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Abstract: A statistical downscaling approach for improving extreme rainfall simulation was proposed
to predict the daily rainfalls at Shih-Men Reservoir catchment in northern Taiwan. The structure of
the proposed downscaling approach is composed of two parts: the rainfall-state classification and
the regression for rainfall-amount prediction. Predictors of classification and regression methods
were selected from the large-scale climate variables of the NCEP reanalysis data based on statistical
tests. The data during 1964–1999 and 2000–2013 were used for calibration and validation, respectively.
Three classification methods, including linear discriminant analysis (LDA), random forest (RF),
and support vector classification (SVC), were adopted for rainfall-state classification and their
performances were compared. After rainfall-state classification, the least square support vector
regression (LS-SVR) was used for rainfall-amount prediction for different rainfall states. Two rainfall
states (i.e., dry day and wet day) and three rainfall states (dry day, non-extreme-rainfall day,
and extreme-rainfall day) were defined and compared for judging their downscaling performances.
The results show that RF outperforms LDA and SVC for rainfall-state classification. Using RF for
three-rainfall-states classification and LS-SVR for rainfall-amount prediction can improve the extreme
rainfall downscaling.
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1. Introduction

Statistical precipitation downscaling is the process of making a link between a set of large-scale
atmospheric variables (i.e., mean sea level pressure, vorticity, and geopotential height) and predictand
(i.e., local precipitation). The large-scale predictors are essential for climate change research, but they
do not actually provide a truthful presentation of the climate in a small basin. Generally, they have
a spatial resolution coarser than 2 by 2 degrees in latitude and longitude, whereas hydrologists are
more concerned with the catchment scale which is usually up to a few hundred square kilometers.
This leads to a need for downscaling large-scale predictors to local precipitation. The NCEP reanalysis
data set is a continually updated globally gridded data set that represents the state of the Earth’s
atmosphere, incorporating observations and numerical weather prediction model output from 1948 to
present. The NCEP reanalysis data is commonly used to develop a statistical relationship between
large-scale climate factors with local rainfall for building (or training) downscaling models. The GCM
outputs under climate change scenarios are then used as the inputs of downscaling models to project
future precipitations for studying climate-change impacts [1]. The current study used the NCEP
reanalysis data for building the proposed downscaling approach.
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To date, there are many methods proposed for statistical downscaling using different
techniques such as stochastic weather generators [2–5], weather typing method [6–8], resampling
methods [9–11], and regression methods. The regression methods are attracting more attention and
preferred to apply due to their flexibility and straightforwardness. There are numerous variant
approaches of regression-based downscaling techniques such as logistic regression model [12],
local polynomial regression [13], linear and non-linear regression [14], canonical correlation
analysis [15], principal components [16], artificial neural network [17,18], support vector machine
(SVM) [19–22], and beta regression [23].

Among these statistical downscaling methods, SVM shows its elegant and remarkable advantages
comparing to the other methods. There are several studies which proved that SVM and variants
of SVM are superior to ANN [19,24], multivariate analysis, and the Statistical DownScaling Model
(SDSM) [24]. For instance, SVM performed better than ANN in predicting groundwater levels [25],
runoff and sediment yield simulation [26], flood stage prediction [27], rainfall–runoff modeling [28],
river flow forecasting [29,30], long-term discharge prediction [31], and modeling discharge-suspended
sediment relationship [32]. SVM is also superior to multiple linear regression (MLR) in streamflow
forecasting [33], autoregressive moving average (ARMA) in discharge prediction [31,34], autoregressive
integrated moving average (ARIMA) in streamflow prediction [35], neural networks (NN), and MLR
in daily water demand and inflow forecasting [36] and prediction of reservoir inflows [37].
In addition, SVM performed better than NN and empirical models in modeling daily reference
evapotranspiration [38], neuro fuzzy inference system (ANFIS) in river flow forecasting [29] and daily
forecasting of dam water levels [39], and genetic programming (GP) in forecasting monthly discharge
time series [34].

However, many researches for downscaling precipitation at the catchment scale using
SVM [19,24,40–43] conclude that the downscaling methods based on SVM performed well for
normal rainfall but unsatisfactorily for extreme rainfall (i.e., underestimated extreme-rainfall amount).
Tripathi et al. [19] detected that monthly precipitation downscaling by SVM could not reproduce
the high rainfall observed in the historical records since the regression-based statistical downscaling
models regularly cannot explain entire variance of the downscaled variable. They suggested that
investigation of more large-scale predictor variables and a much longer validation period might likely
provide more insight into this problem. A similar finding about the inability of SVM to mimic high
rainfall has also been reported by Anandhi et al. [40].

