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Abstract: It is of vital importance in statistical distributions to fit rainfall data to determine the
maximum amount of rainfall expected for a specific hydraulic work. Otherwise, the hydraulic
capacity study could be erroneous, with the tragic consequences that this would entail. This study
aims to present the Dagum distribution as a new statistical tool to calculate rainfall in front of frequent
statistical distributions such as Gumbel, Log-Pearson Type III, Gen Extreme Value (GEV) and SQRT-ET
max. The study was performed by collecting annual rainfall data from 52 meteorological stations
in the province of Badajoz (Spain), using the statistical goodness-of-fit tests of Anderson–Darling
and Kolmogorov–Smirnov to establish the degree of fitness of the Dagum distribution, applied to
the maximum annual rainfall series. The results show that this distribution obtained a flow 21.92%
greater than that with the traditional distributions. Therefore, in the Southwest of Spain, the Dagum
distribution fits better to the observed rainfall data than other common statistical distributions,
with respect to precision and calculus of hydraulics works and river flood plains.
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1. Introduction

River flooding and hydrologic studies are carried out ensuring that the waters will reach a certain
maximum level during statistic rainfalls with a certain return period. The possible level of flooding
and the waterworks are designed by means of different classical statistical distributions applied to
rainfall, using a series of maximum annual recorded rainfall data.

Some models of future scenarios suggest that climate change will involve a significant modification
in the distribution of extreme rainfall intensity [1].

There have been several significant flooding events in the southwest of Spain in the last few
decades. Particularly in Badajoz (Spain) in the year 1997, there were even casualties as a result of the
river Rivillas breaking its banks. Therefore, undoubtedly another solution must be sought to provide
a better fit to the historical rainfall data than those options currently available [2].

According to the scientific literature the statistical distributions most commonly used in Europe
and Spain are: The Gumbel distribution, developed by the German mathematician Gumbel [3] and
later applied to hydrology [4]; the Log-Pearson Type III distribution [5,6] put forward by several
authors for use in hydrology [7,8]; extreme values distribution (GEV) [9]; and the SQRT-ET max.
distribution [10,11], which best fits the characteristics of Spanish rainfall.
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The method most commonly used in Spain for the calculation of the flood flow (m3/s) for
a specific return period with the corresponding calculation changes is regulated by Spanish Highway
Instruction Norm 5.2-IC [12]. For the calculation of the flow this regulation proposes the use of
the Rational Method [13], which is based on the fact that the duration of the rainfall is greater than
or equal to the concentration time in the basin and, therefore, it determines maximum flow rate.
The rational method is used in Spain for small basins. For large ones, with concentration times of over
6 hours or more than 1 km2 (and up to 3000 km2), the modified method [8] was used, referred to by
hydrologists such as Ferrer (1993) [14]. Currently, with the development of the computational capacity,
more accurate hydro-meteorological models are widely used (e.g., software Hydrologic Modeling
System, HEC-HMS). In other words, both models are in use depending on the basin size or predictable
concentration times of more than 6 hours.

Panagoulia and Caroni (2011) [15] investigated the fit of generalized extreme value (GEV)
distributions to maximum precipitation over the Mesochora mountainous catchment in central-western
Greece. They observed that the stationary model was adequate for historical data on annual daily
maxima for 1972–1992 and also for 1 × CO2 for the period 1961–2000. However, the 2 × CO2 series for
2061–2100 required a cubic time trend in location to obtain a satisfactory fit.

Lang et al. (1999) [16] reviewed tests and methods useful for modeling the process of
over-threshold values, the choice of the threshold level, the verification of the independence of
the values and the stationarity of the process. The independence criteria for the extraction of
the peak-over-threshold events were recently modified by Onyutha (2017, 2019) [17,18] in terms
of the independency ratio, threshold, and the inter-event time. Despite the desirable properties
of the peak-over-threshold in the analyses of extreme events, this study focused on the annual
maximum series.

