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Abstract: The aquifer heterogeneity is often simplified while conceptualizing numerical model due
to lack of field data. Conducting field measurements to estimate all the parameters at the aquifer
scale may not be feasible. Therefore, it is essential to determine the most significant parameters
which require field characterization. For this purpose, the sensitivity analysis is performed on
aquifer parameters, viz., anisotropic hydraulic conductivity, effective porosity and longitudinal
dispersivity. The results of the sensitivity index and root mean square deviation indicated, that the
longitudinal dispersivity and anisotropic hydraulic conductivity are the sensitive aquifer parameters
to evaluate seawater intrusion in the study area. The sensitive parameters are further characterized
at discrete points or at local scale by using regression analysis. The longitudinal dispersivity is
estimated at discrete well points based on Xu and Eckstein regression formula. The anisotropic
hydraulic conductivity is estimated based on established regression relationship between hydraulic
conductivity and electrical resistivity with R2 of 0.924. The estimated hydraulic conductivity in x and
y-direction are upscaled by considering the heterogeneous medium as statistically homogeneous at
each layer. The upscaled model output is compared with the transversely isotropic model output.
The bias error and root mean square error indicated that the upscaled model performed better than
the transversely isotropic model. Thus, this investigation demonstrates the necessity of considering
spatial heterogeneous parameters for effective modelling of the seawater intrusion in a layered
coastal aquifer.

Keywords: heterogeneity; longitudinal dispersivity; anisotropic hydraulic conductivity; intrinsic
upscaling; numerical modelling

1. Introduction

The coastal aquifers provide fresh groundwater for more than 2 billion people worldwide [1].
Groundwater stored in the coastal aquifers is susceptible to degradation due to its proximity to
seawater, in combination with the intensive water demands. SeaWater Intrusion (SWI) is caused
by prolonged changes in the coastal groundwater levels due to pumping, land-use change, climate
variations/and sea-level fluctuations. The groundwater models provide a scientific and predictive
tool for determining the appropriate solutions for SWI problems. Substantial research effort spanning
a period of about 50 years has been devoted in understanding the groundwater flow and SWI at
aquifer scale [2–10]. The recent studies pointed out the heterogeneity, anisotropy and layering are often
neglected or simplified while conceptualizing numerical model at both aquifer and global scales [11,12].
This indicates that there is a wide gap in the knowledge about hydrogeology in modelling the SWI.
The present study bridges the gap between hydrogeological characterization and SWI modelling by
considering heterogeneity, anisotropy and layering.
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The development of the numerical models consists of several logical steps, one of which
is assigning the appropriate aquifer parameters. Thus, the first step in modelling an aquifer is
to determine the input parameters, which affects the model output significantly. In the present
study, the sensitivity analysis is carried out to determine the relative sensitive parameter for which
heterogeneity must be considered. A Sensitivity Analysis (SA) is the process of varying model input
parameters over a reasonable range and observing the relative change in the model response. SA is
a useful tool for model building and evaluation. There are several prior studies that have broadly
reviewed the existing SA methods [13–19]. Considerable research has been carried out to evaluate the
parameter’s impact on the groundwater model output [20–23]. In the present study, SA is carried out
for a range of aquifer parameters such as anisotropic hydraulic conductivity (Kxx and Kyy), porosity (ε)
and longitudinal dispersivity (αl). The parameters which are relatively sensitive to the model output
are considered for further studies on heterogeneity.

The heterogeneous aquifer parameters can be determined by conducting field experiments at
discrete points (e.g., borehole logging, pumping test, Vertical Electrical Soundings/VES) or at local
scale (e.g., electrical resistivity tomography/ERT). The pumping test or slug test is widely used to
estimate the hydraulic parameters at discrete points. The other field measurements based on electrical
resistivity are also used to estimate aquifer parameters [24–26]. Several published field studies have
proved that there exists a strong link between electrical resistivity and hydraulic parameters of an
aquifer since the flow of fluid and electric current are governed by same physical and lithological
attributes. The classical regression technique can be used to determine the hydraulic parameters [27–33].
The earlier studies commonly used one dimensional (1D) resistivity test (e.g., VES) to determine the
aquifer parameters. But these VES measures gives only vertical changes in the subsurface and cannot
detect lateral changes [33]. Therefore, in the present study to understand the vertical layering and
lateral heterogeneity, ERT measurements are used.

