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Abstract: The Erhai Lake Basin is a crucial water resource of the Dali prefecture. This research used
the soil and water assessment tool (SWAT) and the China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS) to estimate blue and green water flows. Then the spatial and temporal
change of blue and green water flows was investigated. With the hypothetical climate change scenarios,
the sensitivity of blue and green water flows to precipitation and temperature has also been analyzed.
The results showed that: (1) The CMADS reanalysis dataset can capture the observed probability
density functions for daily precipitation and temperature. Furthermore, the CMADS performed well
in monthly variables simulation with relative bias and absolute bias less than 7% and 0.5 ◦C for
precipitation and temperature, respectively; (2) blue water flow has increased while green water flow
has decreased during 2009 to 2016. The spatial distribution of blue water flow was uneven in the Erhai
Lake Basin with the blue water flow increased from low altitudes to mountain areas. While the spatial
distribution of green water flow was more homogeneous; (3) a 10% increase in precipitation can bring
a 20.8% increase in blue water flow with only a 2.5% increase in green water flow at basin scale.
When temperature increases by a 1.0 ◦C, the blue water flow and green water flow changes by −3%
and 1.7%, respectively. Blue and green water flows were more sensitive to precipitation in low altitude
regions. In contrast, the water flows were more sensitive to temperature in the mountainous area.

Keywords: blue and green water flows; climate variability; sensitivity analysis; Erhai Lake Basin

1. Introduction

The water resources availability has been affected by climate variability in the past decades,
which has caused sustainability concerns in many parts of the world [1,2]. Previous studies have
reported that climate variability can alter precipitation, evapotranspiration, soil water, and runoff [3–5]
resulting in freshwater resources redistributing in spatial and temporal dimensions [6,7]. With warmer
climate conditions, the water-holding capacity of the atmosphere has been increasing, and as a result,
the hydrological cycle will be intensified [8,9] posing more challenges to water resource management.
Therefore, it is necessary to investigate the impact of climate variability on freshwater resources,
which will assist policymakers and administrators to manage water resources in the context of climate
change. In general, blue water, namely the surface and groundwater runoff directly generated
from precipitation, has been emphasized by water resources assessment and management studies.
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While green water, including actual evapotranspiration and soil water, has often been ignored [10].
In fact, green water plays an important role in rain-fed crop production and ecosystem services
provision [11,12]. According to the study by Liu et al., more than 80% of the water consumption
for global crop production is supported by green water [13]. Natural terrestrial ecosystems,
such as grasslands and forests, depend almost entirely on green water [14]. So green water is critical
for maintaining the productivity and serviceability of the terrestrial ecosystem. However, in traditional
water resources assessment, only the available water resource was taken into consideration. Limitations
such as this should be addressed, and temporal–spatial variation should be explored to provide
scientific evidence for the construction of water resources management modes and systems.

The Erhai Lake Basin in Southwest China is not only an ecologically fragile area but also
a vulnerable area from climate change. As the effects of climate change become more serious,
the imbalance between the supply and demand of water resources in the Erhai Lake Basin will be more
prominent [15,16]. Thus, it is necessary to assess the impact of climate change on water resources in
the Erhai Lake Basin. In the previous studies, the variation of water resources in the Erhai Lake Basin
has been analyzed. However, most of the researches focus on the impact of precipitation variations on
annual runoff [17,18]. In fact, temperature is also a main factor influencing water resources. The land
surface evaporation and water consumption of crops will increase as the temperature rises, leading to
a change in water resources [19]. In addition, green water resources should also be considered in
this ecologically fragile area. Given the above, the investigation of spatio–temporal distribution
characteristics of blue and green water resources is useful for water resources planning and ecological
protection in the Erhai Lake Basin.