In Taiwan, the downscaling methods based on SVM have been proposed by Chen et al. [24] and
Yang et al. [41] for Shih-Men Reservoir catchment in northern Taiwan. The main structure of their
proposed downscaling approach comprises the rainfall-state classification and the regression for rainfall
amount. Chen et al. [24] used support vector classification (SVC) and linear discriminant analysis (LDA)
for rainfall-state classification, while Yang et al. [41] only used LDA. Both the studies use the support
vector regression (SVR) for the rainfall-amount prediction for wet days. Chen et al. [24] compared
the performance of SVM to linear multiple regression and SDSM. The downscaled results showed
that the SVM produced more accurate daily precipitation than SDSM and linear multiple regression.
Yang et al. [41] found that the proposed downscaling model performed well in capturing the magnitude
and variation of daily precipitations below 50 mm/day but underestimated the extreme rainfalls.

The aforementioned weakness of SVM in downscaling extreme rainfall inspires the current
study to propose a modified statistical downscaling approach based on the methods developed
by Chen et al. [24] and Yang et al. [41] for improving the extreme rainfall downscaling. The main
structure of the proposed downscaling approach comprises the rainfall-state classification and the
regression for rainfall-amount prediction. Three classification methods, including LDA, random forest
(RF) and SVC, were adopted for rainfall-state classification and their performances were compared.
The least square support vector regression (LS-SVR) was used for the rainfall-amount prediction for
different rainfall states. Two rainfall states (i.e., dry day and wet day) and three rainfall states (dry day,
non-extreme-rainfall day, and extreme-rainfall day) were defined and compared for judging their
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downscaling performances. Through the above comparisons, the optimal classification method with
proper rainfall-state delineation can be found and linked with the rainfall-amount prediction method
for improving the extreme rainfall downscaling.

The remaining part of this paper is organized as follows. Section 2 “Study Area and Data
Set” provides a summary description of the study area and the data set including local rainfall and
large-scale predictors. Section 3 “Methodology” describes three types of the proposed approach
(i.e., Approach Type-I, Approach Type-II and Approach Type-III) and briefly introduces LDA, RF,
and LS-SVR. Section 4 “Results and Discussion” describes the analysis results of rainfall-states
classification and regression for rainfall-amount prediction by different classification methods and
types of approach. Comparison of different classification methods (i.e., LDA, RF, and SVC) and
different types of approach were made. Finally, Section 5 "Conclusions and Future Work” concludes
the paper.

2. Study Area and Data Set

Shih-Men Reservoir, located in the Danshuei River basin in northern Taiwan, was completed in
1964 as a multifunction reservoir for water supply, agriculture, hydropower generation, and flood
control. The Shih-Men Reservoir is a major reservoir with a storage capacity of around 3 × 108 m3.
Its upstream catchment (Figure 1) has an area of 763 km2, and the basin ground elevation varies from
209 to 2609 meters. The average annual rainfall of the catchment is around 2250 mm.
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Taiwan’s climate is governed by the East Asian Monsoon, which is divided into the summer and
winter monsoons. Therefore, the Water Resources Bureau in Taiwan divided a year into the wet season
(May–October) and the dry season (November–April) based on the summer and winter monsoons,
respectively. The proportion of rainfall during the wet and dry seasons is about 7:3. The long-term
daily rainfall from 1964 to 2013 at 10 rain gauges in the study area were collected to serve as the dataset
(Table 1). The daily areal rainfalls in Shih-Men Reservoir catchment were calculated by using the
Thiessen polygons method which determined the weights of all the stations listed in Table 1.

The daily data of 28 climate variables at the nearest grid point (i.e., Grid #2 at 122.5◦ E,
25◦ N in Figure 1) from 1964 to 2013 are obtained from the re-analysis data of National Centre
for Environmental Prediction (NCEP)/National Centre for Atmospheric Research (NCAR) as listed in
Table 2. These climate variables were used as the candidates of model predictors. The areal rainfalls
and the NCEP reanalysis data during 1964–1999 (calibration period) and 2000–2013 (validation period)
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were used for building statistical downscaling models and for examining and comparing downscaling
results, respectively.

Table 1. Information on rain gauges in Shih-Men reservoir catchment.