The estimated aquifer parameters at the local scale (e.g., ERT) or discrete point measurements
(e.g., VES) can be upscaled to aquifer scale to simulate the groundwater flow and solute transport.
The aquifer parameters can be upscaled without considering the surrounding flow/transport field;
such techniques are referred to as intrinsic upscaling or local upscaling [34,35]. In this study, an intrinsic
upscaling technique with stochastic field theory is adopted, in which parameter fields are generated
considering the heterogeneous medium as statistically homogeneous [36–39]. The earlier studies
focused on determining the effective hydraulic parameter but in the present study anisotropic
parameters are estimated for a layered coastal aquifer. The parameters at the aquifer scale are estimated
based on the spatial correlation, where statistical parameters such as mean, variance and correlation
length do not change over the scale.

The aim of the present investigation is to consider varying aquifer thickness and anisotropic
heterogeneous aquifer parameters in modelling a three-dimensional (3D) coastal phreatic aquifer.
The objectives of the paper are as follows

1. To determine the relative sensitive aquifer parameters in modelling a layered coastal phreatic aquifer.
2. To estimate the anisotropic heterogeneous aquifer parameters by using 2D resistivity data.
3. To upscale the anisotropic hydraulic parameter from local measurements to aquifer scale.
4. To simulate transient groundwater flow and solute transport for a 3D variable density conceptual

model constrained with heterogeneity, anisotropy and layering.

The analysis gives an insight into the importance of considering the anisotropy and heterogeneity
to develop a 3D transient groundwater flow and solute transport model.

2. Study Area

The area under investigation lies in the Dakshin Kannada region on the West coast of India, with
an area extent of about 8 km2. The area is surrounded by the Arabian Sea on the west; River Pavanje
on the north and north-eastern part as shown in Figure 1. The Pavanje River bends perpendicularly
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(13◦1′54.49” N and 74◦47′40.89” E) and flows north before joining the Arabian Sea. The Pavanje River
is tidal in nature; thus, the adjoining aquifer gets contaminated by seawater for a considerable distance
upstream during the non-monsoon period. Even though the fresh water requirement is partially met
by surface water supply, there exists a greater dependency on groundwater resources. The educational
institutes namely National Institute of Technology, Karnataka (NITK) and Srinivas group of Institutions
are the major groundwater consumers from this aquifer.
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Electrical Soundings (VES) survey points and observation wells.

The area under consideration is moderately populated and cultivated. This region falls under
tropical climate and each year is classified into four seasons according to India Meteorological
Department (IMD). But this region experiences two well-marked seasons: the non-monsoon period
from October–May and the monsoon period from June–September, since about 87% of annual average
rainfall is experienced during the monsoon period.

The area under investigation has low-level laterite which is heterogeneous and discordant contact
with the substratum. The lateritic formation underlaid by a bed of granitic gneiss bedrock of Archean
age. The basin is predominantly an unconfined aquifer with depth ranging from 12–30 m. The present
study area was chosen due to the availability of hydrological, hydrogeological and geophysical data.
The IRD (Institut de Recherche pour le Développement, France) and NITK (National Institute of
Technology, Karnataka) have conducted discrete and local field experiments in this area. The 2D
electrical resistivity data are available at eighteen locations [40,41] pumping test data are available at
fifteen locations [42–44] and VES test are available at twelve locations [42,43] as shown in Figure 1.

3. Methodology

The first step of the study is to determine the sensitive parameters for understanding the dynamics
between groundwater flow and solute transport. For this analysis, a conceptual model is developed
using FEFLOW by DHI-WASY GmbH, Berlin (Germany). Then the significant aquifer parameters are
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characterized at discrete locations and at local scale using geophysical data. The parameters estimated
at the local scale is upscaled without considering the flow/or solute transport field. The upscaled
model output is evaluated with respect to the measured hydraulic head and solute concentration. And
the results are also compared with transversely isotropic model output to highlight the importance of
considering heterogeneity in modelling a coastal aquifer.