It must be pointed out that these distributions are limited, as they must rely on rainfall for
the desired return period. Additionally, there are scarce statistical distributions currently used in
hydrology. They only were conceived at the beginning of the last century and scientific methods have,
without doubt, moved on since then. For example, it seems that: (i) the distribution of Gumbel in
high return periods underestimates precipitation values, and creates uncertainty about the safety of
works designed with this criterion; (ii) the Log-Pearson Type III distribution does not underestimate
values, but has three estimable parameters; (iii) the SQRT-ET max distribution is perhaps more precise
and easier to apply, although it also has estimable parameters; (iv) the GEV distribution takes into
account the extreme values maximum annual rainfall of one day but not the intermediate values.
Other distributions, though not considered in this study, are Pareto [19] and Generalized Logistic [20].

However, the Dagum distribution [21] presents all the requisites to be used in hydrological studies.
For example, it is a continuous distribution of extreme and non-negative values of the continuous
variable. The Dagum distribution is used in different scientific fields, such as econometrics, economic
theory (particularly for model ranges as diverse as wealth distribution), the banking sector (by using the
distribution methods of aggregate losses) and the insurance sector (applied to analyze solvency) [22].

This distribution began to be used mostly in latitudes different from Europe for the calculation
of rainfall, Mielke and Johnson [23] verified that a distribution similar to that of Dagum is possible
in meteorology and hydrology. Later we found studies by Alam S. et al. (2014) [24], Alam and
Rahat (2015) [25] in rivers of Dhaka (Bangladesh), Crabbe (2014) [26] in climate change systems in
Charlottetown (Canada) and Mayooran and Laheetharan (2014) [27] in Colombo (Sri Lankan), possibly
as a consequence of the existing problems of rainfall and floods in those countries.

On the other hand, in the East of Spain, Pérez-Sánchez and Senent-Aparicio (2018) [28], studied 29
meteorological stations between 1993 and 2013, for a given daily rainfall, simulating scenarios —for all
those stations—with several distributions: Burr, Dagum, error, generalized extreme value, generalized
logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3,
Triangular, Weibull, and Wakeby. They observed that only the series of annual maximum dry spells
offer a good adjustment for all the weather stations, showing that the Wakeby distribution presented
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the best results. Finally, Domma and Condino (2017) [29] carried out a simulation study that shows
the good performance of the maximum likelihood estimators for finite samples.

However, Mayooran and Laheetharan (2014) [30] used the same form of Dagum as in this
work and compared it to other 44 different distributions. The parameters of the selected probability
distributions were used to generate random numbers for both actual and estimated maximum daily
precipitation. Log-Pearson 3 and Burr (4P) were found to be the best-fit probability model for the
annual period and the first inter monsoon study period, respectively [31].

The transmuted Dagum model provides the broader range of hazard behavior than the Dagum
model [32]. The parameters of the new model are estimated by maximum likelihood using
Newton Raphson approach and the information matrix and confidence intervals are also obtained.
Other simulation results showed that both the corrected Akaike information criterion and Bayesian
information criterion (BIC) always detected nonstationary, but the BIC selected the correct model
more often except in very small samples [33]. Simulation studies indicated that the bias corrected
and accelerated (BCa) method is best overall for the extreme percentiles that are often the focus of
interest [34].

Despite all the above, it is not understandable that such a small number of distributions are used
in professional practice in Europe and especially in Spain, considering that there are other efficient
distributions in the field of hydrology.

To demonstrate the effectiveness of the Dagum distribution, the adjustment of the statistical
distribution to the observed maximum annual rainfall values will be confirmed using the
Anderson–Darling [35] and Kolmogorov–Smirnov goodness-of-fit tests and comparing them with the
other distributions.

A statistical distribution must provide as good fit to the rainfall data as possible, since the better
the fit, the more precise the value for the calculated rainfall. It can be used in the sizing of waterworks
and flood plains.

This study intends to introduce the Dagum distribution as a new statistical tool to calculate
rainfall because it fits better to the observed rainfall data by testing it with a dataset from Spain.

