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Abstract: Flood frequency analysis plays a fundamental role in dam planning, reservoir operation,
and risk assessment. However, conventional univariate flood frequency analysis carried out by
flood peak inflow or volume does not account for the dependence between flood properties. In this
paper, we proposed an integrated approach to estimate reservoir risk by combining the copula-based
bivariate flood frequency (peak and volume) and reservoir routing. Through investigating the
chain reaction of “flood frequency—reservoir operation-flood risk”, this paper demonstrated how to
simulate flood hydrographs using different frequency definitions (copula “Or” and “And” scenario),
and how these definitions affect flood risks. The approach was applied to the Meishan reservoir
in central China. A set of flood hydrographs with 0.01 frequency under copula “Or” and “And”
definitions were constructed, respectively. Upstream and downstream flood risks incorporating
reservoir operation were calculated for each scenario. Comparisons between flood risks from
univariate and bivariate flood frequency analysis showed that bivariate flood frequency analysis
produced less diversity in the results, and thus the results are more reliable in risk assessment. More
importantly, the peak-volume combinations in a bivariate approach can be adjusted according to
certain prediction accuracy, providing a flexible estimation of real-time flood risk under different
prediction accuracies and safety requirements.

Keywords: bivariate flood frequency; copula distribution; reservoir operation; risk assessment;
Meishan reservoir

1. Introduction

Floods are major natural disasters that occur across the globe. Numerous reports suggest that
floods are causing massive property loss and deaths, especially in the last two decades [1,2]. Flood
events are complicated in nature and are primarily characterized by the flood peak, volume, duration,
and hydrograph shapes [3]. Most flood control measures require detailed knowledge of flood events,
which have a certain frequency, also expressed as the T-year return period. However, the traditional
flood frequency model is a univariate that is constructed based on a selected characteristic—peak or
volume—with target flood frequency [4,5]. Indeed, a single characteristic is inadequate to represent
flood frequency: given a flood event with a high peak flow and low volume, its calculated frequency
will be inconsistent when using the univariate method, which may lead to over- or under-estimation
of its risk [6–8]. Therefore, a multivariate method was proposed to perform a more comprehensive
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and objective estimation on flood frequency. In earlier work, several multivariate distributions such
as lognormal bivariate distribution [9], bivariate exponential distribution [10], and bivariate gamma
distribution [11] have been widely applied to flood frequency analysis. A significant limitation of
these multivariate distributions is that the marginal distribution of variables must be consistent.
However, it is unrealistic, since flood characteristics are random and may probably have different
distribution shapes.

Recent developed copula theory provides a new means of flood frequency. Copula theory,
developed by Sklar [12], is an effective approach to describing the joint probability distribution of
multi-dependent variables. In copula theory, the correlated variables are not necessarily required
with the same marginal distribution, which makes it widely applied in hydrological analysis. An
important application of the copula theory is flood frequency analysis, considering flood peak,
volume and duration, etc. [13–15]. Based on joint distribution of flood frequency, floods at any
frequency (usually at distribution tails) can be constructed [16–18]. Besides this, the applications
of copula theory have been extended to spatial and temporal relationships of floods. Previous
studies [19] investigated the spatial distribution of flood events among different tributaries and
sub-areas, while some constructed the joint distribution of flood events in different sub-seasons,
and then optimized reservoir flood limit water level by taking the distribution as constraint to
achieve better conservancy benefit [20]. In the same conceptual framework, copula theory has
been applied to hydrological problems such as multivariate rainfall analysis considering rainfall
intensity—duration—depth [21], and rainfall peak—depth [22], a trivariate drought assessment
considering drought severity—duration—frequency [23], etc. Numerous applications have proved
that copula-based multivariate frequency analysis better fits the empirical observations than univariate
or standard joint parametric distribution methods.

Reservoirs can effectively change flood waves to decrease flood risks. Increasingly, more natural
floods are being controlled and regulated by reservoirs. In the past several decades, a number of
flood risk assessment studies on reservoir operation have been proposed [24]. Studies about reservoir
optimal operation usually focus on reservoir overtopping risk, which is also the risk posed by the
reservoir itself [25,26]. In this case, the research priority is then a question of how to optimize reservoir
operations for appropriate refilling and drawing down. On the other hand, flood risk assessment for
a river basin is more focused on downstream flooding risk [27–29], because the downstream area often
comprises large cities and populations to be protected. In such studies, reservoir operation procedures
were often simplified, and the upstream risk was assumed constant. For instance, reservoir outflow
was considered a piecewise linear function of inflow [30,31]. A few studies have incorporated both
upstream and downstream risks into their risk assessment, while the flood hydrographs were synthetic
and simplified [32].

Flood frequency is also a key issue that determines reservoir operational response as well as flood
risk. However, studies usually focus on the standard of flood frequency in dam planning phase, but
seldom specify on which frequency definition the standard is based, i.e., peak or volume or entire
hydrograph; in real time flood management, flood frequency on natural flood is not equal to real flood
risk when accounting for reservoir operation [33]. The chain effect—from flood frequency analysis
to its consequences on real flood risk accounting for reservoir operations—is relatively unexplored.
As part of the chain effect, Reference [34] analyzed the influence of flood hydrographs on reservoir
operation and downstream damage. Four hydrographs: triangular, abrupt wave, flood pulse, and
broad peak were used to compare downstream damages. Although the hydrographs were synthetic
for simplification, this study proved that hydrograph shapes significantly influence downstream
damage, even for hydrographs with same volumes and peak flows. Reference [35] concerned the
relationship between flood frequency and reservoir operation, and constructed peak-volume bivariate
flood frequency to calculate overtopping probability of dam. Reference [36] assessed the impacts of
reservoir operation to downstream inundation with hydrodynamic models, but the study case is only
one real flood event which happened in 2011.
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The chain effect was analyzed more in depth in some other researches. Reference [37] assessed
reservoir downstream flood risk using bivariate copula analysis of flood peaks in two tributaries.
Three scenarios were considered and compared: 1. no reservoir built; 2. reservoir built in tributary A;
3. reservoir built in tributary B. The results showed that downstream discharge return period differs
strongly among the three scenarios, which revealed that the real downstream risk is complicatedly
influenced not only by whether a reservoir exists, but also by the location and storage of the reservoir.
Similarly, Reference [38] highlighted the influence of reservoir operation to flood frequency, and
defined a concept called “routed return period” which incorporated reservoir operation into the
theoretical flood return period. This study revealed how dam characteristics such as reservoir volume
and spillway length significantly influence the risk of dam overtopping. The focus of References [37,38]
are close to the idea proposed in this paper. However, Reference [37] accounted for only downstream
risk and reference [38] accounted for only upstream risk (the author mentioned in conclusion that
downstream risk could be replicated in the same way), and both of them simplified the reservoir
routing process. In summary, the impact of reservoir operation on flood frequency has attracted much
attention, but overlooked points still exist.