The concept of blue and green water resources was first proposed by Falkenmark [20].
Since then, numerous methods have been used to assess blue water and green water resources.
With the development of distributed hydrological models, the temporal–spatial variations of
blue and green water resources can be estimated by methods which have a clearer physical
mechanism [11,21–23]. It has been demonstrated that the soil and water assessment tool (SWAT)
model can simulate blue and green water resources and detect the impacts of climate variability on
hydrological components [24–27]. However, in the basins where the conventional in situ data are
not available, the distributed physically-based model cannot estimate the hydrological processes
as there are insufficient weather gauges. The satellite-based precipitation datasets, such as Tropical
Rainfall Measuring Mission (TRMM) 3B42V7 and the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks- Climate Data Record (PERSIANN-CDR), can be used
as the forcing data for hydrological models. Nevertheless, the errors would result from measure,
resample and retrieval algorithm [28–30]. It has been proved that the reanalysis datasets obtained
from observed data and model forecast performance better than satellite-based precipitation [31].
The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) developed
by Dr. Xianyong Meng from China Agriculture University (CAU) is one of the available reanalysis
datasets. This dataset provides multiple meteorological elements with resolutions of 1/3◦, 1/4◦, 1/8◦,
and 1/16◦ and can be used to drive various hydrological models [32,33]. Many previous studies have
shown that the CMADS reanalysis dataset has a high accuracy for weather element simulation and has
been widely used in East Asia, including Heihe River Basin (China), Juntanghu River basin (China),
Lijiang River Basin (China), Han River Basin (Korean Peninsula), and so on [34–44]. Based on the above
analysis, the CMADS reanalysis dataset and SWAT model can be considered as the important basic
data and simulation tool for investigating the impact of climate variability on blue and green water
resources in ungauged basins (e.g., Erhai River Basin).

This research selected Erhai River Basin as the study area, and the impact of climate variability on blue
and green water flows has been analyzed by the SWAT model and hypothetical climate change scenarios.
The remaining sections of this paper are organized as follows: The study area, modeling approach
(blue and green water flows simulation based on SWAT model), dataset and hypothetical climate change
scenarios are introduced in Section 2; Section 3 shows the evaluation of CMADS reanalysis dataset
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and SWAT model, spatial and temporal variability of blue and green water flows in the recent eight
years, sensitivity of blue and green water flows to climate change; and the discussion and conclusions are
summarized in Sections 4 and 5.

2. Materials and Methods

2.1. Study Area

The Erhai Lake Basin (ELB), situated between 99◦50′ E and 100◦27′ E and between 25◦26′ N
and 26◦26′ N, is the area investigated in this study. The total area is 2496.6 km2, accounting for 8.8% of
the total area of the Dali prefecture. The elevation of the study area varies from 1958 to 4072 m with
an average of 2458 m, dropping off from the edges of the basin to the center (Figure 1). The annual mean
precipitation of ELB is about 850 mm with more than 85% falling from May to October. The climate
is wetter in the west side, known locally as the famous Eighteen Streams Region, with an annual
precipitation of 1072 mm and runoff of more than 200 mm. While on the Eryuan plain, the north
side of the ELB, the annual precipitation drops to about 763 mm and the runoff is less than 100 mm.
The weather in the basin is mild, with an annual average temperature of 16 ◦C [45,46].

Impacted by global warming and many other factors, the ELB has witnessed a series of
eco–environmental issues, such as reduction in the lake water level, shortage of water resources,
and a conflict between water supply and demand. Therefore, an accurate evaluation of water resources
in the ELB is essential for water resources planning and management in the Dali prefecture.
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Figure 1. Location of the Erhai Lake Basin (ELB), Southwest China.

2.2. Modeling Approach

The SWAT Model was used to quantify the water flows, including blue water flow (BWF)
and green water flow (GWF) in this study. According to the study by Schuol et al. [11], BWF is the river
discharge and the deep aquifer recharge, whereas GWF is represented by actual evapotranspiration
(Figure 2). All these variables can be simulated by the SWAT Model. In addition, the green water
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coefficient (GWC) was used to account for the relative importance of BWF and GWF, which can be
written as GWC = GWF/(BWF + GWF) [13].
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Figure 2. Schematic diagram of simulated components in the soil and water assessment tool
(SWAT) model.

The ArcSWAT 2012 is used for the model setup and parameterization. In this study, the ELR was
divided into 151 sub-basins with a threshold drainage area of 10 km2 and further into 722 hydrological
response units (HRUs) based on the elevation, land use, and soil type. The monthly hydrological
processes were simulated by the SWAT model. The entire simulation period covers 9 years
(2008–2016), including a warming up period (2008), calibration period (2009–2014), and validation
period (2015–2016). The model’s performance of simulating monthly discharge was quantified
by the Nash–Sutcliffe values (ENS), determination coefficient (R2) and relative error (RE) [47,48].
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where, Qoi and Qsi are observed discharge and simulated discharge respectively; Qo and Qs are
the average value of observed discharge and simulated discharge respectively; n is the number
of observed values. The higher ENS and R2 and the smaller RE, the better the model performance.
According to the suggestion by Kumar and Merwade, the monthly discharge simulations with ENS > 0.5
and RE < ±15% are acceptable simulations [49].

