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Abstract: Runoff erosion capacity has significant effects on the spatial distribution of soil erosion and
soil losses. But few studies have been conducted to evaluate these effects in the Loess Plateau. In this
study, an adjusted SWAT model was used to simulate the hydrological process of the Xihe River basin
from 1993 to 2012. The spatial variabilities between runoff erosion capacity and underlying surface
factors were analyzed by combining spatial gradient analysis and GWR (Geographically Weighted
Regression) analysis. The results show that the spatial distribution of runoff erosion capacity in the
studying area has the following characteristics: strong in the north, weak in the south, strong in the
west, and weak in the east. Topographic factors are the dominant factors of runoff erosion in the
upper reaches of the basin. Runoff erosion capacity becomes stronger with the increase of altitude
and gradient. In the middle reaches area, the land with low vegetation coverage, as well as arable
land, show strong runoff erosion ability. In the downstream areas, the runoff erosion capacity is
weak because of better underlying surface conditions. Compared with topographic and vegetation
factors, soil factors have less impact on runoff erosion. The red clay and mountain soil in this region
have stronger runoff erosion capacities compared with other types of soils, with average runoff
modulus of 1.79× 10−3 m3/s·km2 and 1.68× 10−3 m3/s·km2, respectively, and runoff erosion power
of 0.48 × 10−4 m4/s·km2 and 0.34 × 10−4 m4/s·km2, respectively. The runoff erosion capacity of
the alluvial soil is weak, with an average runoff modulus of 0.96 × 10−3 m3/s·km2 and average
erosion power of 0.198 × 10−4 m4/s·km2. This study illustrates the spatial distribution characteristics
and influencing factors of hydraulic erosion in the Xihe River Basin from the perspective of energy.
It contributes to the purposeful utilization of water and soil resources in the Xihe River Basin
and provides a theoretical support for controlling the soil erosion in the Hilly-gully region of the
Loess Plateau.

Keywords: runoff modulus; runoff erosion power; SWAT model; spatial distribution; underlying
surface factors; GWR model

1. Introduction

Soil erosion has been defined as the processes of detachment and transport of soil materials by
erosive agents [1]. These processes are largely determined by overland flow, and the runoff generated
by the effective rainfall that does not infiltrate [2] carries a large amount of sediment which deposits in
the river, raises the riverbed, aggravates the flooding, and brings great potential dangers to the lives
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and property of the people in the middle and lower reaches is the main driving factor of soil erosion.
It is imperative to quantify relationships between the runoff erosion and Different Underlying Surfaces
for better understanding of erosion processes [3], and to further provide a theoretical basis for soil
erosion control and ecological restoration [4,5].

With the increasing knowledge acquired in the study of soil erosion, current focuses of research
on soil erosion [6–8] include clarifying the mechanism of surface coverage and underlying topography
on erosion, putting forward reasonable control methods, and understanding the spatial pattern of
hydraulic erosion and its influencing factors in hilly-gully regions. The research on the relationship
between soil erosion and different underlying surface conditions mainly has the following two aspects.
On the one hand, the characteristics of soil erosion are assessed based on empirical models [9–18].
For example, Thomas et al. [19] calculated the long-term average annual soil loss and sediment yield by
using a combination of the Revised Universal Soil Loss Equation (RUSLE) and the sediment delivery
ratio (SDR) models in the Southern Western Ghats, India. Mehra et al. [17] used the universal soil
loss equation (USLE) model to identify soil resource management zones and develop site-specific
soil management plan in the Mewat district in the semiarid regions of Haryana, India. Mondal [16]
assessed and compared the results obtained from three soil erosion models using a GIS platform in a
part of Narmada River and drew a conclusion that the RUSLE model is the most reliable. On the other
hand, the effect of different factors on erosion and sediment yield is analyzed based on physical and
hydrological models [20–25]. For example, Jeziorska [26] estimated that the optimal timespan is half a
year for the TOPMODEL to perform at its best in the Central Sudetes (SW Poland). Sheng et al. [27]
investigated the hydrological impacts of changes in land use and precipitation by using a MIKESHE
model in the Chaohe watershed, China. Res et al. [28] used a Geoweep model to estimate sediment
yield and runoff from Keklik watershed, Turkey.