This study aims to bridge the gap between flood frequency analysis and actual flooding risk
accounting for reservoir operation. To this purpose, the following were set as two main objectives:
(1) to construct multivariate flood frequency analysis model; (2) to establish the calculating chain effect
of “flood frequency—reservoir operation—risk assessment”. More specifically, the remainder of this
paper is organized as follows: Section 2 introduces the study site—Meishan reservoir—and its historic
flood characteristics. Section 3 presents (1) copula theory based multivariate flood frequency contours
and generated hydrographs, (2) a real-time reservoir routing scheme to operate the constructed flood
hydrographs, and (3) the derivation and integration of upstream and downstream risks based on
reservoir operation results. Section 4 reports case study results with a comparative analysis and
discussion. Finally, the conclusion of this study is provided in Section 5.

2. Study Site and Data

2.1. Study Site

The Meishan reservoir is located in the Shi river in central China, as Figure 1 shows. The Shi
river feeds into the Huai river, which is one of the largest rivers in China. The river basin is in the
north–south climate transboundary zone, and thus the reservoir inflow varies greatly from year to
year and is concentrated in the flood season, from June to September [39,40]. The average precipitation
at the Shi river basin is 1320 mm per year. About 70% of the annual precipitation occurs during the
flood season, and over 70% of the flood season’s precipitation is in the form of flood. As a result,
flood control is the primary purpose of the Meishan reservoir. The greatest historic flood event
occurred from July to August 1991: the flood peak reached 8500 m3/s, and the total flood volume
reached 1.6 billion m3, which is 3 times more than the reservoir’s flood storage capacity. During this
extraordinary flood, the Meishan reservoir reduced 70–85% of the peak inflow using its flood storage
capacity, and decreased the downstream flood depth by 4 m, demonstrating its significant flood control
effects of the overall basin.

The operating rules of the Meishan reservoir are based on a series of specified reservoir water
levels. During the flood season, the lower bound and upper bound of the Meishan reservoir safety
water level are 125.27 m (corresponding to 1.20 billion m3 storage) and 133.00 m (corresponding to
1.70 billion m3 storage), respectively, leaving a flood control storage capacity of 0.5 billion m3. A flood
can be retained in the reservoir during the peak inflow period, and then released gradually to reduce
downstream loss. The maximum downstream safety release is 1200 m3/s, but if the reservoir level
exceeds 133.00 m, the dam is at risk, and the reservoir release is then permitted to exceed 1200 m3/s
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as a trade-off to assure dam safety. The general operating principle of the Meishan reservoir is
summarized as follows, and the specific rules are introduced and simulated in Section 4.4.

reservoir release q



= inflow Q, when Q < 1200 m3/s and reservoir water level < 133 m,
reservoir water level is kept constant

= 1200 m3/s, when Q > 1200 m3/s and reservoir water level < 133 m,
release at the maximum downstream safety flow

> 1200 m3/s, when reservoir water level > 133 m, draw down water level
for dam safety, downstream may suffer as a trade− off
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2.2. Flood Event Characteristics

In this study, a total of 37 flood events during the period of 2003–2016, as well as the largest
historic flood in 1991, are employed as a case study. Three characteristics, flood peak inflow,
volume, and duration are described in Table 1. The standard variance indicators reveal that floods
with Meishan characteristics are quite diverse. Figure 2 shows scatterplots of the peak–volume
relationship, peak–duration relationship, and volume–duration relationship in order to examine
correlations among the three variables. The Kendall coefficient and Spearman coefficient [41] for
each combination are given as well. It can be observed from the scatter trend and coefficients that
the peak–volume combination has the most significant correlation compared with the other two
combinations. Therefore, in this study, peak and volume are selected to model the probabilistic
distribution for the Meishan reservoir.

Table 1. Statistical indicators of historic flood events.

Average Maximum Minimum Standard Variance

peak (m3/s) 2211 8500 108 2140
volume (m3/s·h) 55,423 292,176 4478 61,965

duration (h) 150 273 59 56
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3. Model Development

3.1. Marginal Distributions Based on the Nonparametric Method

The bivariate frequency is primarily based on the marginal distribution of each variable.
The widely used parametric methods for marginal distribution estimation must assume a prior
distribution of data. For hydrological statistical variables, popular marginal distributions include
the Normal distribution [42], Pearson III distribution [43], Generalized Extreme Value (GEV)
distribution [44], and log-logistic (log-log) distribution [45], among others. However, parametric
method has its limitations. There might not be a proper distribution function for the data, and the
probability might vary considerably with just a slight modification of the data.

To overcome the disadvantage of the parametric method, a less restrictive nonparametric method,
kernel density estimation (KDE), was adopted to estimate the flood peak and volume marginal
distribution [46,47]. The KDE method can yield an empirical estimate of the probability density
function without assuming any form for the distribution. For a random sample x1, x2, . . . xn,
the traditional kernel probability density function (PDF) can be expressed as:

f̂T(x) =
1

Th

T

∑
i=1

K(
x− xi

h
) (1)

where T is the sample size, h is the bandwidth that determines the smoothness of the estimate—a
greater value of h will produce a smoother estimate and vice versa—and K(.) is the kernel density
estimator. Commonly used kernels include the Gaussian kernel, Uniform kernel, Triangular kernel,
Tricube kernel, etc. [48]. For simplicity, a Gaussian kernel [49] was applied in this study. The bandwidth
has a dramatic influence on the estimate. In this study, the bandwidth was estimated by enumeration,
and the optimization standard is the fitting performance of the overall frequency function.

3.2. Peak–Volume Bivariate Distribution Based on Copula Theory

3.2.1. Concept of a Copula

Copulas are multivariate cumulative distribution functions (CDFs) that describe the dependence
of variables marginal distributions [50]. Taking bivariate copula as an example, for two random
variables X and Y, their marginal CDF u and v can be represented by:

u = FX(x), v = FY(y) (2)
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where u, v ∈ [0, 1]. Similarly, their joint CDF can be expressed as a copula function C(u, v) and
a marginal distribution of variables:

C(u, v) = P(X ≤ x, Y ≤ y) (3)

Apparently, C(0,0) = 0, and C(1,1) = 1. Figure 3 explains the relationships among u, v, and C(u, v).
Through the copula function, the joint distribution of X and Y is simplified to the correlation between
u and v. Given marginal distributions u and v, we can calculate their copula function C(u,v) (red
arrowhead in Figure 3); conversely, given a certain value of a copula function C(u,v), a series of (u,v)
and (x,y) with the same C(u,v) value can also be found.
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Selecting proper copula function type and parameters is essential for correctly modeling
a multivariate distribution. Table 2 lists several commonly used bivariate copula functions. For the
parameter θ estimation, the Maximum Likelihood Estimation (MLE) method, Inference Function for
margins (IFM), and Kendall correlation methods are widely utilized [51,52]. In this study, the Kendall
correlation method was used to calibrate parameter θ, for its fitting performance was shown to be
superior to the other methods in our previous tests.