3.1. Development of Conceptual Model

3.1.1. Numerical Model

For the simulation of hydraulic head (h) and solute concentration (C), a numerical model FEFLOW
(Finite Element subsurface FLOW) is used. The governing equations for the groundwater flow and
solute transport are derived from the basic conservation principles for the mass of fluid, contaminants
and linear momentum. For the present analysis, the Galerkin finite element method without
up-winding is used. The Picard iteration method is used to treat the nonlinearities. The matrices are
solved by Preconditioned Conjugate Gradient (PCG) method for symmetric matrix and Bi-Conjugate
Gradient Square Stabilized (BiCGSTAB) for the unsymmetrical matrix. The other settings are set to
default in FEFLOW [45].

3.1.2. Discretization

The domain is discretized with six nodal triangular prisms and with fine discretization at the
boundaries, streams and wells. The 3D triangular meshes are generated by using the triangulation code
built in FEFLOW. The phreatic conceptual model is vertically stratified into three layers. The Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of 30 m × 30 m data is used to
define the top elevation of the model. The bottom topography and thickness of each layer are based on
the depth of observation wells, 1D and 2D resistivity data.

3.1.3. Boundary Conditions

The coastal boundary is defined as a Dirichlet boundary condition with the equivalent head
and constant solute concentration. The river boundary is defined as a transfer boundary condition
and the data required for this boundary condition are river stage, river water solute concentration,
hydraulic conductivity and thickness of the river bed. The remaining part of the domain is defined
as specified head and specified concentration based on groundwater level and solute concentration
contours. The top boundary is defined as a specified flux condition and phreatic. The bottom of the
model is defined with Neumann boundary condition.

For the developed conceptual model, the source and sink are assigned with uniform recharge rate
and transient groundwater draft, respectively. The parameters tabulated above are used throughout
the model (Table 1).

Table 1. Model input parameters.

Parameters Values

Freshwater density 1000 kg/m3

Seawater density 1025 kg/m3

Molecular diffusion 0.0000864 m2/d
Dynamic viscosity 280,985.76 kg/m/yr.

3.2. Sensitivity Analysis (SA)

3.2.1. Model Inputs for SA

For SA, aquifer parameters are considered as layered heterogeneous (but spatially homogeneous)
based on the soil type and earlier field investigations. The respective aquifer parameter ranges are
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tabulated in Table 2. The hydraulic conductivity (K) is considered as anisotropic and vertical hydraulic
conductivity (Kzz) is assumed to be 10% of Kxx. The porosity (ε) ranges are considered based on earlier
investigations and literature [46,47]. The longitudinal dispersivity (αL) is taken from the literature [48].
The transverse dispersivity (αT) is assigned as 1/10th of αL [21].

Table 2. Layer wise flow and solute transport aquifer parameter ranges to perform sensitivity
analysis (SA).

Layer Kxx (m/d) Kyy (m/d) ε (%) αL (m)

1 0.35–10
(5.175)

0.35–10
(5.175)

30–50
(40)

10–65
(37.5)

2 and 3 10–70
(40)

10–70
(40)

5–30
(17.5)

10–65
(37.5)

The parameter values in the bracket ( ) indicates initial values.

3.2.2. SA Method

In the present analysis, sensitivity is expressed by a dimensionless index [49], which is calculated
as the ratio between the relative change in the model response to the relative change of each aquifer
parameter (Kxx, Kyy, ε and αL). The mathematical expression to calculate the Sensitivity Index (SI) is
given by Lenhart et al. [49] as:

SI =
|Y2−Yl |

/
Y0

2∆x/x0
(1)

where Y is the vector of output state variables (hydraulic head and solute concentration) and x is an
aquifer parameter (Kxx, Kyy, ε and αL). Y0 is the model output vector calculated with respect to the
initial aquifer parameters value x0. Each parameter is varied ±∆x and the other parameters remain
at the initial value. To assess the calculated sensitivity indices, relative ranks are assigned to each
parameter (Figure 2).

The deviation of model output (Yn) from the initial output (Y0) is estimated using Root Mean
Square Deviation (RMSD) which is given as:

RMSD =

√√√√∑T
t=1 (Y 0,t−Yn,t

)2

T
(2)

where t is the number of points at which state variables are estimated. RMSD is used to understand
how the model responds to the variation in each parameter over a valid range.

3.3. Regression Analysis

The SA results indicate that the anisotropic hydraulic conductivity and longitudinal dispersivity
are the significant parameters in 3D modelling of the coastal phreatic aquifer. Thus, heterogeneity
analysis is carried out for these specific parameters. The field measurements on dispersivity values
were not available. Therefore, regression formula (Equation (3)) derived by Xu and Eckstein [50] is
used to estimated heterogeneous longitudinal dispersivity.