Station Name Station Code
Location

Elevation (m) Areal Weight
Longitude (◦E) Latitude (◦N)

Shih-Men 21C050 121.23 24.81 255 0.018
Ba-Ling 21C070 121.39 24.69 1220 0.075
Kao-Yi 21C080 121.35 24.71 620 0.127

Ka-La-Ho 21C090 121.39 24.64 1260 0.123
Chang-Hsing 21C110 121.30 24.80 350 0.151

San-Kuang 21C150 121.36 24.67 630 0.038
Hsiu-Luan 21D140 121.28 24.62 840 0.045

Yu-Feng 21D150 121.29 24.66 780 0.049
Hsin-Pai-Shih 21D160 121.25 24.59 1620 0.115
Chen-His-Pao 21D170 121.30 24.58 630 0.259

Table 2. Large-scale climate factor (from NCEP).

No. Acronym Predictor

1 Mslp Mean sea level pressure
2 p5_z Vorticity at 500 hPa height
3 p8_z Vorticity at 850 hPa height
4 p300 300 hPa geopotential height
5 p500 500 hPa geopotential height
6 p850 850 hPa geopotential height
7 p_f Near surface geostrophic airflow velocity
8 p_z Near surface vorticity
9 r500 Relative humidity at 500 hPa height

10 r850 Relative humidity at 850 hPa height
11 rhum Near surface relative humidity
12 shum500 500 hPa specific humidity
13 Temp Near surface air temperature
14 uas Zonal surface wind speed
15 ua_700 700 hPa zonal wind speed
16 ua_850 850 hPa zonal wind speed
17 pr_wtr Precipitable water
18 lftx Surface lifted index
19 prec Precipitation total
20 dswrf Surface downwelling shortwave flux in air
21 dlwrf Surface downwelling long flux in air
22 vas Meridional surface wind speed
23 ta_700 700 hPa temperature
24 ta_850 850 hPa temperature
25 ta_925 925 hPa temperature
26 va_925 925 hPa meridional wind speed
27 uswrf Surface upwelling shortwave flux in air
28 ulwrf Surface upwelling longwave flux in air

3. Methods

3.1. Proposed Approach

The main structure of the proposed downscaling approach comprises rainfall-state classification
and regression for rainfall-amount prediction. Three classification methods, including LDA, RF,
and SVC, were adopted for rainfall-state classification and their performances were compared.
The LS-SVR was used for the rainfall-amount prediction for different rainfall states. Two rainfall
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states (i.e., dry day and wet day) and three rainfall states (i.e., dry day, non-extreme-rainfall day,
and extreme-rainfall day) were defined and compared for judging their downscaling performances.
Three types of approach were constructed and described as follows.

3.1.1. Approach Type-I

Two rainfall states (i.e., dry day and wet day) are defined for rainfall-state classification by using
LDA, RF and SVC. The classification performances of LDA, RF, and SVC are compared to decide the
best classification method for linking to the rainfall-amount prediction method. The LS-SVR is used
for rainfall-amount prediction for the rainfall state of "wet day". The flowchart of Approach Type-I is
shown in Figure 2. Dry day and wet day are defined as rainfall = 0 mm/day and rainfall > 0 mm/day,
respectively. Previous researches used the SVC and LDA [24] and only LDA [41] for rainfall-state
classification and the SVR for rainfall-amount prediction for the rainfall state “wet day”.
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3.1.2. Approach Type-II

Two-steps classification is used for this type. The first step defines two rainfall states (dry day and
wet day) and uses LDA, RF, and SVC for rainfall-state classification. For the second step, the rainfall
state of “wet day” is further divided into two states “non-extreme-rainfall day” and “extreme-rainfall
day” and the LDA, RF and SVC are also used for rainfall-state classification and compared to judge their
performances. Non-extreme-rainfall day and extreme-rainfall day are defined as rainfall < 50 mm/day
and rainfall ≥ 50 mm/day, respectively. The threshold of 50 mm/day is defined by the Central
Weather Bureau of Taiwan, which is based on the historical cases for catchments where occurred
torrents, landside, or rockfall with a rainfall greater than the threshold. After rainfall-state classification
by the best classification method, the LS-SVR is used for rainfall-amount prediction for the rainfall
states of “non-extreme-rainfall day” and “extreme-rainfall day”. The flowchart of Approach Type-II is
shown in Figure 3.
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3.1.3. Approach Type-III

One-step classification for three rainfall states (dry day, non-extreme-rainfall day, and extreme-rainfall
day) is used for this type, which means a day is directly classified into one of the three rainfall states.
Three rainfall states are defined as Approach Type II and LDA, RF, and SVC are used for rainfall-state
classification and compared to judge their performances. Coupled with the best classification method,
the LS-SVR is used for rainfall-amount prediction for the rainfall states of “non-extreme-rainfall day”
and “extreme-rainfall day”. The flowchart of Approach Type-III is shown in Figure 4.