Table 2. Some popular and important copulas.

Copula Type Bivariate Copula Function C(u,v) Parameter θ

Clayton [max
{

u−θ + v−θ − 1; 0
}
]
−1/θ

θ > 0

Frank − 1
θ log[1 + (e−θu−1)(e−θv−1)

e−θ−1 ] R\{0}

Gumbel e[−((− log(u))θ+(− log(v))θ)
1/

θ ] θ ≥ 1

The copulas described by mathematical functions in Table 2 are called theoretical copulas. Actually,
we can also construct the “true” copula by directly counting observations and calculating probabilities
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for each data, which is called the empirical copula. The empirical copula, denoted by Ĉ(u, v), can be
expressed as the empirical distribution, as defined by Equation (4):

Ĉ(u, v) = P(X ≤ x, Y ≤ y) =
1
n

n

∑
i=1

1(u1,i ≤ u1, v1,i ≤ v1) (4)

where n denotes number of observed samples.
The empirical copula can be used to assess the fitting performance of the theoretical copula. Taking

the root-mean-square error (RMSE) as an indicator [53], the fitting performance can be calculated as:

RMSE =

√
1
n

n

∑
i=1

{
C(ui, vi)− Ĉ(ui, vi)

}2 (5)

3.2.2. Derivation of Copula “Or” and “And” Scenarios

In flood frequency analysis, we are interested in extreme events, so the flood frequency is mostly
defined by exceedance probability, such as:

P(X ≥ x) (6)

where X can be the flood peak, volume, or other characteristics. Obviously, the frequency concept in
hydrology is different from the non-exceedance probability in Equation (3). In order to link copula
probability and flood frequency, two types of joint probabilities are considered:

1. Copula “Or” probability, denoted by Cor. Cor represents P(peak ≥ x1 or volume ≥ x2). Given the
concept copula C(u, v) = P(peak ≤ x1, volume ≤ x2), Cor can be described as:

Cor(u, v) = 1− C(u, v) (7)

2. “And” probability, denoted by Cand. Cand represents P(peak ≥ x1, volume ≥ x2). Similarly, Cand
can be described as:

Cand(u, v) = 1− u− v + C(u, v) (8)

Figure 4 explains the derivation of Cor and Cand. The area of Cor is a subset of C(u,v), as described
in Equation (7). Cand is the upper-right zone in Figure 4, and the area can be derived by Equation (8).
Once the copula function C(u,v) is determined, Cor and Cand can be obtained.Water 2019, 11, 475 8 of 21 
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3.3. Risk Assessment For Reservoir Flood Operations

Flood risk can be defined as the possibility of suffering loss or the risk probability multiplied
by its consequences [54–56]. In reservoir flood operations, the exact loss value caused by a flood
may be related to massive downstream economic and social issues that are quite difficult to quantify.
For simplicity, in this study, the flood risk is denoted by “risk probability”.

3.3.1. Integration of Upstream and Downstream Risks

There are two sources of reservoir flood operation risk: upstream and downstream. If the flood is
mostly retained in the reservoir with little release, the reservoir water level will rise, so the upstream
risk, which is mainly called overtopping risk [35,38], will increase, but the downstream risk will
decrease. Conversely, if the reservoir releases most of the flood downstream to empty the reservoir,
the upstream risk will be very low, while the downstream might suffer and is thus at risk. In this study,
both upstream and downstream risks were taken into account. To describe the integrated risk R, this
paper adopted the idea of flood probability integration in Reference [32], expressed as:

P(A ∪ B) = P(A) + P(B)− P(A)P(B) (9)

where A and B represent flood risk in current time step and the next time step, respectively. By
substituting A and B with the upstream risk (Ru) and downstream risk (Rd), the overall risk R can be
calculated as:

R = Ru + Rd − Ru × Rd = Ru + (1 − Ru) × Rd (10)

Equation (10) can also be written as:

R = 1 − (1 − Ru) × (1 − Rd) (11)

The implication of Equation (11) is that the risk probability R is the complementary set to the
probability that no risk is realized.

3.3.2. Quantization of Upstream Risk Ru

Risk upstream of the reservoir is proportional to the reservoir storage. The more water stored in
the reservoir, the greater the risk when flood occurs. Therefore, the upstream risk Ru can be constructed
as follows:

Ru = (V − Vlb)/(Vub − Vlb) (12)

where V is the maximum reservoir storage during one round of the flood control operation, and
Vub and Vlb represent the upper bound and lower bound of reservoir storage, respectively. V ranges
from Vub to Vlb; Ru ranges from 0 to 1 and increases linearly with the increase of V. As introduced in
Section 2.1, Vub and Vlb are 1.70 billion m3 and 1.20 billion m3 in this study.

3.3.3. Quantization of Downstream Risk Rd

Risk downstream of the reservoir is caused by excess downstream safety release qsafe. If the
reservoir release is less than qsafe, Rd is 0; when the reservoir release is greater than qsafe, Rd can be
defined as follows:

Rd = max(0, (q − qsafe)/(qmax − qsafe)) (13)

where q is the maximum reservoir release during one round of the flood control operation. For the
Meishan reservoir, qmax and qsafe are 7000 m3/s and 1200 m3/s, respectively. Rd varies from 0 to 1 and
increases linearly with reservoir release. Figure 5 summarized the definitions of Ru, Rd, and explained
the derivation of R.
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4. Results and Discussion

Following the model procedure developed in Section 3, the flood risk of the Meishan reservoir was
calculated and discussed comprehensively. The copula model computing and flood risk calculation
were implemented using Matlab software, version r2014a.

4.1. Marginal Distribution and Copula Distribution of Peak and Volume

The marginal distribution of peak and volume were derived using the KDE method. Figure 6
shows the empirical distribution (dashed line) and theoretical distribution (solid line).Water 2019, 11, 475 10 of 21 
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Next, copulas were used to construct the joint distribution of peak and volume. The Clayton,
Gumbel, and Frank copula types were selected for this case study. RMSE was used to evaluate the
goodness-of-fit of each copula, and the results are shown in Table 3. It can be observed that the
Clayton copula has the lowest RMSE; thus, the Clayton copula was chosen here to fit the peak–volume
joint distribution.
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Table 3. Copula parameters and root mean square error (RMSE) for Clayton, Gumbel, and Frank
copula types.