αL = 0.83
(
log10 L

)2.414 (3)

where L = field length from source (m) and αL = longitudinal dispersivity (m).
The available field measurements such as VES, pumping test and ERT are used to estimate

anisotropic K. The ERT profiles are considered such that these profiles are located approximately 500 m
away from the coastal line and not affected by salinity. The VES survey and pumping test carried
out at same discrete locations are used to establish the regression equation between K and electrical
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conductivity (EC). From the linear regression model, K values are estimated locally (at electrical
resistivity profile) in x and y-axis.
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3.4. Intrinsic Upscaling of Aquifer Parameters

Ordinary Kriging is used to estimate heterogeneous αL from discrete well locations to aquifer scale.
From the established linear regression model, K values are estimated locally (at electrical resistivity
profile) in x and y-axis. The direction perpendicular to the coastal line is considered as x-axis and
direction parallel to the coastal line is considered as the y-axis.

The hydraulic conductivity is a random space function and is characterized statistically by their
spatial moments. A spatially correlated random field is generated by considering Gaussian covariance
function with grid dimension in x and y directions, arithmetic mean, variance and correlation length of
each layer. For further details on a spatially correlated random field generator, the reader can refer
Bellin and Rubin [38].

The generated K fields in both x and y-axis are assigned as input to the conceptual model.
The transient groundwater flow and solute transport simulation results are compared with the field
measured state variables. The upscaled anisotropic heterogeneous K model results are also compared
with transversely isotropic (pumping test data) results.

4. Results

4.1. Sensitivity Analysis

The steady-state conceptual phreatic 3D model is simulated by varying only one parameter with
respect to the initial aquifer parameter for every simulation. To calculate SI based on hydraulic head
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output, h values at all the nodes are considered but in case of the C, nodes at which C values ≥
500 mg/L are considered, because values > 500 mg/L is most important (According to the World
Health Organization). Table 3 shows the ranks assigned relatively based on SI values to the aquifer
parameter with respect to h and C. The aquifer parameter with rank 1 can be identified as a highly
sensitive parameter.

Table 3. Sensitivity Index (SI) and relative ranking of various input aquifer parameters based on h and
C output.

Parameter SIh Rank SIC Rank

Kyy 0.0071 1 0.521 2
Kxx (with Kzz = 0.1 × Kxx) 0.0058 2 0.429 3

ε 5.4 × 10−8 3 3 × 10−5 4
αL (with αT =0.1 × αL) - - 2.939 1

From Table 3, it is observed that αL and anisotropic K are the important parameters for modelling
SWI. The hydraulic conductivity in the y-axis (i.e., K parallel to the coast) is more significant than Kxx

(i.e., K normal to the coast) in the present study as the Pavanje River which flows normally to the coast
contributes to the value of h as well as for C. As also indicated in Table 3 that the h and C outputs are
insensitive to effective porosity. Thus, this parameter does not significantly affect groundwater flow
and SWI.

To quantify the amount of output deviation from the initial model, RMSD is used. To compute
RMSD, h values and C values at all the nodes are considered. Figure 3a,b show the RMSD for h and C
outputs respectively for the various aquifer parameters.

From the Figure 3a, it can be observed that Kyy for lower limit has higher RMSD. The RMSD was
not computed for the lower limit of Kxx because a lower limit of Kxx = 0.35 m/d (Kzz = 0.035 m/d),
leads to a build-up of groundwater above ground level. The RMSD for hydraulic conductivity in the
x-axis (with Kzz) and the y-axis are almost identical as the range considered for the two parameters
are same.

From the Figure 3b, it can be observed that αL (considering αT) show significant deviation from
2.5–3.5 mg/L over its range. This indicates αL is the most critical parameter in 3D modelling coupled
SWI problem. It can also be noted that unlike Figure 3a the RMSD of Kyy shows greater deviation
than Kxx. This may be because of solute transport from the tidal Pavanje River (especially for the
first quartile). From the SA, it can be concluded that the effective porosity is an insensitive parameter.
The longitudinal dispersivity and anisotropic hydraulic conductivity are the significant parameters to
be considered for heterogeneity studies.