2.3. Data Sets and Evaluation

The basic data for model setup contains the digital elevation model (DEM), land use, soil,
and weather. In this study, the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation
data was used for watershed delineation, which was provided by the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (Figure 1). The land use map in 2015 for this study was obtained
from the Resource and Environment Data Cloud Platform (RESDC, http://www.resdc.cn/) (Figure 3a).

http://www.resdc.cn/
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The soil data was obtained from the China Soil Data Set (v1.1), based on the World Soil Database
(HSDW) (http://westdc.westgis.ac.cn) (Figure 3b). The above data were used for HRU definition.
The daily weather data were collected from the China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS, http://www.cmads.org/) (Figure 3c). The CMADS V1.1 dataset is
available from 2008 to 2016 with 0.25◦ spatial resolution (260 × 400 grid points). This dataset provides
the daily max/min-temperatures, 24 h precipitation, solar radiation, air pressure, relative humidity,
and wind speed which can be used to initialize SWAT models directly [32]. A total of 17 grid points
within and around the ELB were used for the establishment of weather databases in this study.
The CMADS V1.1 dataset has been assessed by weather station data collected in Dali station (location is
shown as a green dot in Figure 3c). According to the data provided by National Meteorological
Information Center (NMIC, http://data.cma.cn/), there is only one meteorological station, Dali,
in the study area. Thus, the spatial distribution characteristics of Erhai Lake Basin cannot be fully
represented. However, by using the grid data provided by CMADS, this problem can be well solved.
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Figure 3. The land use map (a), soil type map (b) and China Meteorological Assimilation Driving
Datasets (CMADS) grid points in the ELB (c).

To evaluate the precipitation and temperature provided by the CMADS V1.1, we compared this
reanalysis datasets (ID104-162) with the observed precipitation and temperature in the Dali station.
This comparison was based on two temporal scales, namely daily scale and monthly scale. In the daily
scale, a probability density functions (PDFs)-based assessment was used to illustrate the similarity
between observed-PDF and simulated-PDF (Figure 4). An alternative metric-skill score (SS) was defined
as Equation (4), which is greater than 0 and smaller than 1. When SS is close to 1, it means that
the simulated-PDF fits perfectly with the observed-PDF [50]. At the monthly scale, the bias (B) or
absolute bias (Babs) and correlation coefficient (C) were used to evaluate the monthly precipitation
and temperature (Equation (5) to Equation (7)) [51].

http://westdc.westgis.ac.cn
http://www.cmads.org/
http://data.cma.cn/


Water 2019, 11, 424 6 of 19
Water 2019, 11, x FOR PEER REVIEW  6 of 19 

 

 

P
ro

b
ab

il
it

y

Variable

Gauge CMADS

Skill score

 

Figure 4. Diagrams of CMADS- probability density functions (PDF) vs Gauge-PDF illustrating the 

total skill score. 

 
1

min ,
n

n n
SS Fs Fo  (4) 

where, n stands for the number of bins; Fsn stands for the frequency of values in a given bin from the 

CMADS; and Fon stands for the frequency of values in a given bin from the observed data (Gauge). 

Summing up the minimum frequency values over all bins and then SS can be obtained. 

100%s o

o

P P
B

P

 
  
 
 

 (5) 

abs s o
B T T   (6) 

 

   

,
s o

s s

Cov V V
C

Var V Var V
  (7) 

where 
o

P  and 
s

P are the temporal average of observed precipitation and simulated precipitation, 

respectively; 
o

T  and 
s

T  are the temporal average of observed temperature and simulated 

temperature, respectively; 
o

V  and 
s

V  are the observed value (precipitation or temperature) and 

simulated value, respectively. 

2.4. Climate Change Scenarios and Sensitivity Analysis 

The sensitivity of water flows to climate variability can be considered as the proportional 

change of simulated BWF and GWF comparing with the observed values in the hypothetical climate 

change scenarios. According to this, the sensitivity can be calculated as follow: 

 
   

 

, ,
, 100%

,

f P P T f P T
WF P

f P T


  
   (8) 

 
   

 

, ,
, 100%

,

f P T T f P T
WF T

f P T


  
   (9) 

where  ,WF P  and  ,WF T  are the response of water flow to precipitation change and 

temperature change; P and T are observed precipitation and observed temperature; P  and 

T are the change of precipitation and temperature in the hypothetical climate change scenarios. In 

this study, we assumed that the precipitation in each grid point change by −30% to 30% with an 

interval of 10% and the temperature in each grid point change by −3 °C to +3 °C with an interval of 

1 °C. 