Clayton Gumbel Frank

Copula parameter θ 0.87 0.66 0.95
RMSE 0.013 0.019 0.018

Figure 7 shows the joint PDF and CDF of peak and volume based on Clayton copula. The axis
in Figure 7 refers to the marginal distribution value of peak and volume. It can be observed that the
PDF of peak and volume has a strong tail correlation: the probability of low-peak-low-volume and
high-peak-high-volume zone combinations is extremely large.
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In order to better demonstrate the peak–volume joint distribution, 10,000 groups of peak-volume
samples that fit the Clayton copula distribution were generated, as shown in Figure 8. The generated
10,000 samples are highly consistent with the historic samples, and the tail correlation is also very
clear: samples concentrate in the low-peak-low-volume zone and high-peak-high-volume zone, which
is consistent with PDF shown in Figure 7a. These results reveal that the peak and volume are quite
relevant, and the Clayton copula function can describe this relevance precisely.
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4.2. Peak–Volume Combinations in Copula “Or” and “And” Scenarios

Since the copula function has been determined, the function of Cor and Cand can be derived using
Equations (7) and (8). Figure 9 shows contour figures of C(u,v), Cand(u,v), and Cor(u,v) with probability
contour lines from 0.05 to 0.95. For each contour line with certain copula frequency, a group of (peak,
volume) samples can be generated. This is the basis for the following flood hydrograph simulation.Water 2019, 11, 475 12 of 21 
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Figure 9. Contour map of C(u,v), Cand(u,v), and Cor(u,v).

4.3. Flood Hydrograph Generation for Peak–Volume Combinations

There are three decisive elements that characterize a flood event: peak, volume, and typical flood
hydrograph [57]. Previous sections discussed how to derive peak and volume under certain copula
frequency. In this section, the full flood hydrograph was simulated using given peak and volume.

4.3.1. Peak–Volume Combinations Selection with a 0.01 Frequency

Flood risk assessment concentrates on extraordinary flood events. In this study, peak–volume
combinations with a 0.01 frequency were chosen as target flood events. Clearly, there are infinite
peak-volume combinations on the 0.01 frequency contour line, so it is necessary to select limited
combinations for further computation. Reference [58] proposed a probability based method to narrow
the line to a subset, and then select freely from the subset. In this study, we firstly exported the
peak–volume combinations of the contour line using the “contour” function in Matlab software, shown
in Figure 10. It is noted that the lines in Figure 10 are not as smooth as contour lines in Figure 9, for the
axis here are peak and volume instead of marginal distribution u and v.
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Figure 10. Peak–volume combinations on the 0.01 frequency contour line.

In Figure 10, there are 56 combinations for the “And” scenario and 4 combinations for the “Or”
scenario. All the 4 combinations for the “Or” scenario were selected for better representativeness.
For the “And” scenario, 10 “unrealistic” combinations, where the volumes are not proportional to
peaks (the peak value is even less than average inflow calculated from volume), were deleted. For the
remaining combinations, we selected 12 of them with diverse peak/volume ratios. The selected
combinations are shown in Figure 11. In real time operation, the range of peak–volume combinations
can be narrowed considering different flood prediction levels, which will give more definite risk
assessment in the following calculation.
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4.3.2. Flood Hydrograph Simulation Based on Peak–Volume Combinations

Typical flood hydrograph is another important factor in a flood hydrograph simulation, since
it determines the “shape” of a hydrograph. In conventional methods, a representative hydrograph
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is chosen for all scenarios, so all the simulated target hydrographs have the same “shape” [59,60].
A significant drawback of this method is that it ignores the diversity of different flood processes.
In order to match flood hydrograph types with the peak–volume combinations, in this study, the
typical flood hydrograph was selected according to the volume/peak ratio. Given the target peak and
volume, the historical hydrograph whose volume/peak ratio is the closest to target ratio is selected as
typical hydrograph for this combination.

Traditional flood hydrograph simulation usually considers only one characteristic—peak or
volume—and then scales the overall typical flood hydrograph by a constant ratio to fit the target
characteristic. In this study, both peak and volume are fixed, so the traditional method is no longer
feasible since it can meet only one target characteristic. Here, a “variable ratio amplification” rescale
method [61] was adopted to simulate a flood hydrograph:

Q(t) = (QD(t)−QDmax)× (Q−Qpeak)/(QD −QDmax) + Qpeak (14)

Q = w/T (15)

where Q(t) denotes the simulated flood inflow in t time steps; Qpeak and w denote the simulated target
flood peak and volume, which were obtained from the 0.01 frequency contour lines; Q denotes the
average inflow of the simulated hydrograph, which can be calculated by w/T; T denotes the total
time steps in the typical flood hydrograph; QD(t), QDmax, and QD denote the inflow in t time steps,
maximum inflow, and average inflow of the typical flood hydrograph, respectively. In this way, both
peak and volume values in the simulated flood hydrograph are equal to the target value; meanwhile,
the general trend of the typical flood hydrograph can still be preserved.

Hydrographs using a variable ratio amplification method for Cand and Cor scenarios were
simulated, as shown in Figures 12 and 13. As it is seen here, different simulated flood hydrographs
have different “shapes”, especially in the Cand scenario, as the volume/peak ratios are more
diverse. The diversity of simulated flood peaks, volumes, durations, and hydrographs provides
full representativeness for the resulting flood risks, compared with the risk from univariate flood
simulation method.
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4.4. Reservoir Flood Control Operations

The flood control operation of the Meishan reservoir was simulated according to its latest real-time
operating rules [62]. For a flood control operation, there are two key threshold parameters: flood
control storage (noted as Sfc) and downstream safety storage (noted as Sds).

1. Sfc is the expected storage for the whole process during flood season, which implies that the
reservoir must draw down to Sfc after a flood inflow peak to vacate storage for future flooding.

2. Sds is a critical storage threshold that determines whether the downstream area should suffer:
when the storage is less than Sds, the reservoir is capable of retaining more floodwater; once the
reservoir’s storage exceeds Sds—which means that the dam faces a serious overtopping risk—the
reservoir should quickly draw down. As a trade-off, the downstream area will suffer in this case.

The Sfc and Sds for the Meishan reservoir are 1198 million m3 (corresponding to reservoir water
level 125.27 m) and 1492 million m3 (corresponding to reservoir water level 133.00 m). Figure 14
illustrates reservoir routing guidance of a flood event with T time steps.