The above three types of approach (i.e., Approach Type-I, Approach Type-II, and Approach
Type-III) are used for daily rainfall downscaling and their performances are compared. Through the
comparisons, the optimal classification method with proper rainfall-state delineation can be found and
linked with the rainfall-amount prediction method for improving the extreme rainfall downscaling.



Water 2019, 11, 451 7 of 17

Water 2019, 11, x FOR PEER REVIEW 7 of 19 

 

 

Figure 3. Flowchart of Approach Type-II. 

 

Figure 4. Flowchart of Approach Type-III. 

3.2. Linear Discriminant Analysis 

Figure 4. Flowchart of Approach Type-III.

3.2. Linear Discriminant Analysis

LDA, originally developed by Fisher (1936) [44], finds a linear discriminant function L to determine
the class of a predictand based on a set of n predictors (x1, x2, . . . , xn).

L = a0 + a1x1 + a2x2 + . . . + anxn (1)

The parameters (a0, a1, a2, . . . , an) are calibrated from the training data of predictors and a
predefined class label (for example, +1 and −1) of the predictand. The linear discriminant function L is
then used to predict the class of a new predictand according to the estimated class label. In the current
study, LDA was performed by the “fitcdiscr” function provided by MathWorks.

3.3. Random Forest

Random forests (RFs) are very flexible and powerful ensemble classifiers based on decision trees
which were firstly developed by Breiman (2001) [45–47]. Very recently, there has been increasing interest
in RF and it was applied in different areas to solve classification problems [48–51]. However, there are
few applications of RFs to classify rainfall states. The only such application of RFs was recently
proposed to predict rainfall occurrence in Besut station, on the east coast of Peninsular Malaysia [52].
RFs have two calibration parameters which consist of the number of variables (mtry) and the number
of trees (ntree). In the present study, the value of mtry which equal the square of number of features
were implemented for each classification model. Such value can generally give near optimum results
for classification tasks [53]. The value of ntree ranging from 0 to 2000 was used for searching the
optimal value (ntree = 500) adopted in this work. The randomForest package [54] is used in this study.

3.4. Least Square-Support Vector Machine

The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of
standard SVM, which provides a computational advantage (reduces the computational burden) over
standard SVM by converting quadratic optimization problem into a system of linear equations [55].
In the LS-SVM algorithm, a solution is obtained by solving a linear set of equations instead of solving
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a quadratic programming problem involving standard SVM. The LS-SVM can be used for both
classification and regression problems. In the current study, the LS-SVR is used for constructing rainfall
state classification and the daily rainfall downscaling models. The description of SVC for rainfall states
classification can be found in more detail in Chen et al. [24]. The brief description on the LS-SVR is
as follows.

By considering inputs xi (predictors: climate variables) and output yi (predictand: local rainfall).
According to the LS-SVR method, the nonlinear LS-SVR function can be expressed as

f (x) = wT ϕ(x) + b (2)

where f indicates the relationship between the climate variables (predictors) and local rainfall
(predictand), w, ϕ and b are the m-dimensional weight vector, mapping function and bias term,
respectively [56].

Using the function estimation error, the regression problem can be expressed regarding structural
minimization principle as

minJ(w, e) =
1
2

wTw +
γ

2

m

∑
i=1

e2
i (3)

which is subjected to the following constraints:

yi = wT ϕ(xi) + b + ei(i = 1, 2, . . . , m) (4)

where γ refers the penalty term and ei is the training error for xi.
To find the solutions of w and e, the Lagrange multiplier optimal programming method is

employed to solve Equation (3). The objective function can be determined by altering the constraint
problem into an unconstraint problem. The Lagrange function L can be expressed as

L(w, b, e, α) = J(w, e)−
m

∑
i=1

αi

{
wT ϕ(xi) + b + ei − yi} (5)

where αi are the Lagrange multipliers.
Taking into account the Karush–Kuhn–Tucker (KKT) conditions [56], the optimal conditions can

be obtained by taking the partial derivatives of Equation (5) with respect to w, b, e and α, respectively as

w =
m
∑

i=1
αi ϕ(xi)

m
∑

i=1
αi = 0

αi = γei
wT ϕ(xi) + b + ei − yi = 0

(6)