4.2. Determination of Aquifer Parameters at the Local Scale

The longitudinal dispersivity at well points is determined by Xu and Eckstein [50] regression
formula (Equation (3)). The distance of the well point from the sea or river (source) is considered
as L, to estimate αL in Equation (3). The values of estimated αL are tabulated in Table 4. The points
located beyond 1 km from the source are rounded up to 1 km values because Equation (3) is valid up
to 1 km only.

The hydraulic conductivity measured from pumping test and respective aquifer resistivity from
VES is used to establish a relationship (Table 5). Figure 4 shows positive correlation between K and EC
and thus K is negatively correlated with aquifer resistivity (ρ). The linear regression analysis of EC and
K gave the following relationship (Figure 4 and Equation (4)) with a coefficient of determination (R2) =
0.9244.

K= 1487.2× 1
ρ
+5.255 (4)
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Table 4. Estimated αL value at well points based on Xu and Eckstein [50] regression formula.

Well
Name

Field Length from
Source (L), m

Longitudinal
Dispersivity (αL), m

Well
Name

Field Length from
Source (L), m

Longitudinal
Dispersivity (αL), m

VES1 200 6.205 PW1 425 8.555
VES2 270 7.088 PW4 535 9.361
VES3 345 7.860 PW6 >1000 11.772
VES4 185 5.987 PW7 >1000 11.772
VES5 771 10.730 PW9 480 8.976
VES6 400 8.349 PW10 300 7.414
VES7 >1000 11.772 PW11 630 9.960
VES8 650 10.077 PW12 >1000 11.772
VES9 670 10.191 PW13 >1000 11.772

VES10 125 4.959 PW14 300 7.414
VES11 450 8.751 PW15 835 11.044
VES12 750 10.623
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Table 5. Field measurements and estimated K from the regression model.

VES No. Location Aquifer Resistivity, ρ from VES (ohm-m) EC (EC = 1/ρ (mho/m)) Estimated K from
Equation (4) (m/d)

2
13◦1′14.3” N

210.5 0.004751 12.305674◦47′58.8” E

14
13◦01′14” N

200.64 0.004984 12.6521374◦47′55” E

5
13◦00′24.2” N

29.6 0.033784 55.396774◦47′44.8” E

7
13◦00′30.9” N

159.6 0.006266 14.554374◦48′16.2” E

8
13◦00′57.82” N

232.375 0.004303 11.641974◦47′34.87” E

3
13◦1′6.2” N

957.6 0.001044 6.804774◦47′23.1” E

15
13◦00′59” N

1361.178 0.000735 6.345274◦47′45” EWater 2018, 10, x FOR PEER REVIEW  10 of 18 
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Figure 4. Linear regression analysis of hydraulic conductivity (K) and electrical conductivity (EC).

4.3. Intrinsic Upscaling of Aquifer Parameters

The αL values from discrete points are upscaled to aquifer scale by using ordinary Kriging.
The spatially varying longitudinal dispersivity is shown in Figure 5 and it is seen that the αL values vary
between 4.96–11.9 m. The VES Nos. 1, 4 and 10 which are located near the tidal river have αL < 6.2 m.

The Kxx (perpendicular to coast) and Kyy (parallel to coast) values are estimated at the ERT profiles
based on the regression relationship. The variogram and data required for generating layer-wise logn

Kxx and logn Kyy fields are shown and tabulated in Figure 6 and Table 6, respectively. The correlation
length of K in x-axis in all the layers range from 23.5–40.1 m. And the correlation length in y-axis
in layer 2 is greater than 355 m and in layer 3 it is less than 13 m. This indicates the necessity of
considering layering and spatial heterogeneity. It can also be noticed that the correlation length for logn

Kyy (λy) in layer 2 is relatively high compared to other layers. This indicates that there is no change in
Kyy value, for correlation length up to 357 m. The distribution of single realization layer-wise Kxx and
Kyy fields are interpolated to get the anisotropic K field at the aquifer scale (Figure 7). The layer-wise
Kzz field is 10% of Kxx field.
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Table 6. Input data for generating the logn K field.