However, results from empirical calculations lack consideration of physical mechanisms and
neglect the spatial reasons for runoff generation. In physical hydrological models, the spatial difference
between different types of land is often generalized, leading to unclear spatial variabilities between
erosion and vegetation condition as well as between erosion and soil material. To address the
shortcomings of using empirical models and other physical models, the Soil and Water Assessment
Tool (SWAT) has been developed. SWAT is a semi-distributed physical hydrological model. It has
been widely used in runoff and sediment studies under different scenarios [29–32], with a practical
advantage for studying the Hilly-gully region with complex underlying surface conditions [33–35].
For example, Shivhare et al. [36] used ArcGIS and ArcSWAT to identify the erosion prone areas
for effective planning and management of groundwater resources in Ganga watershed, India.
Yesuf et al. [37] optimized the parameters of the SWAT using monthly observed sediment yield data
at a monitoring site in Maybar experimental watershed, Ethiopia. Duru et al. [38] used the SWAT to
generate a soil erosion map and concluded that significant portions of urbanized and highly cultivated
areas in the vicinity of stream channels are particularly vulnerable to soil erosion.

In this study, the SWAT model was used to simulate the runoff of the Xihe River Basin. The runoff
modulus and runoff erosion power were used as indexes to evaluate the runoff erosion capacity.
The spatial distribution relationships between runoff erosion capacity and different surface coverage,
soil infiltration capacity, and topographic factors were analyzed to reveal the effects of spatial
distribution on soil erosion. This study aimed at providing a theoretical support for the protection of
soil and water in the Xihe River Basin.

2. Materials and Methods

2.1. Study Area

Xihe River is a first-class tributary of the upper and middle reaches of Weihe River. It is located at
the northern foothill of Qinling Mountains and the southern edge of Longxi Loess Plateau. It rises
at the eastern foot of Jingdongliang Mountain in Longtai Mountain, Tianshui City, Gansu Province,
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and joins the Weihe River at the Beidaobu gateway in Maiji District. The whole length of the river
is 85 km, the area of the basin is 1267 km2, the altitude is 1013~2715 m, and the geographical range
is between 34◦20′ N ~ 34◦38′ N and 105◦07′ E ~ 106◦00′ E. It belongs to the third sub-region of the
Loess Hilly-gully region. The terrain of the basin is fragmented and complex with crisscrossing
ravines and gullies, and the terrain is high in the northwest and low in the southeast. The overview
of the Xihe River Basin is shown in Figure 1. The Xihe River Basin belongs to a sub-humid climate
in the warm temperate zone. Its annual average temperature is 10.5 ◦C and annual precipitation is
558.9 mm. The precipitation varies greatly between years, distributes unevenly during the year, and
takes place mainly in July–September. The spatial distribution of precipitation is as follows: the south
is significantly larger than the north with no obvious difference between the east and the west. The soil
types are complex and the spatial distribution of soil types in the Xihe River Basin is shown in Figure 2.
The main types are loessial soil (accounting for 35.9%), cinnamon soil (accounting for 21.5%), and
brown soil (accounting for 19.1%). The loessial soil is mainly distributed in gully, which is 1100–1500 m
above sea level. The soil is thick, crisp, and easily be water-eroded in case of heavy rain. The cinnamon
soil is mainly distributed in the area of 1500–2100 m above sea level in Qinling Mountain. The brown
soil is mainly distributed in the southwest with an altitude of 1500 m–2500 m. The main vegetation is
deciduous broad-leaved forest in warm temperate zone, which is in the transition zone from forest
grassland to grassland. The natural shrub grassland is mainly distributed in the loess beam and the
lower hills, with a coverage rate of 33.05%. This basin has severe soil erosion because of long-term
unreasonable reclamation.
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2.2. Data Sources