Thus, the linear equations can be derived after elimination of ei and w as[
0 −YT

Y ZZT + I/γ

][
b
α

]
=

[
0
1

]
(7)

where Y = (y1, . . . , ym), Z = (ϕ(x1)
Ty1, . . . , ϕ(xm)

Tym), I = (1, . . . , 1), α = (α1, . . . , αl)

By defining kernel function K(x, xi) = ϕ(x)T ϕ(xi), i = 1, . . . , m, which is satisfied with Mercer’s
condition (the readers could refer to the paper of Suykens et al. [57] to get more explanation of Mercer’s
condition). As a result, the LS-SVR can be represented as

f (x) =
m

∑
i=1

αiK(x, xi) + b (8)
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In this study, the commonly used RBF kernel function given in Equation (9) was used.

K(x, xi) = exp(−
∣∣∣∣∣∣x− xi

∣∣∣∣∣∣2/2σ2) (9)

Before calibrating the LS-SVR, the values of local rainfall and predictor variables were normalized
by their respective means and standard deviations. The normalized values of local rainfall and
predictor variables were then utilized for calibrating the LS-SVR. The LS-SVR needs the calibration
of two parameters: the penalty term (γ) and the kernel width (σ). In the training period of LS-SVR,
the grid-search method [58] is used to estimate optimal parameters. The grid search method can yield
an optimal parameter set and employing a cross-validation procedure can prevent the downscaling
model from over-fitting. In the current study, the LS-SVR was performed by the package provided by
MATLAB toolbox (http://www.esat.kuleuven.ac.be/sista/lssvmlab).

4. Results and Discussion

4.1. Rainfall-State Classification

For Approach Type-I, the calibration data (including the NCEP reanalysis data and local
rainfalls) were separated into two groups (i.e., wet-day group and dry-day groups) according to
daily local rainfalls in both dry and wet seasons. The two-sample Kolmogorov–Smirnov test was then
performed to choose suitable predictors of the NCEP reanalysis data. This study used the two-sample
Kolmogorov–Smirnov test to select predictors of the NCEP reanalysis data that are distinguishable
between the dry-day group and the wet-day group. The predictors which showed a significant
difference between two groups (with a significance level of 0.01) were considered as the suitable
predictors for classification models. In the current study, the test was performed by the “kstest2”
function provided by MathWorks. The selected predictors after testing are mean sea level pressure
(mslp), vorticity (p_z, p5_z, and p8_z), geopotential height (p300, p500, and p850), relative humidity
(r500, r850, and rhum), zonal wind speed (ua_700 and ua_850), meridional wind speed (vas and
va_925), and temperature (ta_700, ta_850, and ta_925). The above selected predictors for Approach
Type-I were also used for Approach Type-II and Approach Type-III.

For Approach Type-II, after conducting the same aforementioned process of Approach Type-I, the
given wet days were further classified into non-extreme-rainfall-day group and extreme-rainfall-day
group. For Approach Type-III, the calibration data (including the NCEP reanalysis data and local
rainfalls) were separated into dry-day, non-extreme-rainfall-day, and extreme-rainfall-day groups
according to the daily local rainfalls. Because there are only few extreme rainfalls during the dry season,
the classification of non-extreme-day and extreme-day was only conducted during the wet season.

The accuracies of (1) the dry-day/wet-day classification for Approach Type-I, (2) the
non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-II and (3) the
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-III can be
estimated respectively as

Accuracy(wet/dry) =
D|D + W|W

D + W
(10)

Accuracy(non− extreme/extreme) =
N|N + E|E

N + E
(11)

Accuracy(dry/non− extreme/extreme) =
D|D + N|N + E|E

D + N + E
(12)

where D is the number of dry days, W is the number of wet days, D|D indicates the number of days
that a dry day is correctly classified as a dry day, W|W indicates the number of wet days that a wet
day correctly classified as a wet day, N is the number of non-extreme-rainfall days, E is the number of
extreme-rainfall days, N|N indicates the number of days that a non-extreme-rainfall day is correctly

http://www.esat.kuleuven.ac.be/sista/lssvmlab
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classified as a non-extreme-rainfall day, and E|E indicates the number of extreme-rainfall days that an
extreme-rainfall day correctly classified as an extreme-rainfall day.