Parameters Values

Length of study area in x-axis (Lx) 3088 m
Length of study area in y-axis (Ly) 4166.6 m

logn Kxx

Parameters Layer 1 Layer 2 Layer 3
Arithmetic mean (µx) 3.473 2.61 2.024

Variance (σx) 0.055 0.071 0.0089
Correlation length (λx) 40.02 m 26.776m 23.483 m

logn Kyy

Parameters Layer 1 Layer 2 Layer 3
Arithmetic mean (µy) 3.483 2.645 2.035

Variance (σy) 0.0373 0.076 0.0079
Correlation length (λy) 49.288 m 357.68 m 12.775 m
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From Figure 7, it can be observed that Kxx and Kyy values range from 5.4–84.5 m/d and
5.6–74.8 m/d, respectively. The K values in both x and y-axis decrease with depth indicating the
top layer are relatively permeable. The Kxx field in layer 1 is relatively heterogeneous compared to
other layers, where the absolute difference in Kxx is 69.2 m/d. The Kyy fields in layer 2 are relatively less
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heterogeneous compared to other layers because the Kyy values range from 10.5–12.1 m/d. The absolute
difference in K values for layer 3 in both x and y-axis is less than 4.8 m/d, this indicates the presence of
similar geological formation in both axes.

4.4. Numerical Model Simulation Results

The upscaled anisotropic K field and longitudinal dispersivity are used as input to the conceptual
model to simulate hydraulic head (h) and solute concentration (C) for a period of 1095 day with stress
period of 1 day. The K values obtained from the pumping test is interpolated for the entire area and
this transversely isotropic (i.e., Kxx = Kyy 6= Kzz) model results are compared with upscaled model
numerical simulation results. The performance of both the models are evaluated by bias error (b) and
root mean square error (RMSE).

The mean temporal bh and mean temporal RMSEh over 14 observation wells for simulation period
of 1095 days are tabulated in Table 7. The mean temporal bh in upscaled model output is 23.3% less
than transversely isotropic model output and mean temporal RMSEh is 16.6% lesser. Figure 8 illustrates
the spatial bh comparison between upscaled and transversely isotropic model output over a period of
1095 day. The spatial bias error of hydraulic head varies from 0–3.9 m, where the high error is during
the monsoon period (Figure 8). The bh for upscaled model output is less than transversely isotropic
model output throughout the transient simulation period. It can be concluded with these results that
the h output from the upscaled conceptual model is better than the transversely isotropic model.

Table 7. Comparison of temporal performance between the upscaled model output and the transversely
isotropic model output for h and C.

Model Output

Performance Measure

Hydraulic Head (m) Solute Concentration (kg/m3)

Mean bh Mean RMSEh
bC at Well

No. 2
RMSEC at
Well No. 2

bC at Well
No. 10

RMSEC at
Well No. 10

Upscaled −1.81 2.26 −0.713 0.716 −0.381 0.433
Transversely isotropic −2.36 2.71 −0.73 0.734 −0.5535 0.609
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The performance of the model is evaluated at the well Nos. 2 and 10 only (C values < 0.5 kg/m3

are not considered). The temporal bC and temporal RMSEC at well Nos. 2 and 10 for simulation period
of 1095 days are tabulated in Table 7. The temporal bC in upscaled model output at well Nos. 2 and
10 are 2.33% and 31.165% less than transversely isotropic model output, respectively. The temporal
RMSEC at well Nos. 2 and 10 are 2.44% and 28.9% lesser, respectively. Figure 9 illustrates the spatial bc

at well No. 10 between upscaled and transversely isotropic model output. The spatial bh value varies
from 0–0.75 kg/m3, which is lesser than the transversely isotropic model output. Therefore, it can
be concluded that the C output from the upscaled conceptual model is better than the transversely
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isotropic model. The temporal observation C values at well No. 2 vary between 0.1–0.6 kg/m3 but the
values less than 0.5 kg/m3 are ignored for RMSE and bC.
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5. Discussion

One of the main conceptual difficulties to model a 3D SWI process is assigning heterogeneous
aquifer parameters. The SA is carried out to determine the sensitive parameters which require
further heterogeneous investigations. The SA result on this coupled flow and transport problem
showed that the effective porosity does not affect the model output significantly (Table 3 and Figure 3).
The analysis highlighted that the groundwater flow and solute transport to and from the tidal river
is more significant (based on the relative ranking). From the analysis, it can be concluded that
the longitudinal dispersivity and anisotropic hydraulic conductivity are the sensitive parameters.
The result of this analysis is reasoned as other similar studies carried out in coastal aquifers also
indicate these parameters as significant [51,52].