The data used in the SWAT model include: (1) Digital Elevation Model (DEM): the 30 m resolution
DEM is generated by vectorization of 1:50,000 paper topographic map and interpolation with the
software ANUDEM (The Australian National University-DEM). (2) Land use maps: a land use map
with 30 m resolution was generated with an interpretation of Landsat7 remote sensing images on
30 June 2001. (3) Soil data: the 1:1 million scale HWSD (Harmonized World Soil Database) database was
constructed by FAO (Food and Agriculture Organization of the United Nations) and the International
Institute for Applied Systems Analysis. (4) Hydrometeorological data: daily hydrological precipitation
data of Tianshui Hydrological Station and daily precipitation data of Guanzizhen Station, Huangjizhai
Station and Xujiadian Station were collected from Volume 7 of Hydrological Data of the Yellow River
Basin (1990–2012), and daily meteorological monitoring data from the Tianshui Station of China
Meteorological Data Network including average temperature, daily maximum temperature, daily
minimum temperature, average relative humidity, average wind speed, and sunshine time. Data used
for result analysis include: (1) remote sensing data of vegetation: monthly composite data of MODIS
(2000–2012)—MODND1M 500 m NDVI (Normalized Vegetation Index) provided by Geospatial Data
Cloud. (2) Soil seepage stabilization data: the steady seepage rate was measured by a double-loop
infiltration method in the field from May to October 2008. The 30 m resolution raster data were
generated by Kriging interpolation.

2.3. SWAT Model

The SWAT model is a model developed by the Agricultural Research Center of the United States
Department of Agriculture. It is mainly used to simulate and predict the impact of land use and various
land managements on watershed water quality and quantity [39]. The model has a strong physical
mechanism and can simulate various hydrophysical and chemical processes using spatial information
provided by GIS and RS [40,41]. The SWAT differentiates several sub-basins under the support of
DEM, and then differentiates the sub-basins into several hydrological response units (HRUs) according
to land use, soil type, and topographic gradient. The response-unit runoff is calculated by a conceptual
lumped model on each HRU, and the total runoff of the basin is calculated by a confluence calculation.
The model has been widely used by scientists in hydrological assessment, environmental change,
sensitivity analysis, and other fields [42–45]. With this model, Chinese researchers have achieved good
results in the Weihe River Basin [46,47], Heihe River Basin [48–50], Wujiang River Basin [23], Yanhe
River Basin [51–53], Dongjiang River Basin [54], etc.

2.3.1. Model Construction

The projection coordinate system required by the model was Xian_1980_Albers. The central
longitude was 105.5◦ E, the first standard latitude was 34.6◦ N, and the second standard latitude was
34.3◦ N. Soil database and meteorological data database were established according to the requirements
of model database construction. The minimum catchment area of the river was set to 1900 ha (19 km2)
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based on repeated debugging, and the thresholds of land use, soil type, and slope were set to 15%,
10%, and 15%, respectively. A total of 51 sub-basins and 545 HRUs were obtained.

To improve the simulation accuracy of the model and obtain a good initial state, the preheating
period of the model was set to 1990–1992, the parameter calibration period was set to 1993–2009, and
the validation period was set to 2010–2012.

2.3.2. Sensitivity Analysis and Parameter Calibration

In this study, a sensitivity analysis was conducted using an LH-OAT (Latin-Hypercube and
One-factor-At-a-time sampling) method for obtaining the main parameters and controlling the number
of calibration parameters. Relevant runoff sensitivity parameters were obtained to make the model
work efficiently. Taking into consideration that the SCS (Soil Conservation Service) runoff curve value
(CN2) has high sensitivity with a heavy impact on runoff simulations, and different land use types have
different CN2 values, these values were calibrated according to different land use types. 15 parameters
with high sensitivity were selected to calibrate by using a SUFI-2 algorithm of SWAT-CUP software
based on the monthly runoff data of Tianshui Hydrological Station from 1993 to 2009. The results are
shown in Table 1.

Table 1. Sensitive parameters for runoff and results of parameters calibration in the Xihe River Basin.

Parameters Physical Meanings Sensitivity
Order

Parameter
Adjustment

Method

Calibration
Range

Optimum
Calibration

Value

ESCO Compensation coefficient of soil evaporation 1 V 0.1~0.9 0.864
CN2_AGRL SCS Runoff Curve Value of Cultivated Land 2 R −0.5~0.5 −0.129

GWQMN Runoff coefficient of shallow groundwater 3 V 0~5000 0.696

CN2_URLD SCS Runoff Curve Value of
Construction Land 4 R −0.5~0.5 0.0516

CANMX Maximum canopy interception 5 V 0~100 9.1697
ALPHA_BNK Reservoir Coefficient of Main Channel 6 V 0~0.8 0.3746
CN2_WATR SCS Runoff Curve Value of Water 7 R −0.5~0.5 0.164
SOL_AWC Available Water Content of Surface Soil 8 V 0~1 0.568
CN2_FRSD SCS Runoff Curve Value of Forest Land 9 R −0.5~0.5 −0.1139