2. Materials and Methods

Firstly, a review of the statistical distributions used in hydrology studies will be performed,
mainly in Europe and Spain, including the distribution of Dagum, with its fundamental characteristics.

The demonstration of the validity of this distribution in the field of civil engineering is analyzed
to check whether the Dagum distribution provides a better fit, according to the goodness-of-fit tests,
to the maximum annual rainfall distributions than the fit given by the commonly used distributions in
the province of Badajoz, using real maximum annual rainfall data from the meteorological stations in
that province.

2.1. Statistical Distribution Functions

The current method used in Spain to find out the flow rate that allows to dimension waterworks or
calculate a flood plain of a river is the Rational Method [13], (except for large basins size). This method
transforms the statistical rainfall associated to a certain return period (mm) to a flow rate (L/s):

Q = c× I × A (1)

where c is a constant called runoff coefficient; I is the maximum intensity of precipitation and A is the
area of the basin.
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According to Instruction 5.2-IC, variable I can be obtained from the IDF curves (intensity, duration,
frequency), with the following expression:

Ii =
Pd
24
× (

Ii
Id
)

280,1−D0,1
0,4

(2)

As it can be verified, the correct estimation of Pd is very important, since it is the maximum daily
precipitation obtained through the series of daily rainfall recorded in rainfall stations.

The rainfall associated with the return period is currently calculated using the statistical
distributions commonly used in hydrology: Gumbel, Log-Pearson Type III, SQRT-ET max and GEV.
Thus, starting from a historical record obtained from the rainfall stations the maximum value of rainfall
associated with a certain return period is determined (frequency).

The use of one of these statistical distributions is nearly always found in hydrological studies [12].

2.1.1. The Gumbel Distribution

According to Gumbel [36], the density function is:

F(x) = e−e−α(x−µ)
(3)

where x is the value of the random variable, F(x) represents the probability that rainfall is less than or
equal to x, and α and µ are parameters of the fit which depend on the mean and standard deviation of
the variable yi, which in turn depends on the sample size.

yi = −Ln Ln (
N + 1

i
)α =

SN
Sx

µ = x− yN
SX
SN

(4)

Being y and SN the mean and standard deviation of the variable yi, respectively, x and Sx the mean and
standard deviation respectively of the sample from the data of daily maximum values of annual rainfall:

x =
N

∑
i=1

xi
N

Sx = 2

√√√√ N

∑
i=1

(x− x)2

N − 1
yN =

∑N
i=1 yi
N

SN =
2

√
∑N

i=1
(
yi− yN

)2

N
(5)

The return period, T(x), is related to the distribution function, F(x), by Equation (6):

T(x) =
1

1− F(x)
(6)

After entering sample values, the analytical expression is reached Equation (7), after clearing x:

x = PT
24 = Pd = µ− 1

α
[Ln(−Ln

T(x)− 1
T(x)

)] (7)

where the expected daily maximum precipitation Pd is obtained for a given return period T(x).

2.1.2. The Log-Pearson Type III Distribution

The Log-Pearson density function is:

f (x) =
λβ(y − ε)β−1e−λ(y−ε)

xΓ(β)
(8)

being y = log(x) and Γ(β) the function Gamma and e the Euler’s number.
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β, λ and ε are the parameters of form, scale and position respectively and are drawn from the
equation (9–11):

β =

(
2

Cs

)2
(9)

Cs =
n

(n− 1)× (n− 2)× (Slog(x))
3 ×∑ (log(x)− log(x))

3
(10)

λ =
Sy√

β
(11)

The density function of this distribution is not integral, so it is resolved by parametric methods.

PT
24 = 10log (x)+K×Slog (x) (12)

2.1.3. The Distribution of SQRT-ET Max

The density function is as follows:

F(x) = exp
[
−k× (1+

√
α× x)× exp(

√
−α× x)

]
(13)

where F(x) is the probability that the value will be less than x, and k and α are parameters to be
estimated that depend on the mean and typical deviation of the data series.