The sensitive parameters are characterized at discrete well locations based on the regression
analysis. The regression analysis between hydraulic conductivity and aquifer resistivity showed
inverse correlation (Figure 4). This inverse correlation indicates the presence of the geological formation
of the same sediment group [53]. One of the important factors which influence the relationship between
K and aquifer resistivity is anisotropy caused by layering [53,54]. Therefore, in the present study three
layers are considered based on their resistivity range.

An innovative approach based on the directions of ERT profiles is used to estimate anisotropic
hydraulic conductivity. The intrinsic upscaling technique is used to estimate the anisotropic hydraulic
conductivity at the aquifer scale because of lacking data. The upscaling technique generates the
spatially correlated random field at each layer of Kxx and Kyy. The range of correlation length between
the layer (i.e., 23–40 m for Kxx and 12–358 m for Kyy) and small values of correlation length (e.g., 12.8 m
at layer 3 of Kyy) indicates the necessity of considering layering and spatial heterogeneity, respectively.

The upscaled model output is compared with a transversely isotropic model output which is
developed from pumping test data (Table 7; Figures 8 and 9). The upscaled model performed better
than the transversely isotropic model. This is because the spatial heterogeneity in the transversely
isotropic model is restricted, due to the lack of available pumping test data. This comparison also
highlights the importance of considering heterogeneities in modelling a coastal aquifer. However,
the upscaled model output compared with observed data show high mean temporal bias error and
RMSE of the hydraulic head, with bh and RMSE of −1.81 m and 2.26 m, respectively. The bias error of
solute concentration at wells 2 and 10 are −0.713 kg/m3 and −0.381 kg/m3, respectively. The negative
sign in bias error indicates that the upscaled model underestimates the values. The RMSE of solute
concentration at wells 2 and 10 are 0.716 kg/m3 and 0.433 kg/m3, respectively.

The upscaled model was unable to simulate accurate state variables, due to single K field
generation or could be due to phenomena that are neglected. The phenomena such as tidal
influence [55]/land-use change [56] which were not considered can be addressed in future studies.
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The main drawback of the study is considering the single K field as input to the numerical model.
Multiple realizations can be performed to estimate anisotropic K field. And based on the performance
evaluation the best suitable anisotropic K field can be used for further predictive studies.

6. Conclusions

In the present investigation, hydrogeological characterization is carried out by using field data and
intrinsic upscaling technique. The sensitivity analysis is performed to determine the significant aquifer
parameters in modelling SWI. The SA results indicate that the hydraulic conductivity in the y-direction
and longitudinal dispersivity are the significant parameter in modelling groundwater flow and SWI in
a coastal phreatic aquifer, respectively. The hydraulic conductivity in the y-direction (i.e., K parallel to
the coast) is more significant in the present case due to the presence of the river. This illustrates the
necessity of considering anisotropic hydraulic conductivity in numerical simulations. The SA results
also demonstrate that for the present SWI problem, model outputs are insensitive to effective porosity.
Thus, sensitive parameters, that is, anisotropic hydraulic conductivity and longitudinal dispersivity
are investigated further at the aquifer scale.

The VES and pumping test data are used to establish a relationship between hydraulic conductivity
and electrical conductivity. The inverse relationship between hydraulic conductivity and electrical
resistivity with R2 of 0.9244 is used to determine the local hydraulic conductivity in x and y-directions.
Due to the absence of field measurement on dispersivity, Xu and Eckstein [50] regression formula
is used to estimate longitudinal dispersivity at well points. The locally estimated longitudinal
dispersivity are upscaled at aquifer scale by using ordinary Kriging. The layer-wise anisotropic
hydraulic conductivities are upscaled based on the stochastic field theory in x and y-direction.

The upscaled anisotropic heterogeneous aquifer parameters are used as input to develop a
transient 3D conceptual model. The upscaled 3D model output for both state variables (h and C) are
compared with a transversely isotropic model output which is developed from pumping test data.
The mean temporal and spatial bias error and RMSE of the transversely isotropic model is greater
than the upscaled model. Therefore, it can be concluded that the upscaled conceptual 3D model is
better than the transversely isotropic model. This study is a building block towards aquifer scale 3D
modelling in a coastal anisotropic heterogeneous porous media.
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