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Abstract: The present paper covers the numerical prediction of the propagation and run-up of
a solitary wave over non-flat seabed with various slope angles using a refined MPS (moving
particle simulation) method. In the refined method, the corrected gradient model, new staggered
divergence-free model, moving-particle wall boundary treatment, and the sub-particle scale
turbulence model are applied to obtain more stable and precise results. The simulation results
by the developed method are compared with experimental results, and both results were in good
agreement. Especially, it can be seen that the complicated and fully-nonlinear behavior of the
free-surface motion during the turbulent processes of build-up, break-down, and overturning of the
waves are well reproduced by the developed method.

Keywords: staggered divergence-free model; moving particle simulation method; moving-particle
wall boundary condition; sub-particle scale turbulence model; solitary (tsunami-like) wave run-up;
wave breaking

1. Introduction

A tsunami, also known as a seismic sea wave, is a series of waves in a water body. These waves
are caused by the displacement of a large volume of water, generally in an ocean. As is well known,
large events, such as earthquakes, landslides, volcanic eruptions, and other mechanisms, can generate
a tsunami. By far, the most destructive tsunamis are generated from large shallow earthquakes with
an epicenter or a fault line near or on the ocean floor. When a tsunami occurs and approaches land,
waves tens of meters high can be generated. Such waves can have enormous destructive power as
seen during the 2011 earthquake off the Pacific coast of Tohoku, Japan [1].

Most of the damage, such as inland flooding and destruction of structures, caused by tsunami
are closely related to wave run-up, which is the maximum elevation of the wave above the mean sea
level, near the shoreline and its impact on coastal structures. Owing to the hydrodynamic similarities
between tsunamis and solitary waves, researchers often use the latter as the initial conditions to
investigate the tsunami run-up characteristics [2,3]. For decades, the run-up and inland flooding by
solitary waves have been studied through hydraulic experiments. However, it is difficult to obtain
experimental data when the wave breaks, and air bubbles and spray are generated. Therefore, various
numerical methods have been developed to predict the wave run-up by tsunami. Wave run-up is,
however, a complex process involving nonlinear build-up of the wave front, intensive wave breaking,
and strong turbulent flow, making numerical simulation challenging.
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Several techniques can be used to simulate nonlinear free surface behavior. These techniques
include SOLA-VOF (volume-of-fluid) [4], Level-Set [5], and marker-density function [6]. Most of these
techniques capture the free surface on the grid system and have been widely used. For both accuracy
and stability, various higher-order up-winding schemes are generally employed for the convection
terms when using the conventional Eulerian grid-based methods. However, the conventional
up-winding schemes, including the addition of artificial diffusion to the central differencing scheme,
can often have a decisive influence on the simulation results owing to the smearing of the free
surface and nonconservation of the water mass. To overcome these problems, the authors developed
a new grid-based multi-phase flow solver, applied this solver for 2-D and 3-D sloshing problems,
and showed that the developed solver and particle-based solver, the latter is described in the next
paragraph, effectively simulated violent flow behavior [7]. Recently, viscous waves have been
simulated numerically by means of FVM (finite volume method) and VOF with good results [8].

On the other hand, meshless methods, also often called particle methods, have become popular,
particularly for simulating nonlinear free-surface flows. Representative methods of this approach are
smoothed particle hydrodynamics (SPH) [9] and moving particle semi-implicit (MPS) simulation [10].
Because the convection term of the governing equation is directly calculated using the moving
particles in the fully Lagrangian approach, numerical diffusion does not occur, and the condition of
conservation of mass is perfectly satisfied. However, the particle method suffers from the problem
of generation of an unstable fluid flow field because of the temporal and spatial pressure oscillation.
Lee, Park, and Kim [11] improved the original moving particle simulation (MPS) and succeeded
in reducing this oscillation problem. The effectiveness of the improved method, which is called
Pusan-National-University-modified MPS (PNU-MPS), for violent free-surface flows was shown in [7].
There are many other schemes and algorithms developed to stabilize the pressure filed for MPS [12–17],
and some of them are adopted in the present study.