2.1.4. The Gen Extreme Value (GEV)

The density function [10] is:

f (x) =
{

1
σ

e−(1+kz)−1/k
(1 + k × z})−1−k×z , k 6= 0, f (x) =

1
α

e−e−z, k = 0 (14)

where z = x − µ/α, and k, µ and α are the parameters of form, position and scale.

2.1.5. The DAGUM Distribution

The Dagum distribution has long been used in different fields such as economics, econometrics [37]
and social sciences. However, there are just a few applications found in hydrology. The importance of
using this distribution in hydrology is both its adoptability to extreme data and similar capability to
traditional distributions.

In probability theory, statistics and econometrics, the Dagum distribution is a continuous
distribution with a probability distribution defined on real positive numbers. The Dagum distribution
arose from several variations of a new model in the size distribution of personal incomes and is
associated above all with the study of incomes. This distribution can be used for three parameters
(Type I) and for four parameter (Type II). The density function is defined by:

F(x) =
αk
(

x−γ
β

)αk−1

β
(

1+
(

x−γ
β

)α)k+1 (15)

and the distribution function

f (x) =

((
1 +

x− y
β

)−α
)−k

(16)
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where k is a continuous shape parameter (k > 0), a is continuous shape parameter (a > 0), β is
a continuous scale parameter (β > 0) and γ is a continuous location parameter (γ = 0 yields the
three-parameter Dagum distribution) (γ ≤ x ≤ ¥). Figure 1 shows the density function of Dagum.Water 2019, 11, x FOR PEER REVIEW 6 of 15 
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2.2. Tests of Goodness

For the adjustment of the distributions the EasyFit software [38] was used, which adjusts
the probability laws to the rainy series and allows performing the goodness-of-fit tests by the
Kolmogorov–Smirnov, Anderson–Darling and chi-square methods.

2.2.1. The Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test [39] is a nonparametric, single sample, bi-sample and continuous
test that proves particularly useful for large samples and is therefore optimal for the study [40].

The Kolmogorov–Smirnov test considers two hypotheses:

H0: F(X) = Fs(X), H1: F(X) 6= Fs(X) (17)

where F(X) is the distribution function to be studied, and Fs(X) is the probability or theoretical
proportion of values that must be less than or equal to x assuming the proposed hypothesis to be true.

Sample: n independent observations.

Contrast statistic: |Dn| = maximum |Fs (X) − S (X) | (18)

2.2.2. The Anderson–Darling Test

The Anderson–Darling test has been widely used in hydrology due to its reliability in comparison
with other tests and its common use in samples with pronounced tails. This test is very interesting
compared to commonly used tests when faced with a variety of hydraulic engineering alternatives [41].

The Anderson–Darling test [42] uses the following formulation as a test statistic:

A2 = −N − S (19)

S =
N

∑
i=1

(2i− 1)
N

Ln
(

F(x)i + Ln
(
1− F(x)N+1−i

))
(20)

where A2 is the test statistic, N is the sample size, and F(x) is the frequency.
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2.3. Case Study

The present study was performed using annual rainfall data from 52 meteorological stations in
Badajoz, provided by the Spanish Meteorological Institute.

An exhaustive study was made using the statistical goodness-of-fit tests of Anderson–Darling
and Kolmogorov–Smirnov to establish the degree of fitness of the Dagum distribution applied to the
maximum annual rainfall series, and thus, be able to compare the fits of this distribution to those of
the classical statistical distributions such as Gumbel, SQRT-ET max, Log-Pearson type III and the GEV.

Adjustment tests are widely used in hydrology due to the high degree of precision they provide
when reflecting the fit of the statistical distribution to the rainfall data series available.

For the fit of the distributions, the software Easyfit was used. On introducing the maximum
annual rainfall data, the program gives the degree of fitness of each statistical distribution according to
the two goodness-of-fit tests used.