Figure 4. Diagrams of CMADS- probability density functions (PDF) vs Gauge-PDF illustrating the total
skill score.

SS =
n

∑
1

min(Fsn, Fon) (4)

where, n stands for the number of bins; Fsn stands for the frequency of values in a given bin
from the CMADS; and Fon stands for the frequency of values in a given bin from the observed
data (Gauge). Summing up the minimum frequency values over all bins and then SS can be obtained.

R =

(
Ps − Po

Po

)
× 100% (5)

Babs = Ts − To (6)

C =
Cov(Vs, Vo)√

Var(Vs)Var(Vs)
(7)

where Po and Ps are the temporal average of observed precipitation and simulated precipitation,
respectively; To and Ts are the temporal average of observed temperature and simulated temperature,
respectively; Vo and Vs are the observed value (precipitation or temperature) and simulated value,
respectively.

2.4. Climate Change Scenarios and Sensitivity Analysis

The sensitivity of water flows to climate variability can be considered as the proportional change
of simulated BWF and GWF comparing with the observed values in the hypothetical climate change
scenarios. According to this, the sensitivity can be calculated as follow:

δ(WF, P) =
f (P + ∆P, T)− f (P, T)

f (P, T)
× 100% (8)

δ(WF, T) =
f (P, T + ∆T)− f (P, T)

f (P, T)
× 100% (9)

where δ(WF, P) and δ(WF, T) are the response of water flow to precipitation change and temperature
change; P and T are observed precipitation and observed temperature; ∆P and ∆T are the change of
precipitation and temperature in the hypothetical climate change scenarios. In this study, we assumed
that the precipitation in each grid point change by −30% to 30% with an interval of 10% and the
temperature in each grid point change by −3 ◦C to +3 ◦C with an interval of 1 ◦C.

The Equation (8) and Equation (9) can be used to analyze the basin scale BWF and GWF variation
in different precipitation and temperature scenarios. To compare the variation of sensitivity to climate
change in different regions, a sensitivity index (SI) is designed in this study to express the change



Water 2019, 11, 424 7 of 19

rate between BWF or GWF with precipitation and temperature. The relationship between water flow
and precipitation/temperature can be described as:

ŷ = ax + b. (10)

where, ŷ is the simulated BWF or GWF; x is the precipitation or temperature; a and b are the coefficients,
which can be estimated by the least square method. Then the SI can be calculated as:

SI =
a

WF
(11)

where, WF is the multi-year average BWF or GWF of each sub-basin in current climate. The SI stands
for the variation (%) of BWF or GWF as precipitation changes for 1% or temperature changes for 1 ◦C
in each sub-basin. By comparing SI in different sub-basins, the difference of BWF and GWF’s response
to climate change in different regions can be obtained.

3. Results

3.1. Evaluation of CMADS Precipitation and Temperature

Statistical results of CMADS reanalysis data and gauge observations (Dali Station) on daily
scale and monthly scale are illustrated in Figures 5 and 6. It can be found that the PDFs of CMADS
reanalysis daily temperature are quite tightly clustered around the PDFs of gauge observations.
The skill in the CMADS reanalysis Maximum temperature and Minimum temperature were higher
than 0.95. CMADS tends to overestimate the amount of drizzle but did quite well for precipitation of
more than 4 mm/day. The skill score for daily precipitation approaches 0.8 (Figure 5a). In general,
the CMADs showed considerable skill in representing the PDFs of daily gauge observations.
The monthly CMADS precipitation and temperature were highly consistent with the monthly gauge
observations. In particular, the C values of monthly Maximum temperature and Minimum temperature
were nearly 1.0. The relative bias ratio of monthly precipitation was less than 7% and the absolute
biases of monthly Maximum temperature and Minimum temperature were less than 0.5 ◦C (Figure 6).
Therefore, the CMADS reanalysis dataset can be used for hydrology process simulation in the ELB.
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into the Erhai Lake was about 683 million m³ during the period 2001 to 2010. This statistic result was 
based on the data provided by Erhai Administration Bureau of Yunnan Province. In this study, the 
simulated average annual discharge into the Erhai Lake was about 714 million m³ during the period 
2008 to 2016, which is similar to the results counted by Huang et al. In addition, as the variation of 
water storage in a basin approaches to zero over a long period, the annual average precipitation ( P ) 
should be approximately equal to the sum of annual average blue water flow ( BWF ) and annual 

Figure 6. Scatter plots of the monthly CMADS reanalysis data and gauge observations: (a) Precipitation;
(b) Maximum temperature; (c) Minimum temperature.