Solitary waves were numerically reproduced and studied based on SPH [18] and MPS [19].
Dao et al. [20] numerically simulated solitary wave propagation and run-up by using SPH and the
Eulerian nonlinear shallow water (Tsunami-N2) numerical models [21]. Comparisons of the simulated
wave height time series with the experimental ones showed that Tunami-N2 is suitable only for
nonbreaking waves, whereas the SPH method showed full capability to simulate the whole process of
wave run-up, including complex wave breaking and tremendous impact pressure. In addition, from
the recent numerical studies on solitary wave problems with complicated boundary shapes or the
interaction between fluid and a structure [22–24], it can be said that the particle method may be more
feasible and effective than the conventional grid method.

In the present study, the wave run-ups of solitary waves were numerically studied to investigate
the characteristics of tsunami run-up associated with a series of turbulent process of wave breaking
and sequential impinging by using the refined PNU-MPS method. In this method, a staggered
divergence-free model to stabilize the pressure field and moving-particle wall treatment to satisfy the
inclined wall boundary condition was employed for more accurate particle simulation.

2. Numerical Methods

2.1. Governing Equations

For incompressible turbulent flows, the governing equations are the continuity and particle-size
averaged Navier–Stokes (N–S) equations as shown in Equations (1) and (2), respectively.

Dρ

Dt
= 0 (1)

Dui
Dt

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j
−

∂(u′iu
′
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∂xj
+ Fi (2)
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where ρ is the density; t, the time; u, the velocity vector; p, the pressure; ν, the kinematic viscosity;
and F, the external force vector for unit mass. Subscript i indicates the i-direction component in the
Cartesian coordination system xi, and u′iu

′
j is the SPS (Sub-Particle Scale) Reynolds stress term for

turbulent flows modelled as [25].
The left-hand side of the N–S equation is directly calculated by the Lagrangian approach.

For the MPS simulation, all terms with differential operators should be replaced by the particle
interaction models.

2.2. Kernel Function

In the MPS method, the particle interactions are based on a kernel function. In this study,
the following kernel function, which is more robust and gives more reasonable results [11] than that
used in the original MPS [10], is employed:

w(|r|) =


(

1− |r|re

)3(
1 + |r|

re

)3
(0 ≤ |r| < re)

0 (re < |r|)
(3)

where r is the position vector between two particles and re represents the effective range of particle
interactions. The kernel becomes zero where |r| > re.

2.3. Gradient Model

A gradient vector between two particles l and m, of which position vectors and scalar quantities
are rl , rm and φl , φm, is defined as (φm − φl)(rm − rl)/|rm − rl |2. The gradient vector at particle l is
given by the weighted average of these gradient vectors. In this study, the corrected gradient model (4)
suggested by [16] and validated in [26] is adopted:

〈∇φ〉l = d
n0 ∑

m 6=l

[
φm−φl
|rm−rl |2

(rm − r)Clmw(|rm − rl | )
]

Clm =

 ∑ Vlm
wlmx2

lm
r2

lm
∑ Vlm

wlmxlmylm
r2

lm

∑ Vlm
wlmxlmylm

r2
lm

∑ Vlm
wlmy2

lm
r2

lm


−1

, Vlm = d
∑l 6=m wlm

(4)

where Clm is a corrective matrix to ensure the first-order completeness of the gradient model. Vlm
and wlm are a statistical volume of particle l and a kernel function where the distance between two
particles l and m is rlm

(
=
(

x2
lm + y2

lm
)1/2

= |rm − rl |
)

. Further, d is the number of space dimensions,

and n0 is the fixed particle number density for the incompressibility of the initial particle arrangement
condition. The particle number density is calculated using the following equation.

nl = ∑
m 6=l

w(|rm − rl |) (5)