The 52 meteorological stations used in the analysis are shown in Table 1 and Figure 2.
These contained maximum and minimum temperatures and daily precipitation for the period between
1990 and 2015. The quality control procedures of the Algorithm Theoretical Basis Document (ATBD)
project, developed by the Royal Netherlands Meteorological Institute (KNMI) for the European Climate
Assessment & Dataset (ECA&D), have been applied [43]. The blended series passed the standard
homogeneity test, the Buishand range test, the Pettitt test and the Von Neumann ratio, as described by
Wijngaard et al. [44] and ECA&D. Some series presenting missing values were completed following the
recommendations of WMO [45] and Allen et al. [46]. The daily data from each station were processed
and analyzed. Coefficients of variation and maximum precipitations at each meteorological station are
also shown in Table 1.

The rainfall data from the 52 meteorological stations were introduced in EasyFit statistical
program. The function of density was applied to the rainfall histogram for its adjustment. Finally,
the goodness-of-fit to the rainfall histograms was studied as a function of the density of each
statistical distribution.
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Table 1. Meteorological stations used in the analysis.

N◦ Meteorological Stations CV (%) Pmax (mm) N◦ Meteorological Stations CV (%) Pmax (mm)

1 San Vicente Alcántara 19.6 112.6 27 GranjaTorrehermosa 25.9 116.5

2 Alburquerque 22.3 104.2 28 Maguilla 27.9 90.3

3 La Roca de la Sierra 27.8 140.6 29 Peraleda del Zaucejo 30.2 75.3

4 Badajoz (Sagrajas) 29.5 102.2 30 Puebla del Prior 27.6 181.8

5 Montijo (Institute) 32.5 135.8 31 Puebla de la Reina 22.3 173.1

6 Olivenza 30.5 126.3 32 Monterrubio 19.6 98.7

7 Cheles 19.7 79.1 33 Puerto Hurraco 22.6 106.2

8 Alconchel 25.9 121.3 34 Castuera 27.4 95.4

9 Villanueva del Fresno 22.2 116.2 35 Quintana de Serena 25.4 102.3

10 Valencia del Mombuey 19.9 188.6 36 Valle de la Serena 29.6 89.7

11 Zahinos 30.1 163.3 37 Alange 22.8 119.5

12 Higuera de Vargas 25.6 217.4 38 Manchita 23.6 109.3

13 Jerez de los Caballeros 26.8 171.4 39 Guareña 28.4 116.5

14 Barcarrota 27.5 157.1 40 Aceuchal 26.8 92.5

15 La Albuera 31.2 146.6 41 Mérida 30.9 107.8

16 Talavera la Real 29.8 116.5 42 Santa Amalia 26.1 143.1

17 Fregenal de la Sierra 19.8 108.2 43 La Coronada 20.9 135.4

18 Segura de León 18.5 182.1 44 Campanario 19.9 99.1

19 Cabeza la Vaca 16.9 164.9 45 Acedera 22.6 76.8

20 Fuente de Cantos 19.6 124.5 46 Orellana la Sierra 28.5 148.3

21 Puebla del Maestre 28.6 134.2 47 Casas de Don Pedro 30.2 92.2

22 Casas de Reina 25.8 149.8 48 Capilla/Baterno 29.4 122.3

23 Villagarcía de la Torre 27.6 162.8 49 Siruela 25.4 145.5

24 Berlanga 28.9 134.9 50 Herrera del Duque 27.2 130.3

25 Valverde de Lerena 30.2 141.6 51 Villarta de Montes 22.1 140.1

26 Azuaga 27.4 150.6 52 Helechosa 25.6 98.5
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3. Results

Figure 3 shows how the Dagum probability distribution fits the rainfall histogram in the town of
San Vicente de Alcántara.
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Figure 4 shows how the density function fits the cumulative histogram of a maximum annual
rainfall series. The density function of the statistical distribution is never going to reproduce the
exact values of the histogram as desired that is why the goodness-to-fit tests are used to check which
one provides the best fit to the rainfall data series when comparing various statistical distributions.
That is to say, the chosen statistical distribution should be the one that fits the rainfall histogram
more accurately.
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After fitting the statistical functions to the rainfall data, Figure 5 shows graphically how the
Dagum distribution is aligned with both the fit of Gumbel distribution and Log-Pearson type III