3.2. Evaluation of SWAT Simulation

The observed and SWAT simulated monthly streamflow at Liancheng Station from 2009 to 2016
is illustrated in Figure 7 (the statistical measures are provided in Table 1). It can be found that
the simulated streamflow matched well with the observed streamflow except in a few months.
ENS and R2 values were greater than 0.75 and RE value is less than 5% for both the calibration
period and validation period. However, the ENS and R2 decreased for the validation period because
the model did not perform well for the wet season in 2015. Generally, a monthly ENS of 0.5 or greater
and RE of 15% or less means that the simulation is considered satisfactory. According to these criteria,
we can conclude that the SWAT model was a reliable representation of hydrological processes and can
be used for the ELB.
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Figure 7. Simulated and observed monthly streamflow at Liancheng station during the calibration
period 2009 to 2014 and the validation period 2015 to 2016.

Table 1. The calibration and validation statistics.

Period ENS R2 RE (%)

Calibration (2009 to 2014) 0.802 0.808 −3.7
Validation (2015 to 2016) 0.751 0.754 2.9

The other hydrologic stations in the Erhai Basin were used for water level measurement which
cannot use for calibration. According to the study by Huang et al. [18], the average annual discharge
into the Erhai Lake was about 683 million m3 during the period 2001 to 2010. This statistic result was
based on the data provided by Erhai Administration Bureau of Yunnan Province. In this study,
the simulated average annual discharge into the Erhai Lake was about 714 million m3 during
the period 2008 to 2016, which is similar to the results counted by Huang et al. In addition,
as the variation of water storage in a basin approaches to zero over a long period, the annual average
precipitation (P) should be approximately equal to the sum of annual average blue water flow (BWF)
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and annual average green water flow (GWF). Based on the SWAT simulated results, the P, BWF
and GWF during the period 2009 to 2016 are 821.0 mm, 288.9 mm, and 562.3 mm, respectively in

the ELB. The difference between P and (BW + GWF) is −30.2 mm, accounting for 3.6% of the annual
average precipitation. The above analysis proved that the water availability estimated by SWAT model
is reasonable.

3.3. Spatial and Temporal Variability of Blue and Green Water Flows in the Erhai Lake Basin

The annual average of BWF and GWF during the period 2009 to 2016 across the ELB were 288.9 mm
and 562.3 mm, respectively. The variation coefficients were 0.18 and 0.15 for BWF and GWF,
respectively, which means that the change of GWF was relatively more stable than that of BWF.
It is mainly because that the GWF is influenced by various factors (e.g., precipitation and temperature)
while the precipitation is the major factor affecting the BWF [52–55]. In the ELB, the linear correlation
coefficient between precipitation and BWF was high to 0.81. But the relationship between GWF
and precipitation/temperature was more complicated.

Both the BWF and GWF increased at the entire basin level in the recent 8 years. As a result,
the GWC decreased by 0.01 per year during the study period (Figure 8). The changes in precipitation
and temperature in the ELB are illustrated in Figure 9. It could be found that the precipitation has
been increasing since 2011 (Figure 9a) which is contrary to the change of temperature (Figures 9b
and 9c). In this wetter and colder condition, the runoff (blue water) has increased faster than
the evapotranspiration (green water), leading to a lower GWC.
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of Erhai Lake, where is called Eighteen Streams Region, with a BWF of more than 400 mm/year. The 

Figure 9. Changes in annual precipitation (a), average Maximum temperature (b) and average
Minimum temperature (c) from 2009 to 2016.