2.4. Laplacian Model

Owing to its simplicity, the original Laplacian model [10] is adopted in the present study,
even though improved Laplacian models for the MPS method were recently proposed [12,13,15].
The diffusion of φ at particle l is described as follows:

〈∇2φ〉l =
2d
λn ∑

m 6=l
(φm − φl)w(|rm − rl |) (6)
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λ =

∑
m 6=l

w(|rm − rl |)|rm − rl |2

∑
m 6=l

w(|rm − rl |)
∼=
∫

V w(r)r2dv∫
V w(r)dv

(7)

where λ is the parameter that makes the increase in variance equal to that of the analytical solution.

2.5. Incompressibility Model with a Staggered Divergence-Free Model

Fluid density is represented by the particle number density. Thus, the continuity equation
shown in Equation (1) is fulfilled by maintaining the particle number density through the simulation.
This means that the particle number density n0 should be constant.

The algorithm of incompressibility for the PNU-MPS method [11] is similar to that of the SMAC
(simplified marker-and-cell) method in the grid system. Each time step involves two stages: in the
first stage, the temporary velocity components u∗l of particle l are obtained using the viscous terms,
external forces, and convection terms, which are explicitly calculated using the values un

l and rn
l in the

n-th time step.
In the second stage, the Poisson equation for pressure is calculated implicitly as suggested by

Tanaka and Masunaga [14].

∇2 pn+1
l =

ρ

∆t
∇ · u∗l + γ

ρ

∆t2
n0 − nn

l
n0 (8)

The blending parameter γ of the right-hand side of Equation (8) is less than 1.0, and the range
0.01 < γ < 0.05 is recommended in [11], while an alternative Poisson equation with dynamic coefficients
for error-compensating terms was proposed by [16].

The left-hand side of Equation (8) is discretized by the Laplacian model shown in Equation (6).
The first source term in Equation (8) is the divergence-free condition and is calculated by the following
equation in the original MPS method [10]:

〈∇ · u〉l =
d
n0 ∑

m 6=l

(um − ul) · (rm − rl)

|rm − rl |2
w(|rm − rl |) (9)

To calculate divergence of flow-fields more accurately, a new divergence model, in which velocity
components are arranged on a staggered-mesh in a grid-based sense, was introduced in the present
study. As shown in Figure 1, a virtual control volume is generated around each particle, and the
divergence at particle l can be calculated by Equation (10) using the staggered velocity components
estimated by Equation (11) at each control surface.
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〈∇ · u〉l =
u1E − u1W

2l0
+

u2N − u2S
2l0

(10)

u1E = ∑ (u1)w
(
| rE − rj|

)
/∑ w

(
| rE − rj|

)
, u1W = ∑ (u1)w

(
| rW − rj|

)
/∑ w

(
| rW − rj|

)
u2N = ∑ (u2)w

(
| rN − rj|

)
/∑ w

(
| rN − rj|

)
, u2S = ∑ (u2)w

(
| rS − rj|

)
/∑ w

(
| rS − rj|

) (11)

where l0 is the particle size, and subscripts E, W, N, and S indicate the centers of the east, west, north,
and south control surfaces, respectively, around particle l.

The second source term in Equation (8) is represented by the deviation of the particle number
density from the constant, and it implies that the particle number densities should be maintained
during the simulation.

Here, Equation (8) presents simultaneous equations expressed by a linear symmetric matrix; they
are solved by the iteration method. In the present study, the conjugate gradient method is employed
as the iterative solver.

After updating the pressure field, the velocity correction u′l is calculated by the following equation:

u′l = −
∆t
ρ
〈∇pn+1

l 〉 (12)

Finally, the velocity components and coordinates of particles in the (n + 1)-th time step are
calculated from the following equations:

un+1
l = u∗l + u′l (13)

rn+1
l = rn

l + ∆tun+1
l (14)

2.6. Boundary Conditions

2.6.1. Free-Surface Boundary Condition

Kinematic and dynamic boundary conditions are imposed on the free-surface particles.
The kinematic boundary condition can be directly satisfied by moving particles on the free surface. In
the present method, it is straightforward to track the free-surface particles because the location of the
free surface is easily obtained through a fully Lagrangian treatment of particles.