4.5. Risk Assessment and Discussion

Based on reservoir operation results, the overall risk considering both upstream and downstream
can be derived from Equation (10) and written as Equation (16):

Rtotal =
n

∑
i=1

Ri ∗ pi =
n

∑
i=1

[Ru,i + (1− Ru,i) ∗ Rd,i] ∗ pi (16)

where n denotes the number of flood events, Ri is the risk of flood event i, and Ru,i,Rd,i, and pi denote
upstream risk, downstream risk, and the flood probability of flood event i. pi is the standardized
probability for flood event i, which is the PDF of flood event i divided by the sum of PDFs of n
flood events.

The risk for each simulated flood event, including the 4 hydrographs for the Cor scenario and 12
hydrographs of Cand scenario, were calculated. Tables 4 and 5 present key specifications of the risk
calculation process, including hydrograph characteristics, reservoir operation results, and risks for
each flood event.

As Tables 4 and 5 shows, the overall risks in Cor and Cand scenarios are 0.64 and 0.31, respectively.
The peak and volume values of Cor scenario are much greater than that of Cand scenario (also shown
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in Figure 11); as a result, the risk in the Cor scenario is more than twice that of the Cand scenario. This
demonstrated that different flood frequency definitions can produce dramatically diverse flood risk,
even under the same frequency and reservoir operating rules.

The impact of peak–volume combinations on flood risk can be indicated in detail. For the “Or”
scenario (Table 4), the risks increase with peak inflow. In flood 3 and 4, the peak outflows exceed
1200 m3/s that triggered downstream risk. The Meishan reservoir performs very well in flood control:
peak reduction reaches 85%, 85%, 70%, and 68% in four flood events, significantly diminishing
downstream disasters. For the “And” scenario (Table 5), the highest risk is for neither the maximum
peak inflow nor the maximum volume hydrographs, but for the middle hydrograph (flood 6).

Table 5 also reveals that the reservoir decreased flood peak in different cases—the greater the peak
inflow, the greater the peak reduction. With reservoir flood control operation, natural flood events
with the same frequency produced different flood risk consequences in real world.
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Table 4. Risk results of the Meishan reservoir for the “Or” scenario.

Category Item Flood 1 Flood 2 Flood 3 Flood 4

Flood feature
Peak inflow (m3/s) 7845 7974 8710 9035
Volume (m3/s·h) 298,557 282,835 226,125 216,352

Probability 0.22 0.28 0.28 0.22

Reservoir
operation results

Maximum storage (billion m3) 1.48 1.48 1.52 1.53
Peak outflow (m3/s) 1200 1200 2608 2854
Peak reduction (%) 85% 85% 70% 68%

Risk

Upstream risk 0.55 0.57 0.64 0.65
Downstream risk 0.00 0.00 0.24 0.29

Integrated risk 0.55 0.57 0.73 0.75

Overall risk 0.64
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Table 5. Risk results of the Meishan reservoir for the “And” scenario.

Category Item Flood 1 Flood 2 Flood 3 Flood 4 Flood 5 Flood 6

Flood
feature

Peak inflow (m3/s) 1400 2141 2938 3237 3627 4262
Volume (m3/s·h) 213,006 212,141 208,280 205,698 201,528 194,609

Probability 0.01 0.10 0.11 0.14 0.15 0.10

Reservoir
operation

results

Maximum storage (billion m3) 1.42 1.35 1.45 1.33 1.36 1.52
Peak outflow (m3/s) 1200 1200 1200 1200 1200 1200
Peak reduction (%) 14% 44% 59% 63% 67% 72%

Risk
Upstream risk 0.34 0.23 0.42 0.30 0.30 0.55

Downstream risk 0.00 0.00 0.00 0.00 0.00 0.00
Integrated risk 0.34 0.23 0.42 0.30 0.30 0.55

Category Item Flood 7 Flood 8 Flood 9 Flood 10 Flood 11 Flood 12

Flood
feature

Peak inflow (m3/s) 5130 5872 6630 7120 7796 7796
Volume (m3/s·h) 183,338 174,137 160,397 123,990 25,788 1720

Probability 0.10 0.09 0.08 0.07 0.03 0.02

Reservoir
operation

results

Maximum storage (billion m3) 1.41 1.43 1.40 1.38 1.39 1.38
Peak outflow (m3/s) 1200 1200 1200 1200 1200 1200
Peak reduction (%) 77% 80% 82% 83% 85% 85%

Risk
Upstream risk 0.48 0.36 0.27 0.27 0.16 0.16

Downstream risk 0.00 0.00 0.00 0.00 0.00 0.00
Integrated risk 0.48 0.36 0.27 0.27 0.16 0.16

Overall risk 0.31

In order to comprehensively investigate the effect of the copula frequency analysis method,
the 0.01 frequency flood simulated with the traditional univariate method was further developed.
The univariate frequency method was implemented by scaling the typical flood hydrograph to a fixed
ratio to match the 0.01 frequency peak or volume value, which is called the “peak ratio” frequency
and the “volume ratio” frequency, respectively. Here, 10 flood hydrographs were simulated for each
frequency. The procedures of reservoir operation and risk assessment are the same as those used for
the copula method. The overall risks generated from the four flood frequency definitions—the two
copula definitions and two univariate definitions—are shown and compared in Figure 15.
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All four scenarios in Figure 15 represent risks for a “0.01 flood frequency” flood, but their risks
are quite diverse. The average risk for each scenario is 0.64 (copula “Or” scenario), 0.31 (copula “And”
scenario), 0.65 (univariate peak-scaled scenario), and 0.77 (univariate volume-scaled scenario). Several
conclusions can be drawn from the results.

First, compared with the univariate peak ratio results, the volume ratio is higher, indicating that
the threaten issue for the risk of the Meishan reservoir is volume characteristic. The risk from the
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volume ratio is also the highest among the four scenarios, which reveals that the volume ratio method
may overestimate the flood risk in this case. On the other hand, the risk resulting from the copula
“And” scenario is significantly lower than the risk from the other three scenarios, for the peak and
volume values are lower in the copula “And” scenario.

Second, the risks from the univariate methods, especially the peak ratio results, are much more
diverse than copula bivariate results. This diversity, triggered by different typical flood hydrograph
“shapes”, is currently overlooked in dam planning and real-time flood management. Copula based
bivariate methods lowered the diversity, as can be observed in Figure 15. Therefore, the copula
frequency analysis can offset the risk evaluation uncertainty, although the hydrograph “shapes” are
still diverse.

Third, the copula method extends flood risk assessment capability. For the univariate method, the
flood characteristic can only be single (peak or volume) and deterministic, and thus the flood result
is also deterministic. In the copula method, the peak–volume combinations can be set considering
prediction accuracy ranges instead of uniform sampling, as shown in Figure 11. In this way, a more
reliable risk assessment can be obtained by incorporating prediction accuracy. Therefore, the copula
method is an effective complement to existing univariate flood frequency analysis, not only for the
definition of flood frequency, but also in more versatile and adaptive applications.