The spatial variation of annual average BWF, GWF, and GWC are illustrated in Figure 10. It is
obvious that the spatial distribution of BWF was uneven. The BWF shows a higher value in the west
of Erhai Lake, where is called Eighteen Streams Region, with a BWF of more than 400 mm/year.
The other main area of water-yield is in the mountainous regions located in the north and east of Erhai
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Lake, with the BWF ranging from 300 to 400 mm/year (Figure 10a). Compared with BWF, the spatial
distribution of GWF is more homogeneous. The GWF in most parts of the ELB changed with a range
of 450 to 550 mm. The areas with a high-value of GWF were mainly distributed around Erhai Lake.
In the low altitude region, especially in the north and east of the ELB, the GWF is a large percentage of
the water flow (Figure 10b), generally the GWC was more than 0.7. The trend of the GWC is downward
with altitude (Figure 10c). This is mainly due to higher precipitation at high altitude along with low
temperatures and evapotranspiration rates. Consequently water-yield is abundant [56–58].
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3.4. Sensitivity of Blue and Green Water Flows to Climate Change

With the parameterized SWAT model, the blue water flow and green water flow can be simulated
in the hypothetical climatic scenarios. Then the sensitivity of these water flows to climate change can
be estimated.

3.4.1. Sensitivity of Blue and Green Water Flows to Precipitation and Temperature at the Basin Scale

In the hydrographs for precipitation change (−30% to +30%) in Section 2.4, the BWF and GWF
would increase with the precipitation. From Figure 11a, we can observe that a 10% increase in
precipitation will result in a 20.8% increase in the BWF, but the GWF was less susceptible to precipitation
change, showing an increase of 2.5% when precipitation increases by 10%. The GWC would decrease
obviously as the precipitation increasing. It varied from 0.80 to 0.54 as precipitation amount changes
with −30% and +30%, respectively.

The impact of temperature on the BWF was the opposite to the GWF under the temperature change
scenarios (−3 ◦C to +3 ◦C). Figure 11b indicates that the BWF would decrease as the temperature
increased, owing to a higher evapotranspiration rate in the warmer conditions. It was shown to
decrease by 8.8 mm (nearly 3%) with a 1 ◦C reduction. But both the GWF and temperature would
have a similar positive trend when temperature changes between −3.0 and 3.0 ◦C. The GWF would
rise by 10.0 mm (about 1.7%) when temperature increases by 1.0 ◦C. In the hypothesis for temperature
change, GWC would change slightly with an increase of approximately 0.01 for a corresponding 1.0 ◦C
temperature increase.
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3.4.2. Sensitivity of Blue and Green Water Flows to Precipitation and Temperature
at the Sub-Basin Scale

With the sensitivity index of water flow to climate change defined in Section 2.4, the spatial
difference of sensitivity can be illustrated as Figure 12. In the low altitude regions located on the north
and south of Erhai Lake, the BWF was more sensitive to precipitation. These regions are characterized
by a lower precipitation–runoff coefficient. Similar results can also be found in Jones et al. [59],
Bao et al. [60], and Yuan et al. [61]. The sensitivity of GWF to precipitation has similar spatial
distribution characteristics with BWF. The more sensitive areas were also predominately located in
the north and south of the Erhai Lake. These spatial distribution characteristics can be scientifically
explained according to the Budyko hypothesis [62]. Water availability and energy are major factors
that control evapotranspiration (GWF). The lower altitude region usually has a warmer climate.
Thus, the GWF was primarily limited by the precipitation and sensitivity to it in the north and south
of Erhai Lake. The Budyko hypothesis also explains why the GWF in the mountainous area located
on the north and west of the ELB was more sensitive to temperature than that in other sub-basins.
The weather condition is usually colder in the mountainous area, and evapotranspiration mainly
depends on the energy under the wet condition. Therefore, along with the rising air temperature,
the GWF would increase obviously in the mountainous areas, especially in the Cangshan Mountain,
where the precipitation is abundant. As a consequence, the BWF would decrease significantly in
these regions.
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4. Discussion