In the vicinity of the free surface, the particle number densities decrease because of the air region,
where no particles exist in case of a single-phase problem. Thus, on the free surface, the particles
satisfying the following simple conditions are considered:

nl < β1n0 (15)

Nl < β2N0 (16)

where β1 and β2 are parameters less than 1.0; Nl , the number of neighboring particles within the
effective range of particle interaction re, and N0, the maximum number of neighboring particles for
fully submerged particles in the initial distribution, i.e., 12 particles for 2D computation when re is
set to 2.1. In particular, the free-surface parameters β are used to judge whether the particles are on
the free surface, and β1 and β2 are set at 0.91 and 0.86, respectively, in this study; these values are
different from those used in [11]. By using this free-surface boundary condition, the fragmentation
and coalescence of free-surface flow was simulated.

Assuming that there is no viscosity at the free surface, the dynamic free-surface boundary
condition is satisfied by taking the atmosphere pressure (p = patm = 0) on the free-surface particles.
This condition is fulfilled in the procedure of solving Poisson equation (Equation (8)).
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2.6.2. Wall Boundary Condition

For the wall boundary condition, the fixed wall particles are set along the solid boundary in
both the original MPS [10] and PNU-MPS methods. Dummy particles are placed inside the solid
wall instead of being identified as free-surface particles. The wall particles are in direct contact with
both the fluid particles and dummy particles. They are employed in the pressure calculation to avoid
concentration of particles near the wall. To satisfy the no-slip condition, the velocity of wall particles
is set as zero. The velocity of the dummy particles is considered in the same manner as that of the
dummy cells in the grid method, and the pressure of those is set as zero.

However, if the wall boundary slopes, it is represented as stepped shape, which may decrease the
accuracy of the simulation, as shown in Figure 2a. To impose a more accurate wall boundary condition
and to reduce computational time, a moving-particle wall boundary condition was adopted in the
present research. In the method, ghost particles are placed symmetrically on the virtual wall boundary
to calculate the velocity and pressure of the fluid particles near the boundary as shown in Figure 2b.
The velocity of the ghost particle is considered in the same manner as that of the dummy cells in
the grid method, i.e., the ghost particle’s velocity components normal and tangential to the wall are
opposite values of corresponding fluid particle for the no-slip condition on the wall. The hydrostatic
pressure of the ghost particles is adjusted when a free surface exists.
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2.7. Turbulence Model

In the sub-grid scale (SGS) turbulence model for large eddy simulation (LES), eddies that can be
resolved by the computational grid are allowed to evolve according to the N–S equations and a model
is employed to represent the turbulence at the SGS by a particle-based method. The unresolved third
term in the right-hand side of Equation (2) is considered the SPS Reynolds stress and is modeled as
shown in Equation (15) [25].

− u′iu
′
j = 2νtSij −

2
3

kδij (17)

where δij, Sij = 1/2(∂uj/∂xi + ∂ui/∂xj), and k are the Kronecker’s delta, strain rate, and turbulent
kinetic energy, respectively.

The widely used Smagorinsky model [27] is employed here to formulate the turbulence eddy
viscosity as follows:

νt = (Cs∆)2|Sij| (18)

where Cs is the Smagorinsky constant (taken as 0.1 in the computations), ∆ is the particle-to-particle
spacing (the equivalent of mixing length in a grid method), and |Sij| is the local strain rate which can
be calculated from the resolved variables.
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3. Numerical Simulations and Discussion

3.1. Hydrostatic Pressure Test

First, the numerical models explained in the previous section are applied to the static pressure
problem inside a rectangular tank (Figure 3). The width and water depth of the tank are 0.4 m and
0.4 m, respectively, and 1700 particles, of which 1600 are water particles, are used for the simulation.
The total computational time is 3 s. The gravitational acceleration g is 9.81 m/s2, and water density is
1000 kg/m3. Viscous effects are included.
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Figure 3. Set-up for a hydraulic pressure test simulation.