5. Conclusions

Estimation of flood risk is essential for flexible reservoir operation and basin management. Several
studies have already been conducted to analyze the flood frequency simulation and reservoir operation
risks, but the impacts of these issues on each other were relatively unexplored. This study combined
bivariate flood frequency analysis to explicitly simulate its impact on upstream–downstream risk
accounting for the effect of reservoir operation. By applying the model to the Meishan reservoir,
two definitions of flood frequency, known as copula “Or” and “And” scenarios, were proposed and
simulated. Integrated flood risks were carried out in four scenarios with the same frequency: univariate
peak-scaled, univariate volume-scaled, bivariate copula “Or”, and bivariate copula “And” scenarios.
Their differences were comprehensively compared and discussed.

It is concluded that the overall risk from the univariate volume-scaled method is the highest
among the four results, which demonstrates that volume is the key factor to the flood risk of Meishan
reservoir. Risks from the univariate peak-scaled methods are quite diverse and unstable due to
different typical hydrographs, while risks from copula-based results are much more reliable. It is
worth remarking in this paper that different flood frequency analysis approaches do have a significant
“chain reaction” influence on overall risks to the reservoir basin. Since dam construction standard are
determined by hydrological frequency in most countries, this paper provides useful references for
recognizing different consequences caused by different frequency definitions. In real-time operation
process, the copula-based flood frequency analysis provides a more convincing and adaptive reference
for flood risk assessment than the conventional univariate method, especially in the case of imperfect
flood prediction.

Author Contributions: T.Z. proposed the idea and finished the manuscript. Z.L. finished part of programming
codes and modified the manuscript. J.J. and H.H. reviewed and revised the paper and contributed to calculation.

Funding: This research was funded by National Science and Technology Major Project of China (No.
2017ZX07603-002), National Natural Science Fund of China (Nos. 51509001; 51809294), Natural Science Fund
of Anhui Province (No. 1608085QE112) and Talent Training Program for Universities of Anhui Province (No.
gxyqZD2017019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global
projections of river flood risk in a warmer world. Earths Future 2017, 5, 171–182. [CrossRef]

http://dx.doi.org/10.1002/2016EF000485


Water 2019, 11, 475 18 of 20

2. Songsore, J. The Complex Interplay between Everyday Risks and Disaster Risks: The Case of the 2014
Cholera Pandemic and 2015 Flood Disaster in Accra, Ghana. Int. J. Disaster Risk Reduct. 2017, 26, 43–50.
[CrossRef]

3. Brunner, M.I.; Viviroli, D.; Sikorska, A.E.; Vannier, O.; Favre, A.-C.; Seibert, J. Flood type specific construction
of synthetic design hydrographs. Water Resour. Res. 2017, 53, 1390–1406. [CrossRef]

4. Grimaldi, S.; Serinaldi, F. Asymmetric copula in multivariate flood frequency analysis. Adv. Water Resour.
2006, 29, 1155–1167. [CrossRef]

5. Candela, A.; Brigandì, G.; Aronica, G.T. Estimation of synthetic flood design hydrographs using a distributed
rainfall-runoff model coupled with a copula-based single storm rainfall generator. Nat. Hazards Earth Syst.
Sci. 2014, 14, 1819–1833. [CrossRef]

6. Eagleson, P.S. Dynamics of flood frequency. Water Resour. Res. 1972, 8, 878–898. [CrossRef]
7. Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F. Flood frequency analysis for

nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 2009, 32, 1255–1266.
[CrossRef]

8. Salvadori, G.; Michele, C.D. Frequency analysis via copulas: Theoretical aspects and applications to
hydrological events. Water Resour. Res. 2004, 40, 229–244. [CrossRef]

9. Hiemstra, L.A.V.; Zucchini, W.S.; Pegram, G.G.S. A method of finding the family of runhydrographs for
given return periods. J. Hydrol. 1976, 30, 95–103. [CrossRef]

10. Singh, K.; Singh, V.P. Derivation of bivariate probability density functions with exponential marginals.
Stoch. Hydrol. Hydraul. 1991, 5, 55–68. [CrossRef]

11. Yue, S.; Ouarda TB, M.J.; Bobee, B. A review of bivariate gamma distributions for hydrological application.
J. Hydrol. 2001, 246, 1–18. [CrossRef]

12. Sklar, A. Fonctions de répartition àn dimensions et leurs marges. Publ L’institut Stat L’université Paris 1959, 8,
229–231.

13. Zhang, L.; Singh, V.P. Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula. J. Hydrol.
Eng. 2007, 12, 431–439. [CrossRef]

14. Li, T.; Guo, S.; Chen, L.; Guo, J. Bivariate Flood Frequency Analysis with Historical Information Based on
Copula. J. Hydrol. Eng. 2013, 18, 1018–1030. [CrossRef]

15. Sraj, M.; Bezak, N.; Brilly, M. Bivariate flood frequency analysis using the copula function: A case study of
the Litija station on the Sava River. Hydrol. Process. 2015, 29, 225–238. [CrossRef]

16. Klein, B.; Pahlow, M.; Hundecha, Y.; Schumann, A. Probability analysis of hydrological loads for the design
of flood control systems using copulas. J. Hydrol. Eng. 2010, 15, 360–369.

17. Ganguli, P.; Reddy, M.J. Probabilistic assessment of flood risks using trivariate copulas. Theor. Appl. Climatol.
2013, 111, 341–360. [CrossRef]

18. Wang, Y.; Liu, G.; Guo, E.; Yun, X. Quantitative Agricultural Flood Risk Assessment Using Vulnerability
Surface and Copula Functions. Water 2018, 10, 1229. [CrossRef]

19. Xing, Z.; Yan, D.; Zhang, C.; Wang, G.; Zhang, D. Spatial Characterization and Bivariate Frequency Analysis
of Precipitation and Runoff in the Upper Huai River Basin, China. Water Resour. Manag. 2015, 29, 3291–3304.
[CrossRef]

20. Liu, P.; Li, L.; Guo, S.; Xiong, L.; Zhang, W.; Zhang, J.; Xu, C.Y. Optimal design of seasonal flood limited
water levels and its application for the Three Gorges Reservoir. J. Hydrol. 2015, 527, 1045–1053. [CrossRef]

21. Zhang, L.; Singh, V.P. Gumbel–Hougaard Copula for Trivariate Rainfall Frequency Analysis. J. Hydrol. Eng.
2007, 12, 409–419. [CrossRef]

22. Luca, D.; Biondi, D. Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design
Flood Peak. Water 2017, 9, 673. [CrossRef]