4.1. Comparison of the Sensitivity of Blue Water Flow and Green Water Flow

The sensitivity of BWF and GWF to precipitation and temperature has been analyzed in
this study. However, other climatic factors, such as humidity, radiation, wind speed, have not
been taken into consideration. From Figure 11 we can observe that the BWF was more sensitive
to precipitation and temperature change compared with GWF. For example, an increase of 20%
precipitation will result in an increase of 41.7% and 4.0% in BWF. The BWF was directly formed
from precipitation, with correlation coefficient higher than 0.8 (Figure 13a). However, the relationship
between precipitation and GWF was less obvious (Figure 13b). It is mainly because precipitation is
not the only crucial factor for GWF. The air temperature, solar radiation, relative humidity, and wind
speed are also important factors affecting GWF. Previous studies found that the decrease of GWF
might be related to solar radiation or wind speed reduction [63–65], while the increase in wind speed
or decrease in relative humidity might cause GWF increases [66–68]. Bao et al. have carried similar
research in the Haihe River Basin of North China. Their research has also found that the GWF was
less sensitivity to precipitation compared with BWF. Taking the Taolinkou catchment in the Haihe
River Basin as an example, the BWF and GWF would decrease by 39% and 14% if precipitation
decreased by 20% [60]. Besides, the response of BWF and GWF to precipitation and temperature
is nonlinear. Thus, the sensitivity of water flows to climate change might be different in different
climatic scenarios. But the sensitivity index designed in this study cannot be used to investigate this
law. Another sensitivity index is needed to solve the above-mentioned problem in a future study.
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Figure 13. The relationship between precipitation and water flow in the ELB during 2009 to 2016: (a) 
precipitation vs. BWF; (b) precipitation vs. GWF. 
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4.2. Uncertainty Analysis

The major uncertainties in this study come from input data, model parameters, and model
structure. To be specific, the gridded data (0.25◦ × 0.25◦) provided by the CMADS was used in this
study. Compared with the weather data (only Dali station) provided by National Meteorological
Information Center, this dataset can describe the spatial difference of meteorological factors distribution.
However, the area of ELB is less than 3000 km2, and there are only 17 grid points in and around
the ELB. Thus, the precipitation data from limited points could not really represent regional
precipitation. Higher spatial resolution data might be useful for hydrological simulation in this
small watershed. In addition, although there are several hydrologic stations in the study area,
only Liancheng Station can provide daily discharge data and be used for parameter calibration,
while other stations can only be used to measure water level. Thus, the differences between
optimized parameters and real parameters of the ELB cannot be avoided. Therefore, this study will
do further research on water flows simulation by SWAT model based on parameters transfer method
in the ELB. The different parameters transfer methods, such as spatial proximity, physical similarity,
and comprehensive similarity, should be compared. Furthermore, evapotranspiration is an important
process for assessing water flows as well as precipitation. The BWF and GWF are associated with
the methods used to estimate potential evapotranspiration (ET0). The SWAT model provides three
methods, namely, Penman–Monteith method [69,70], Priestley–Taylor method [71] and Hargreaves
method [72] to calculate potential evapotranspiration. In this study, the Penman–Monteith method
was selected. Obviously, if the other two methods were used for ET0 estimation, the sensitivity
of water flows to precipitation and temperature would be different from the results in this study.
Quantitative uncertainties derived from the model structure in sensitivity analysis should be further
analyzed by using different ET0 estimation methods or even different hydrological models.

4.3. Method for Green Water Flow Estimation

In this study, the GWF was assessed by SWAT model, which is a water balance method.
From Section 3.2, we can find that the SWAT model was a reliable representation of streamflow
in the ELB according to the observed data. But we can only evaluate the GWF simulation indirectly
at long time scales based on the water balance principle. However, the simulation of monthly actual
evapotranspiration (ETa) or GWF has not been verified in this study because of the lack of long-term
actual observed data. It can be concluded that the quantitative analysis of BWF’s response to climate
change has higher reliability than that of GWF.

Beyond water-balance derived ETa, the GWF can also be estimated by remotely-sensed images.
Based on the energy balance Bowen ratio method [73], the relationship between satellite-based
vegetation indices and ETa can be established, and then the GWF can be estimated indirectly [74].
The SWAT-based GWF and satellite-based GWF can be comparatively evaluated by each other.
In addition, with the data assimilation methods, e.g., Ensemble Kalman Filter (EnKF) [75],
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the SWAT-based GWF and satellite-based GWF can also be assimilated. It might be an important work
to improve the confidence of for the sensitivity of GWF to climate change and would be carried on in
further study.