Figure 4 shows the pressure fields simulated by the PNU-MPS method and the refined MPS
method adopting the staggered divergence-free model and the moving-particle wall boundary
treatment. As shown in the figure, no unnatural pressure oscillation was observed at least for the
hydrostatic pressure test by the refined PNU-MPS method (Figure 4b), even though there was no big
discrepancy in the time-histories of hydrostatic pressure probed at P1, i.e., bottom center position,
by the two methods as shown in Figure 5.
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3.2. Solitary Wave Run-Up (Constant Slope Angles)

As a preliminary test, solitary wave run-ups in a tank with a bottom of constant slope angle
were simulated under the same experimental conditions as those of Hall and Watts [28]. As shown in
Figure 6, a piston-type wavemaker is located on the left side of the numerical wave tank. Here, L is the
distance from the wavemaker, and then a flat bottom is followed by a constant slope angle θ. In the
figure, H and h are the maximum wave height and water depth, respectively. Simulation conditions
are listed in Table 1.
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Table 1. Simulation conditions.

L (m) Z (m) h (m) θ (◦) l0 (m) H/h (-)

1.5 0.3 0.1
90 0.00125, 0.0025, 0.005, 0.010 0.1, 0.2, 0.3, 0.4, 0.5,0.6
45

0.0025
0.05, 0.1, 0.2, 0.3, 0.4, 0.5

26 0.15, 0.163, 0.2, 0.25, 0.3, 0.35

To generate the target wave, the wave-maker moves in the horizontal direction, following
Equation (19).

X(t) =
H

k0h
tanh(Ct− X0) (19)

where k0

(
=
√

3H/4h3
)

and C
(
=
√

g(h + H)
)

are wave-number and wave-velocity, respectively.



Water 2019, 11, 462 9 of 19

By applying Newton’s law [29], Equation (19) can be discretized as Equation (20), and the stroke
of wavemaker S is expressed as shown in Equation (21).

Xn+1 = Xn − F(Xn)

dF(Xn)/dX
(20)

S =
√

16Hh/3 (21)

To investigate the influence of particle size on the results, numerical simulations were carried out
with varying particle size for the case of a slope angle of 90◦. Figure 7 shows the maximum run-up
R, which is nondimensionalized by water depth h, measured on the vertical wall with respect to the
change in particle size. As the wave height ratio H/h increases, the results are affected to a greater
extent by particle size. The simulated solitary wave profile for H/h = 0.3 was compared with the
analytic solution in Figure 8 where good agreement is shown. Furthermore, no severe oscillation is
observed in the dynamic pressure fields which are more sensitive than total pressure fields. Based on
the results and the computation time, a particle size of 0.0025 mm was chosen for further simulations.
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The maximum run-up estimated by the present method showed good agreement with the
experimentally measured values [28] as shown in Figure 9.
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The estimated run-ups for a slope angle of 45◦ are compared with those obtained by
experiments [28], run-up law (Equation (22)) [30] and numerical simulations using boundary integral
equation method (BIEM) [31], as shown in Figure 10. The tendency and the value of the estimated
run-up obtained by the BIEM are different from those determined experimentally; even the simple
theoretical law shows tendency similar to the experimental results. On the contrary, the present method
can estimate the run-ups very well.