23. Shiau, J.T.; Modarres, R. Copula-based drought severity-duration-frequency analysis in Iran. Meteorol. Appl.
2010, 16, 481–489. [CrossRef]

24. Hossain, M.S. Intelligent Systems in Optimizing Reservoir Operation Policy: A Review. Water Resour. Manag.
2013, 27, 3387–3407. [CrossRef]

25. Jain, S.K.; Yoganarasimhan, G.N.; Seth, S.M. A risk-based approach for flood control operation of
a multipurpose reservoir. J. Am. Water Resour. Assoc. 2010, 28, 1037–1043. [CrossRef]

26. Jiang, Z.; Wu, W.; Qin, H.; Zhou, J. Credibility theory based panoramic fuzzy risk analysis of hydropower
station operation near the boundary. J. Hydrol. 2018, 565, 474–488. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2017.09.043
http://dx.doi.org/10.1002/2016WR019535
http://dx.doi.org/10.1016/j.advwatres.2005.09.005
http://dx.doi.org/10.5194/nhess-14-1819-2014
http://dx.doi.org/10.1029/WR008i004p00878
http://dx.doi.org/10.1016/j.advwatres.2009.05.003
http://dx.doi.org/10.1029/2004WR003133
http://dx.doi.org/10.1016/0022-1694(76)90091-3
http://dx.doi.org/10.1007/BF01544178
http://dx.doi.org/10.1016/S0022-1694(01)00374-2
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431)
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000684
http://dx.doi.org/10.1002/hyp.10145
http://dx.doi.org/10.1007/s00704-012-0664-4
http://dx.doi.org/10.3390/w10091229
http://dx.doi.org/10.1007/s11269-015-0997-8
http://dx.doi.org/10.1016/j.jhydrol.2015.05.055
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(409)
http://dx.doi.org/10.3390/w9090673
http://dx.doi.org/10.1002/met.145
http://dx.doi.org/10.1007/s11269-013-0353-9
http://dx.doi.org/10.1111/j.1752-1688.1992.tb04015.x
http://dx.doi.org/10.1016/j.jhydrol.2018.08.048


Water 2019, 11, 475 19 of 20

27. Kuntiyawichai, K. Effectiveness of Ubol Ratana and Lam Pao Reservoirs for Flood Mitigation in the
Downstream Area of the Chi River Basin Using HEC-HMS Model. Adv. Mater. Res. 2014, 931–932,
785–790. [CrossRef]

28. Vorogushyn, S.; Lindenschmidt, K.E.; Kreibich, H.; Apel, H.; Merz, B. Analysis of a detention basin impact on
dike failure probabilities and flood risk for a channel-dike-floodplain system along the river Elbe, Germany.
J. Hydrol. 2012, 436–437, 120–131. [CrossRef]

29. Chen, J.; Zhong, P.A.; Zhang, Y.; Navar, D.; Yeh, W.W.G. A decomposition-integration risk analysis method
for real-time operation of a complex flood control system. Water Resour. Res. 2017, 53, 2490–2506. [CrossRef]

30. Balistrocchi, M.; Orlandini, S.; Ranzi, R.; Bacchi, B. Copula-Based Modeling of Flood Control Reservoirs.
Water Resour. Res. 2017, 53, 9883–9900. [CrossRef]

31. Liu, Z.; Guo, S.; Hu, Y.; Yang, G.; Ying, J. Flood Probability Distribution Estimation under the Influence of
Upstream Reservoir Regulation Based on Monte Carlo Method. Water Power 2015, 41, 17–22.

32. Hui, R.; Lund, J.; Zhao, J.; Zhao, T. Optimal Pre-storm Flood Hedging Releases for a Single Reservoir. Water
Resour. Manag. 2016, 30, 5113–5129. [CrossRef]

33. Mediero, L.; Jiménez-Álvarez, A.; Garrote, L. Design flood hydrographs from the relationship between flood
peak and volume. Hydrol. Earth Syst. Sci. 2010, 7, 2495–2505. [CrossRef]

34. Connaughton, J.; King, N.; Dong, L.; Ji, P.; Lund, J. Comparing Simple Flood Reservoir Operation Rules.
Water 2014, 6, 2717–2731. [CrossRef]

35. De Michele, C.; Salvadori, G.; Canossi, M.; Petaccia, A.; Rosso, R. Bivariate Statistical Approach to Check
Adequacy of Dam Spillway. J. Hydrol. Eng. 2005, 10, 50–57. [CrossRef]

36. Mateo, C.M.; Hanasaki, N.; Komori, D.; Tanaka, K.; Kiguchi, M.; Champathong, A.; Oki, T.;
Sukhapunnaphan, T.; Yamazaki, D. Assessing the impacts of reservoir operation to floodplain inundation by
combining hydrological, reservoir management, and hydrodynamic models. Water Resour. Res. 2014, 50,
7245–7266. [CrossRef]

37. Schulte, M.; Schumann, A. Downstream-Directed Performance Assessment of Reservoirs in Multi-Tributary
Catchments by Application of Multivariate Statistics. Water Resour. Manag. 2015, 29, 419–430. [CrossRef]

38. Requena, A.I.; Mediero, L.; Garrote, L. A bivariate return period based on copulas for hydrologic dam design:
Accounting for reservoir routing in risk estimation. Hydrol. Earth Syst. Sci. 2013, 17, 3023–3038. [CrossRef]

39. Jia, B.; Simonovic, S.P.; Zhong, P.; Yu, Z. A Multi-Objective Best Compromise Decision Model for Real-Time
Flood Mitigation Operations of Multi-Reservoir System. Water Resour. Manag. 2016, 30, 3363–3387. [CrossRef]

40. Wan, X.; Hua, L.; Yang, S.; Gupta, H.V.; Zhong, P.A. Evaluating the Impacts of a Large-Scale Multi-Reservoir
System on Flooding: Case of the Huai River in China. Water Resour. Manag. 2018, 32, 1013–1033. [CrossRef]

41. Taylor, J.M. Kendall’s and Spearman’s correlation coefficients in the presence of a blocking variable. Biometrics
1987, 43, 409–416. [CrossRef] [PubMed]

42. Sheng, Y. Applying Bivariate Normal Distribution to Flood Frequency Analysis. Water Int. 1999, 24, 248–254.
43. Pilon, P.J.; Adamowski, K. Asymptotic variance of flood quantile in log Pearson Type III distribution with

historical information. J. Hydrol. 1993, 143, 481–503. [CrossRef]
44. Sandoval, C.E.; Raynal-Villase, J. Trivariate generalized extreme value distribution in flood frequency

analysis. Hydrol. Sci. J. 2008, 53, 550–567. [CrossRef]
45. Ahmad, M.I.; Sinclair, C.D.; Werritty, A. Log-logistic flood frequency analysis. J. Hydrol. 1988, 98, 205–224.