4.4. Impact of Land Use/Cover Change on Blue and Green Water Flow

Water availability are directly influenced by the climate variability. Since the land use/cover is
relatively stable and climate variability affected the water flows more significantly than land use/cover
change (LUCC) [76], this research did not analyze the impact of LUCC on blue and green water flow
in the ELB. This does not mean that this kind of impact should be ignored. In fact, the components
of water availability, such as surface runoff, inter flow, groundwater recharge, evapotranspiration,
ect., principally depend on land use/cover [77]. Hence, a change in land use/cover of the ELB can
alter the proportions of blue and green water flows. Analysis of multi-year land use data obtained
from the RESDC dataset showed that the ELB has witnessed a remarkable expansion of built-up land
and rapid shrinkage of agricultural land in the recent 35 years. From 1980 to 2014, the built-up land
has significantly increased by 100.8%. The expansion area covered 67.5 km2, accounting for 2.6% of
the study area. In contrast, agricultural land has decreased by 10.7%. This reduced area was as large
as 69.8 km2, representing 2.7% of the ELB (Table 2). Considering these actual situations of land use
change, the urban expansion scenarios and ecological restoration scenarios can be further established
in the following research. Then the impact of climate and land-use/cover change on water flows can be
analyzed comprehensively. Furthermore, the land use/cover in the future (e.g., 2020 year or 2050 year)
can be predicted by cellular automata (CA) model [78]. Then the change of blue and green water flows
in the future period can be estimated, which would be useful for water resources planning.

Table 2. Land use change from 1980 to 2015.

Land Use
Year 1980 Year 2015 Change

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Agricultural land 651.8 25.5 582.0 22.8 −69.8 −10.7
Forest 838.8 32.9 851.5 33.4 12.8 1.5

Grassland 703.8 27.6 693.8 27.2 −10.0 −1.4
Water 265.9 10.4 261.0 10.2 −4.9 −1.8

Built-up land 67.0 2.6 134.5 5.3 67.5 100.8
Waste land 25.0 1.0 29.4 1.2 4.4 17.5

5. Conclusions

Using the CMADS reanalysis data, SWAT model, and the hypothetical climatic scenarios,
the impact of climate variability on blue and green water flow in Erhai Lake Basin was investigated.
According to this research, the following conclusions have been made:

The CMADS performed well in terms of correlation with gauge observations from Dali station.
The statistic results showed that the CMADs has a considerable skill in representing the PDFs
of daily gauge observations: The skill score was 0.799, 0.964, and 0.957 for daily precipitation,
Maximum temperature and Minimum temperature, respectively. At the monthly scale, the CMADS
underestimated the precipitation with a bias of −6.6% while ir overestimated the Maximum
temperature and Minimum temperature by 0.14 ◦C and 0.44 ◦C, respectively. Both precipitation
and temperature were highly consistent with the monthly gauge observations. It can be concluded that
the CMADS can capture the climate characteristics of the Erhai Lake Basin. In addition, the CMADS
reanalysis data can be widely applied in hydrological simulation and water plan and management,
especially in basins with no or few data. Moreover, the SWAT model has been proved to be applicable
in simulating the hydrologic processes in the Erhai Lake Basin, with ENS and R2 values greater than 0.75
and RE value less than 5%.
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Estimated by the SWAT model, the annual average of blue water flow and green water flow
during 2009 to 2016 across the Erhai Lake Basin were 288.9 mm and 562.3 mm, respectively. Blue water
flow has increased while green water flow has decreased in the recent 8 years, owing to increasing
precipitation and decreasing temperature, leading to a lower GWC. The spatial distribution of
blue water flow was uneven in Erhai Lake Basin. It was higher in the mountainous regions with
higher precipitation–runoff coefficients, such as Eighteen Streams Region, with blue water flow more
than 400 mm/year. However, the spatial distribution of green water flow is more homogeneously,
changing with a range of 450 to 550 mm/year in most areas. The trend of the GWC goes downward with
the increase of altitude. It is because precipitation is higher while temperatures and evapotranspiration
rates are lower at high altitude.

Blue water flow was more sensitive to precipitation and temperature change compared with
green water flow. A 10% increase in precipitation can bring about a 20.8% increase in blue water flow
while only a 2.5% increase in green water flow at basin scale. When temperature increases by 1.0 ◦C,
blue water flow and green water flow would change by −3% and 1.7%, respectively. Blue water
flow and green water flow were more sensitive to precipitation in the low altitude regions located
at the north and south of Erhai Lake, which is characterized by a lower precipitation–runoff coefficient
and warmer condition. In contrast, blue water flow and green water flow were more sensitive to
temperature in the mountainous area, which is characterized by colder and wetter condition.

This study provided insights into blue and green water flows response to climate variability in
the Erhai Lake Basin, which will help policymakers and administrators manage water resources in
the context of climate change. Spatial variations of sensibility of water flows to climate variability
imply that specific adaptation measures in different regions should be taken in the Erhai Lake Basin.
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