R/h = 2.831 cot θ1/2(H/h)5/4 (22)
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As shown in Figure 11, the estimated run-ups by the present method and the run-up law show
tendencies similar to the experimental ones [3] for a slope angle of 26◦.
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To investigate the influence of moving-wall boundary treatment, which was newly developed
and adopted in the present study, on the computational results, numerical simulations with adopting
fixed-particle wall boundary conditions were also carried out. Figure 12 shows the comparison of
wave run-up profile over a slope angle of 26◦ in case of H/h = 0.35, simulated by (a) fixed- and (b)
moving-particle wall treatments previously explained in the chapter 2.6.2. As clearly seen in the
figure, the estimated maximum run up by adopting moving-particle wall treatment, which shows
good agreement with those of experiment and run-up law, is approximately 10% higher than that by
fixed-particle wall treatment. In Figure 13, the time-sequential wave profiles of present computational
results adopting moving-wall boundary treatment are compared with experimental ones [3] over a
slope of 26◦ in case of H/h = 0.163. Two results are in good agreement.
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3.3. Solitary Wave Run-Up (Varying Slope Angle)

Considering a more realistic case, numerical experiments were conducted under the same
experimental conditions [32] as those shown in Figure 14. The numerical wave tank consisted of
a wave-maker located at the left side of the tank, a flat bottom followed by three slopes (1:53, 1:150, and
1:13) and a vertical wall located at the right side. Still water depth in the flat section was d = 0.218 m.
Four wave gauges were distributed in the flume to measure surface elevation.
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In the simulations, two different solitary waves were generated by the movement of the
piston-type wave-maker. The target wave height hwave/h were 0.3 (case 1) and 0.7 (case 2).
The horizontal displacement and velocities of the paddle were expressed by Equations (23) and
(24), respectively. Further, the used coefficients for the cases are listed in Table 2.
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Sp = A1tanh[A2(t)− A3]− A4 (23)

Up = A1 A2sec h2[A2(t)− A3] (24)

Table 2. Parameters for generating solitary waves.

Case Breaking Target Wave Height (-) A1 (-) A2 (-) A3 (-) A4 (-)

1 N 0.3 12.85 2.93 9.42 −12.85
2 O 0.7 19.63 4.368 12.25 −19.63

First, the solitary wave in case 1 was numerically reproduced with varying particle size to check
its effect on the simulation results. The sizes of the simulations were 0.005 m and 0.0025 m; the
corresponding total numbers of the particles were 84,941 and 339,795, respectively.

Comparisons of time histories of wave height at gauges as obtained from numerical simulations
and experiment are shown in Figure 15. The incident and reflecting waves from the simulations with
two sizes of particles agree well with the experimental results for all gauges, except gauge 4 where
the wave height measured in the experiment decreases while that obtained in the simulation does not
decrease. Further, smaller particles showed slightly better results after reflection.

The snapshots of free-surface shapes with the distribution of turbulent kinetic energy are shown
in Figure 16. The solitary wave propagates and steepens (Figure 16a) and starts to break (Figure 16b)
at gauge 2 where the slope of the bottom is 1:55. From Figure 16c, it is found that wave-breaking
already occurred between gauges 2 and 3 and continued to propagate forward to the wall on the right.
In addition, the wave-breaking repeatedly occurs at gauges 3 and 4 where the slope of the bottom is
1:150 and 1:13, respectively. The wave front is composed by water sprays splashing forward instead of
a sharp interface (Figure 16c,d). On the whole, the breaking wave hits the wall, water splashes upward,
and the water elevation at the wall increases quickly; the main part of the reformed wave impacts
on the wall and creates an upward water jet (Figure 16e). Unlike case1, the wave height of reflecting
wave near gauge 4 (Figure 16f) is higher than that of incoming wave (Figure 16d). This is probably
resulted from that the splashed water overturned after hitting the wall (Figure 16e) and impinged to
the free-surface near gauge 4.
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breaking and impinging over a vertical slope for case 2.

