments) of
individual variables and their correlation structures. In this study, focus is placed on the third-order
polynomial transform (TPNT) procedure, which relies on the preservation of marginal L-moments
and correlations among variables. In particular, a general framework is presented to optimally
determine multivariate TPNT coefficients incorporating the constraints that (1) preserve the statistical
L-moments and correlations with explicit consideration of their associated sampling errors; (2) comply
with a one-to-one monotonicity increasing relation between quantiles of the original and normal
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transformed variables. Other than the above basic constraints required to hold the statistical and
mathematical validity of the TPNT method, additional constraints that are relevant to the problem at
hand can be incorporated into the modeling framework. In the illustrative example of establishing
rainfall intensity–duration–frequency (IDF) relations, the no-intersection constraints for rainfall
depth–frequency curves of different durations, Equation (56), are introduced in the model formulation
to ensure that the resulting IDF relationships comply with the physical reality. The proposed method
not only solves for the suitable multivariate TPNT coefficients that satisfy the monotonicity condition
for individual variables, but also produces the correlation coefficients between random variables in
the normal space. At this stage, the proposed multivariate TPNT procedure has not gone through a
formal mathematical testing for its performance under different scenarios of multivariate distributions,
correlation structures, and sample sizes. However, the procedure is based on a good logic with sound
statistical and mathematical theory. The results from the empirical application to establish at-site
rainfall IDF relationships appear to be quite reasonable.
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