distribution, being difficult to decide the best, since the curves are very close together.
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Similarly, Figure 6 shows that it is difficult to determine which of the three distributions from all
the cumulative distribution function fits more accurately the histogram of rainfall data in San Vicente
de Alcántara.
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Figure 6. Cumulative distribution functions of Gumbel, Log-Pearson type III and Dagum distributions,
applied to the histogram of data from San Vicente de Alcántara.

As previously noted, it is difficult to draw any conclusions. Therefore, it is necessary to apply
the goodness-to-fit tests. In this study, we applied the test to four distributions, as shown in Table 2.
The distribution of Dagum clearly presents the lowest goodness-to-fit statistics in the San Vicente de
Alcántara, Jerez de los Caballeros and Herrera del Duque data, which means that it fits better than the
other three to the rainfall data.
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Table 2. Goodness-of-fit test results.

Distribution

San Vicente Alcántara Jerez de los Caballeros Herrera del Duque

Tests of
Anderson–Darling

Test of
Kolmogorv–Smirnov

Tests of
Anderson–Darling

Test of
Kolmogorov–Smirnov

Tests of
Anderson–Darling

Test of
Kolmogorov–Smirnov

Dagum 0.0490 0.1746 0.0421 0.0914 0.0391 0.1257

Log-Pearson
III 0.0584 0.1947 0.0624 0.1758 0.5958 0.1985

Gumbel 0.0603 0.2553 0.0587 0.1404 0.0687 0.0984

GEV 0.0564 0.1875 0.0590 0.0654 0.0593 0.1751

These tests were applied to rainfall data from the remaining 51 stations [47], in which the analysis
reflects a similar trend, and the statistical distribution Dagum presents lower goodness statistics
than the rest of the distributions. Other tests were taken into account to select the best distribution
model, such as the corrected Akaike information criterion and the Bayesian information criterion (BIC),
but finally the tests of Anderson–Darling and the test of Kolmogorov–Smirnov were chosen.

Subsequently, and to confirm the above results, tests of goodness-of-fit were carried out with
a series of statistical distributes (applied both in hydrology and in other disciplines), using the ten
stations with the largest sample size (among the 52 stations).

In Figure 7, it can see that Dagum appears as one of the most frequent distributions (within the
five best settings), just below the GEV distribution, but above the Gumbel and the Log-Pearson type
III distribution.
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Table 3 shows that the application of the Dagum Distribution to the cases of Cabeza la
Vaca, Monterrubio and Campanario obtain different flows to those of the traditional distributions.
For example, Cabeza la Vaca shows 21.92% flow greater than the most commonly used
distribution (Gumbel).

It can be deduced that the statistical distributions that provide the greatest rainfall are the Log-
Logistic 3P distribution followed by the Dagum distribution. The quantitative differences in relation
to the value provided by the Gumbel distribution, the most widespread in studies and projects,
are variable and in some cases are even considerable, up to 58% higher in the case of Jerez de los
Caballeros. Therefore, in order to be on the safety side, the Log-Logistic 3P distributions and the
Dagum distribution, must be used, since you can be completely sure that the flows and precipitations
derived from its application will be greater than the results obtained with the distributions of Gumbel,
SQRT-ET max and Log Pearson 3. It is important to emphasize that these distributions are the best fit
in the Kolmogorov–Smirnov, Anderson–Darling kindness tests and their weighting.
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Table 3. Maximum daily precipitation for different distributions.