Since the formulas for calculating the classification accuracies for Approach Type-I (Equation (10)),
Approach Type-II (Equations (10) and (11)) and Approach Type-III (Equation (12)) are different,
the results in Table 3 were only used for comparing the classification performances by different
methods (LDA, SVC, and RF) in each approach, not for judging which type of approach is the best in
the classification step.

Table 3. Classification accuracy (%) of dry/wet day and extreme-rainfall/non-extreme-rainfall day.

Type of Approach LDA RF SVC

Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season

Type-I 75.38 75.39 79.35 75.64 74.00 72.42
Type-II Step 1 1 75.38 75.39 79.35 75.64 74.00 72.42
Type-II Step 2 95.26 97.62 95.31 98.33 93.06 96.83

Type-III 66.72 68.85 74.46 69.71 69.44 68.63
1 Note: Step 1 in Approach Type-II is similar to Approach Type-I. LDA: linear discriminant analysis; RF: random
forest; SVC: support vector classification.

The performances of (1) the dry-day/wet-day classification for Approach Type-I, (2) the
non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-II and (3) the
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-III are shown
in Table 3. There are three methods (i.e., LDA, RF, and SVC) which were used for classifying
rainfall states in both wet and dry season. The accuracies of dry-day/wet-day classification are
generally higher than 72%. The performance of the dry-day/wet-day classification models in
the wet season are better than those in the dry season for all three methods. The accuracies of
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification are generally higher than 66%.
The accuracies of non-extreme-rainfall-day/extreme-rainfall-day classification in Step 2 of Approach
Type-II are generally higher than 93%.

The proportions of individual states (dry day, non-extreme-rainfall day, and extreme-rainfall
day) during the wet season in the calibration period are 33.83%, 62.72%, and 3.45%, respectively.
In the validation period, the proportions of individual states (dry day, non-extreme-rainfall day,
and extreme-rainfall day) during the wet season are 34.07%, 61.54%, and 4.39%, respectively.
Improvement of extreme rainfall downscaling is the main concern of the current study. For emphasizing
the classification accuracy for extreme-rainfall-day state, the classification accuracies (%) of
extreme-rainfall day during wet season were presented in Table 4. The dry season was not taken into
account because most of extreme-rainfall-day occurred during wet season.

Table 4. Classification accuracy (%) of extreme-rainfall-day state during the wet season.

Type of Approach LDA RF SVC

Type-II Step 2 49.52 56.19 30.48
Type-III 47.36 47.57 15.53

By comparing the performances of the three classification methods, it is found that RF
outperforms LDA and SVC by the largest classification accuracy (%) of dry/wet day and
extreme-rainfall/non-extreme-rainfall day in Table 3, and the largest classification accuracy of
extreme-rainfall-day state during the wet season in Table 4. Therefore, the outputs of RF classification
models were selected as inputs for the regression models to simulate rainfall amounts.
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4.2. Regression for Rainfall-Amount

Before establishing the regression models, the principal component analysis (PCA) was used to
transform the predictors (i.e., the 28 climate variables of the NCEP reanalysis data) to new matrices as
the input matrices for LS-SVR models. The purposes of PCA are to eliminate the multicollinearity and
reduce the dimension of a large data set. In the current study, PCA was carried out with the NCEP
reanalysis data obtained from the nearest grid point of the study area. Nine principal components
were selected based on the eigen-values which are greater than 1.0, which can explain more than
85% of the variance of the data set (i.e., the NCEP reanalysis data). The transformed variables by
the nine principal components were used as the predictors of the LS-SVR models for different types
of approach. Based on the transformed variables by PCA, the LS-SVR models were developed for
the wet and dry seasons separately. PCA reduced the dimension of the large data set from a sample
size of 143,080 corresponding to 28 predictors to a smaller sample size of 45,990 corresponding to
nine principle components, which considerably reduces the computational consumption. The local
rainfall and the NCEP reanalysis data during the calibration period were used to tune the two
hyper-parameters of each LS-SVR model. Table 5 lists the tuned parameters of the LS-SVR models.
Since most of extreme rainfalls occur during the wet season, the observed data were separated into
two groups (i.e., non-extreme-rainfall group and extreme-rainfall group) for Approach Type-II and
Approach Type-III. As there are too few extreme rainfalls during the dry season, only Approach Type-I
approach was used for this season. The rainfalls calculated by the LS-SVR models are normalized
values which should be converted to their original scale.

Table 5. The tuned parameters of least square support vector regression (LS-SVR) models.