[CrossRef]
46. Kim, K.D.; Heo, J.H. Comparative study of flood quantiles estimation by nonparametric models. J. Hydrol.

2002, 260, 176–193. [CrossRef]
47. Santhosh, D.; Srinivas, V.V. Bivariate frequency analysis of floods using a diffusion based kernel density

estimator. Water Resour. Res. 2013, 49, 8328–8343. [CrossRef]
48. Jones, M.C. The performance of kernel density functions in kernel distribution estimation. Stat. Probab. Lett.

1990, 9, 129–132. [CrossRef]
49. Kristan, M.; Leonardis, A.; Aj, D. Multivariate online kernel density estimation with Gaussian kernels.

Pattern Recognit. 2011, 44, 2630–2642. [CrossRef]
50. Genest, C.; Mackay, J. The Joy of Copulas: Bivariate Distributions with Uniform Marginals. Am. Stat. 1986,

40, 280–283.
51. Durand, R.; Junker, M.; Szimayer, A. The flight-to-quality effect: A copula-based analysis. Account. Financ.

2014, 50, 281–299. [CrossRef]

http://dx.doi.org/10.4028/www.scientific.net/AMR.931-932.785
http://dx.doi.org/10.1016/j.jhydrol.2012.03.006
http://dx.doi.org/10.1002/2016WR019842
http://dx.doi.org/10.1002/2017WR021345
http://dx.doi.org/10.1007/s11269-016-1472-x
http://dx.doi.org/10.5194/hess-14-2495-2010
http://dx.doi.org/10.3390/w6092717
http://dx.doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50)
http://dx.doi.org/10.1002/2013WR014845
http://dx.doi.org/10.1007/s11269-014-0815-8
http://dx.doi.org/10.5194/hess-17-3023-2013
http://dx.doi.org/10.1007/s11269-016-1356-0
http://dx.doi.org/10.1007/s11269-017-1852-x
http://dx.doi.org/10.2307/2531822
http://www.ncbi.nlm.nih.gov/pubmed/3607205
http://dx.doi.org/10.1016/0022-1694(93)90205-N
http://dx.doi.org/10.1623/hysj.53.3.550
http://dx.doi.org/10.1016/0022-1694(88)90015-7
http://dx.doi.org/10.1016/S0022-1694(01)00613-8
http://dx.doi.org/10.1002/2011WR010777
http://dx.doi.org/10.1016/0167-7152(92)90006-Q
http://dx.doi.org/10.1016/j.patcog.2011.03.019
http://dx.doi.org/10.1111/j.1467-629X.2009.00320.x


Water 2019, 11, 475 20 of 20

52. Shiau, J.T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk
Assess. (SERRA) 2003, 17, 42–57. [CrossRef]

53. Amirataee, B.; Montaseri, M.; Rezaie, H. Regional analysis and derivation of copula-based drought
Severity-Area-Frequency curve in Lake Urmia basin, Iran. J. Environ. Manag. 2018, 206, 134–144. [CrossRef]
[PubMed]

54. Peterson, S.L.; Wiesenberg, F. Assessing the Risk of Oil Spills in the Mediterranean: The Case of the Route
from the Black Sea to Italy. SSRN Electron. J. 2006, 32, 159–178.

55. Mouri, G.; Minoshima, D.; Golosov, V.; Chalov, S.; Seto, S.; Yoshimura, K.; Nakamura, S.; Oki, T. Probability
assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model.
Int. J. Disaster Risk Reduct. 2013, 3, 31–43. [CrossRef]

56. Weiland, F.S.; Ward, P.; Bouwman, A.; Ligtvoet, W.; van beek, R.; Winsemius, H. Global flood risks under
changing climate and socioeconomic conditions. In Proceedings of the EGU General Assembly, Vienna,
Austria, 7–12 April 2013; Volume 15, p. 12373.

57. Bohman, L.R. Determination of Flood Hydrographs for Streams in South Carolina: Volume 2. Estimation of
Peak-Discharge Frequency, Runoff Volumes, and Flood Hydrographs for Urban Watersheds; Final Report; USGS:
Reston, VA, USA, 1992.

58. Volpi, E.; Fiori, A. Design event selection in bivariate hydrological frequency analysis. Hydrol. Sci. J. 2012, 57,
1506–1515. [CrossRef]

59. Pramanik, N.; Panda, R.K.; Sen, D. Development of design flood hydrographs using probability density
functions. Hydrol. Process. 2010, 24, 415–428. [CrossRef]

60. Sivapalan, M.; Wood, E.F.; Beven, K.J. On hydrologic similarity: 3. A dimensionless flood frequency model
using a generalized geomorphologic unit hydrograph and partial area runoff generation. Water Resour. Res.
1990, 26, 43–58. [CrossRef]

61. Xiao, Y.; Guo, S.L.; Xiong, L.H.; Liu, P.; Fang, B. A New Random Simulation Method for Constructing
Synthetic Flood Hydrographs. J. Sichuan Univ. 2007, 39, 55–60. (In Chinese)

62. Liu, Z. Studies on regulation modes of Meishan reservoir. China Water Resour. 2018, 9, 30–31. (In Chinese)

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00477-003-0125-9
http://dx.doi.org/10.1016/j.jenvman.2017.10.027
http://www.ncbi.nlm.nih.gov/pubmed/29059568
http://dx.doi.org/10.1016/j.ijdrr.2012.11.003
http://dx.doi.org/10.1080/02626667.2012.726357
http://dx.doi.org/10.1002/hyp.7494
http://dx.doi.org/10.1029/WR026i001p00043
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Site and Data 
	Study Site 
	Flood Event Characteristics 

	Model Development 
	Marginal Distributions Based on the Nonparametric Method 
	Peak–Volume Bivariate Distribution Based on Copula Theory 
	Concept of a Copula 
	Derivation of Copula “Or” and “And” Scenarios 

	Risk Assessment For Reservoir Flood Operations 
	Integration of Upstream and Downstream Risks 
	Quantization of Upstream Risk Ru 
	Quantization of Downstream Risk Rd 


	Results and Discussion 
	Marginal Distribution and Copula Distribution of Peak and Volume 
	Peak–Volume Combinations in Copula “Or” and “And” Scenarios 
	Flood Hydrograph Generation for Peak–Volume Combinations 
	Peak–Volume Combinations Selection with a 0.01 Frequency 
	Flood Hydrograph Simulation Based on Peak–Volume Combinations 

	Reservoir Flood Control Operations 
	Risk Assessment and Discussion 

	Conclusions 
	References