Distribution

Cabeza la Vaca Monterrubio Campanario

P24T(mm) Variation Respect
Gumbel P24T(mm) Variation Respect

Gumbel P24T(mm) Variation Respect
Gumbel

GEV 158.47 0.43% 98.23 −12.96% 89.03 −0.15%

Dagum 192.37 21.92% 123.04 9.28% 112.77 26.47%

Log-Logistic 3P 188.97 19.76% 124.04 9.90% 116.17 30.29%

Fechet 3P 151.64 −3.90% 110.94 −1.69% 85.35 −4.28%

Pearson 5 3P 146.19 −7.35% 100.38 11.05% 86.47 −3.02%

Gumbel 157.79 - 112.85 - 89.16 -

SQRT-ET max 164.90 4.51% 118.80 5.27% 93.45 4.81%

Log Pearson Type III 145.01 −8.10% 97.79 −13.34% 84.97 −4.71%

Regional analysis 172.00 9.00% 118.00 4.56% 98.00 9.91%

4. Discussion

It is important to denote that the comparison of distributions is complicated. Goodness of fit tests
are not very powerful and with the typical sample sizes available in practice it is rarely possible to reject
statistically some distribution candidates. Therefore, the comparison must be done on a larger scale [48].
Thus, in this case study, sites located throughout the province considered are sufficiently numerous and
evenly distributed to obtain significant results. However, these results cannot be extended elsewhere,
that is, the choice of a particular distribution at a given place should be carefully studied and selected.
Although some distributions, such as the Gumbel or Log-Pearson type III, have been extensively
used in many hydrologic studies and without any additional consideration related to particular
conditions of the basins, the inclusion of the spatial factor would reduce the uncertainty concerning
the choice of the model [49]. Physical factors such as large-scale meteorological phenomena could
create regional probabilities dependencies which have to be accounted for. In consequence, as it
was previously indicated, each region or zone should be initially characterized for the choice of the
statistical distribution, which better explains the expected rainfall events [50].

As a result of the analyses carried out in the 52 locations throughout the province of Badajoz,
the Dagum model scored better than the other models which have been traditionally used in hydrologic
and hydraulic works. There are few previous studies where the Dagum distribution had been used for
these topics.

The Dagum model was found to overestimate a great number of times when compared to
the Gumbel distribution. Therefore, the Dagum distribution seems to be the most recommendable
distribution for a conservative design and for to plan accordingly [51].

Because of the ample availability of computers nowadays, many statistical distributions have to be
considered when a single-site flood frequency analysis is done [52]. Moreover, as more data are being
accumulated since the recent and coming years are providing more new information, new analyses
could be performed with regionalized parameters of proven model for each location [53]. In this
sense, the consideration of the Dagum model can provide more accurate results in many places of
southwestern Spain that those obtained using traditional distributions. The evaluation and simulation
of rainfall scenarios indicate that changes in rainfall characteristics have a considerable impact on
the built drainage system and that Low Impact Development (LID) practices can adequately control
flooding [54].

Future work should aim at verifying the applicability of the Dagum distribution in other regions
of southern Europe.

5. Conclusions

On analyzing the maximum annual rainfall data from 52 stations (strategically located
throughout the zone) and treating them by using the goodness-of-fit tests of Anderson–Darling
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and Kolmogorov–Smirnov, it is confirmed that, in addition to the distributions traditionally used
in hydrology (such as the Gumbel, Log-Pearson type III and the EVD distribution), there is another
statistical distribution, the Dagum, which can be used in hydrology and meets the formulation of
extreme values (outliers) and fits better to the rainfall histograms.

Based on the statistical data from the study, it is concluded that the Dagum distribution presents
lower statistics in the two goodness-of-fit tests mentioned above and, therefore, adjusts significantly
better to the histograms of the maximum annual rainfall data than the commonly used distributions.
Particularly, this new statistical distribution is more appropriate to reflect the rainfall regime in Badajoz.

In conclusion, the Dagum statistical distribution is proposed to improve hydrological studies
in Badajoz, since the rainfalls given by its density function are more precise (as shown by the
goodness-of-fit tests) than the rainfall data calculated through classical statistical distributions. Its use
in the professional field would allow for greater flows rates to be considered when designing drainage
systems and studies of flooding, thus preventing future possible rainfall damage.
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