Season Model Penalty Term Kernel Width

Wet Approach Type-I for wet day 4.62 6.27
Wet Approach Type-II for non-extreme-rainfall day 1.64 5.95
Wet Approach Type-II for extreme-rainfall day 78.50 1.12
Wet Approach Type-III for non-extreme-rainfall day 2.32 5.40
Wet Approach Type-III for extreme-rainfall day 73.65 1.05
Dry Approach Type-I for wet day 10.89 32.60
Dry Approach Type-II for wet day 11.14 31.23
Dry Approach Type-III for wet day 24.34 52.81

The data of 1964–1999 were used to train the classification and regression models. During the
validation period (2000–2013), the 2990 wet days were extracted for construction and evaluation of
the LS-SVR models. In order to demonstrate the accuracy of the proposed approach objectively and
evidently, three statistical measures (i.e., Mean, standard deviation (SD) and Skewness) are employed
for examining whether the downscaling rainfalls by the proposed approach conserves the statistical
characteristics of the observed rainfalls. Tables 6 and 7 list these above measures for comparing the
performances of the three types of approach. From the tables, the output of Approach Type-II is slightly
better than that of Approach Type-III. The simulated values of Mean, SD, and skewness in Approach
Type-II are closer to the observed values than those in Approach Type-III except for SD during the
calibration period (Table 6). In general, the Mean and SD of simulated rainfalls from the three types of
approach tend to underestimate the observed rainfalls. However, Approach Type-II and Approach
Type-III conserve the Mean and SD of observed rainfalls significantly more than Approach Type-I.

Table 6. Statistics of regression results on wet days in the calibration period.

Statistics Approach Type-I Approach Type-II Approach Type-III Observation

Mean (mm) 10.36 10.33 10.33 10.29
SD (mm) 21.49 24.15 24.12 26.87

Skewness (mm) 10.52 10.22 10.32 9.52



Water 2019, 11, 451 12 of 17

Table 7. Statistics of regression results on wet days during the validation period.

Statistics Approach Type-I Approach Type-II Approach Type-III Observation

Mean (mm) 10.52 11.51 10.57 12.29
SD (mm) 22.55 30.21 28.50 34.94

Skewness (mm) 9.12 8.05 9.09 8.08

To compare the simulated performances for each type of approach, Figure 5 shows the RMSE
of individual months for three types of approach during the wet season in the validation period.
Since most of extreme rainfalls occur during the wet season and the efficiency of Approach Type-II
and Approach Type-III strongly represents during this season, only the RMSE of individual months
during the wet season is presented in the figure. In Figure 5, Approach Type-III and Approach Type-II
have the RMSE smaller than that of Approach Type-I in most of months except for the month of July.
This is because that the classification models of Approach Type-II and Approach Type-III only have
the accuracy around 50% (correctly classified 9 extreme rainfalls in a total of 18 extreme rainfalls) in
July. While the accuracy in August and September are 64.29% and 79.16%, respectively, for Approach
Type-III, which is much better than Approach Type-I. This implies that the accuracy of extreme rainfall
classification has a significant impact on the efficiency of the proposed approach. The classification
of the non-extreme-day/extreme-day showed that the performance in August and September are
better when compared to July, which might be attributed to the number of heavy rainfalls in August
and September.
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In general, Approach Type-II and Approach Type-III show that their performances in terms of
Mean, SD, and skewness are better than the performance of Approach Type-I. Approach Type-II
shows its SD significantly better than that of Approach Type-I and Approach Type-III. Approach
Type-II is slightly better than Approach Type-III in terms of Mean and skewness. It is apparent that
both Approach Type-II and Approach Type-III outperform Approach Type-I in term of generation of
extreme rainfalls during both calibration and validation periods (Figures 6 and 7). Approach Type-II
and Approach Type-III are quite similar in reproducing extreme rainfalls.

Figures 6 and 7 shows the daily downscaling rainfalls for the three types of approach in the
form of quantile–quantile (Q–Q) plots. It reveals that Approach Type-II and Approach Type-III
significantly outperform the Approach Type-I when rainfalls are larger than around 50 mm/day.
This results are consistent with the comparison results of statistical characteristics for both Approach
Type-II and Approach Type-III with a better skewness estimate than that of Approach Type-I. Overall,
both Approach Type-II and Approach Type-III models perform better than Approach Type-I in
downscaling extreme rainfall amounts. It is worth noting that there are three very extreme rainfalls
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greater than 450 mm/day during the validation period (Figure 7) and the three very extreme rainfalls
were still significantly underestimated. This is because there are too few data of very extreme rainfalls
for training the models.
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4.3. Discussion