Comparisons of time histories of wave height measured at gauges obtained from the simulations
and experiment are shown in Figure 17. The wave steepens when passing by gauge 2, as the
wave height ratio H/h increases because of the decrease in the water depth. The incident wave
heights measured at these gauges from the present simulation match the experimental data well.
Wave breaking is confirmed to occur somewhere between gauges 2 and 3 as sharp drops in wave



Water 2019, 11, 462 16 of 19

heights are observed in both numerical and experimental results. Although the incident wave is almost
twice that of case 1, the ratio of the maximum run-up height over the still water depth is lower. This can
be attributed to the large amount of the wave momentum that was dissipated through the breaking
before the wave hits the wall. Despite some discrepancies, good agreements are also observed between
the numerical and experimental data of the reflected waves except at gauge 4 where the interactions
among the incoming waves, reflecting waves, and returning fluids after hitting the vertical wall are
very complicated. Numerical investigations on the wave-breaking modeling involving free surface
turbulence model are needed to be introduced in near future.Water 2019, 11, x FOR PEER REVIEW 16 of 19 
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Figure 17. Time history of wave height for case 2 with particle sizes of 0.005 m (solid lines: numerical
simulated results, symbols: hydraulic experiments).

4. Conclusions

In the present study, numerical studies on the propagation and run-up of the solitary wave were
carried out to investigate the characteristics of run-up by tsunamis using the refined PNU-MPS method
by applying the corrected gradient model, new staggered divergence-free model, moving-particle
wall boundary treatment, and SPS turbulence model. By adopting the newly-developed divergence
model with moving-wall boundary treatment, very smooth pressure fields were obtained both for
hydro-static test and run-up simulations. The simulation results for wave run-ups were compared
with those obtained by experiment and analytic solution, which were in good agreement. It can be
said that the present method showed full capability to simulate the whole process of wave run-up,
including complex wave breaking with high accuracy.
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Nomenclature

A1, A2, A3, A4 coefficients for making target wave (-)
C wave-velocity (ms−1)
Clm corrective matrix for gradient model (-)
Cs Smagorinsky constant (-)
d number of space dimensions (-)
F external force for unit mass (ms−2)

E, W , N , S centers of the east, west, north, and south control surfaces of particle l (-)
g gravitational acceleration (ms−2)
h water depth (m)
H maximum wave height (m)

i i-direction component in the Cartesian coordination system xi (-)
k turbulent kinetic energy (m2s−2)
k0 wave-number (m−1)

l or m particle index (-)
l0 particle size (m)
n time step index (-)
n0 fixed particle number density for the incompressibility (-)
nl particle number density of particle l (-)
N0 maximum number of neighboring particles in the initial distribution (-)
Nl number of neighboring particles of particle l (-)
p pressure (Pa)
r position vector between two particles (m)
re effective radius for particle interactions (m)
rl , rm position vector of particle l and m (m)
rlm relative position vector between particle l and m (m)

rlm distance between particle l and m
[
=
(

x2
lm + y2

lm
)1/2

= |rm − rl |
]

(m)

R wave run-up (m)
Sij strain rate (-)
Sp stroke of wavemaker’s paddle (cm)
t time (s)
u velocity vector (ms−1)
u∗l temporary velocity components of particle l (ms−1)
u′l velocity correction of particle l (ms−1)
u′iu
′
j Reynolds stress term for turbulent flows (m2s−2)

Vlm statistical volume of particle l (-)
Up speed of wavemaker’s paddle (cms−1)
w( ) kernel function (-)
wlm kernel function between particle l and m [= w(|rm − rl |)] (-)
xlm distance between particle l and m in the x-direction (m)
X(t) position of wave-maker at time t (m)
ylm distance between particle l and m in the y-direction (m)
Z height of wavemaker’s paddle (m)
β1, β2 parameters for detecting free surface (-)
δij Kronecker’s delta (-)
∆ particle-to-particle spacing (m)
φlm difference of scalar quantities φ between particle l and m (m)
φl , φm scalar quantities φ at particles l and m (-)
γ blending parameter for incompressibility model (-)
λ parameter that makes the increase in variance equal to that of the analytical solution (-)
θ slope angle of bottom (◦)
ρ density (kgm−3)
ν kinematic viscosity (m2s−1)
νt eddy viscosity (m2/s−1)
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