Negative output values from the LS-SVR models were set to zero in the current study.
The proportion of negative values among the total number of wet days are 3.59% in Approach
Type-I, 1.45% in Approach Type-II, and 1.96% in Approach Type-III during the calibration period.
Those are 3.89% in Approach Type-I, 2.68% in Approach Type-II, and 3.65 in Approach Type-III
during the validation period. It is obvious that Approach Type-II and Approach Type-III have less
negative output values than Approach Type-I. Separation of wet days into non-extreme-rainfall-day
and extreme-rainfall-day data groups can get the benefit in terms of gaining less negative output
values from LS-SVR models. The reason might be that the separation supports the LS-SVR models
in Approach Type-II and Approach Type-III to gain more suitable parameters for each data groups
(i.e., non-extreme-rainfall day and extreme-rainfall day), while the LS-SVR model in Approach Type-I
only tunes one set of parameters for only a wet-day data group.

The poor skill of downscaling in capturing extreme events is attributed to two reasons.
First, the standardization may reduce the bias in the mean and variance of the predictor variable,
but it is much harder to accommodate the bias in large-scale patterns of atmospheric circulation or
unrealistic intervariable relationships between predictor variables. The other reason may be that the
NCEP reanalysis data are not able to reproduce the extreme value as many extreme events occur at a
much smaller scale.

Even though the poor skill of GCM downscaling in capturing extreme events, it is found
that the proposed downscaling approach with three rainfall states classification (i.e., Approach
Type-II and Approach Type-III) can improve the extreme-rainfall downscaling by Approach Type-I.
These two types of approach (i.e., Approach Type-II and Approach Type-III) can conserve the statistical
characteristics (e.g., standard deviation and skewness) of observation data, which is a big challenge of
many downscaling models. It is noted that Approach Type-II and Approach Type-III performed the
extreme-rainfall downscaling better than Approach Type-I during the wet season.

5. Conclusions and Future Work

The current study proposes a statistical downscaling approach for improving daily extreme
rainfall simulation at Shih-Men Reservoir catchment in northern Taiwan, which comprises rainfall-state
classification and regression for rainfall-amount prediction. Three classification methods (i.e., LDA, RF,
and SVC) were adopted for rainfall-state classification and the LS-SVR was used for the rainfall-amount
prediction for different rainfall states. Two rainfall states (i.e., dry day and wet day) and three rainfall
states (dry day, non-extreme-rainfall day, and extreme-rainfall day) were defined and compared for
judging their downscaling performances.

Three types of approach (i.e., Approach Type-I, Approach Type-II and Approach Type-III) have
been developed and tested for rainfall downscaling in the study area. Approach Type-I adopts two
rainfall states for rainfall-state classification. Approach Type-II and Approach Type-III adopt three
rainfall states for two-steps and one-step rainfall-state classification, respectively. The results reveal
that RF outperforms LDA and SVC for the rainfall-state classification for all three types of approach.
Approach Type-II and Approach Type-III, which use RF for three-rainfall-states classification and
LS-SVR for rainfall-amount prediction, have better extreme rainfall simulation than Approach Type
I. Future work can apply the two types of approach for the areas with more extreme-rainfall data to
validate the performances for extreme-rainfall downscaling.

Adopting a proper threshold of daily extreme rainfall is essential for extreme/non-extreme-rainfall-day
classification. The threshold of extreme rainfall strongly influences the rainfall-state classification
performance. The current study adopted 50 mm/day as the threshold of extreme rainfall which is defined
by the Central Weather Bureau of Taiwan. Using the thresholds less than 50 mm/day (i.e., 30 mm/day
and 10 mm/day) for getting more extreme events (i.e., larger sample size) was also tested and had no
improvement for rainfall-state classification in the study case. Therefore, using an inappropriate threshold
of extreme rainfall may result in a failure of extreme rainfall classification. Selection of a proper threshold
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of extreme rainfall should be further investigated scientifically and carefully. The future work may apply
the detrended fluctuation analysis (DFA) to choose an appropriate threshold of extreme rainfall for a
catchment [59].

The choice of a certain reanalysis dataset is often motivated by either ease of access (availability
of the dataset at the institution), ease of use (availability of code to read it), or by the preference for the
local provider [60]. In the current study, the NCEP reanalysis data were used for ease of access and
ease of use. The other available reanalysis data (e.g., European Centre for Medium-Range Weather
Forecasts, ECMWF) with a much better spatial resolution data can be the alternatives for future work.
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