SOL_K Saturated hydraulic conductivity of soil 10 V 0~10 5.367
GW_DELAY Hysteresis coefficient of groundwater 11 V 0~500 159.107
CN2_PAST SCS Runoff Curve Value of Grassland 12 R −0.5~0.5 0.1028

SOL_BD Surface soil bulk density 13 V 0.9~2.5 1.766
ALPHA_BF Base flow regression coefficient 14 V 0~1 0.852
CN2_SWRN SCS Runoff Curve Value in Bare Land 15 R −0.5~0.5 −0.003

Note: R means that the parameter is multiplied by (1 + calibration value), and V means that the parameter is
replaced by the calibration value.

2.4. Runoff Erosion Ability Index

Taking into consideration that the intensity of soil erosion in the research area could not be
effectively represented by runoff data, runoff modulus and runoff erosion power were selected as the
indexes of runoff erosion ability to explore the spatial variabilities between runoff erosion ability and
different underlying surface conditions.

Runoff modulus eliminates the influence from the size of a basin and better indicates the runoff
characteristics of a basin. Runoff erosion power reflects the combined effect of the rainfall process and
the conditions of the underlying surface, which can better reflect the role of hydraulic erosion [51,55,56]
and the combined effect of different underlying surface conditions in the watershed on erosion and
sediment yielding [52]. Related expressions are summarized in Table 2.
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Table 2. Runoff erosion ability objective functions: Ww stands for total runoff (m3), F stands for runoff area
(m2), T stands for rainfall duration (s). Qm, year and Qyear stand for the maximum monthly flow (m3/s) and
the average annual flow (m3/s), respectively; A’ stands for the control area of the river basin, ∆t stands for
the period of time, calculated with an average 30 days per month, ∆t = 2592 × 103 s.

Function Description

(1) Mw = ∑ Ww
F×T

Runoff modulus refers to the runoff generated per unit area of a river basin in a
unit time, Mw, in m3/s·km2.

(2) Eyear = Q′m,year Hyear
Annual runoff erosion power combines runoff depth H and peak discharge Qm,

Eyear, in m4/s·km2.
(3) Q′m,year = Qm,year/A′ The maximum monthly flow modulus, Q′m,year, in m3/s·km2.
(4) Hyear = Qyear × ∆t/A′ The average flow depth of the annual flow, Hyear, in mm.

2.5. Geographically Weighted Regression Model

Geographically Weighted Regression (GWR) is a method to study the quantitative relationship
between two or more variables with spatial or regional distribution characteristics by using the
principle of regression [57]. The GWR model is an extension of the traditional regression model. In this
model, independent equations are constructed for each element in the data set. It is used to merge
dependent variables and explanatory variables that fall within the bandwidth of each target element
to evaluate the spatial variation. The expression of GWR model is as follows:

yi = β0(ui, vi) +
n

∑
k=1

βk(ui, vi)xik + εi (1)

In the equation, (ui, vi) refer to the coordinate of the ith sample; β0(ui, vi) and βk(ui, vi) refer to
the intercept and slope, respectively, of the GWR model at the regression point i; k is the number of
independent variables; yi, xik, and εi are the dependent variable, independent variables, and random
error, respectively, at the regression point i.

3. Results

3.1. The SWAT Model Runoff Calibration and Verification

The monthly runoff simulation values of Tianshui Station in the calibration period (1993–2009)
and verification period (2010–2012) were obtained after several parameter adjustments. A comparison
between the observed runoff values and the simulated runoff values of Tianshui Station (1993–2012) is
shown in Figure 3.
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It can be seen from Figure 3 that the simulated monthly runoff values agree well with the observed
monthly runoff values. However, the simulation of flood peaks is insufficient, and the simulated
values are lower than the observed ones. To evaluate the accuracy of the simulations, the deterministic
coefficient R2 and Nash-Sutcliffe efficiency coefficient (ENS) were used to evaluate the applicability of
the simulated results. When the the deterministic coefficient R2 approaches 1, the simulated results
became more accurate. ENS indicated the degree of deviation between the simulated and observed
values. When the closer the ENS approach 1, the closer the simulated results were to the observed
values. The ENS was calculated using the equation as shown below:

ENS = 1− ∑n
i=1(Qo −Qs)

2

∑n
i=1

(
Qo −Q

)2 (2)

In the equation, Qo is the observed value, Qs is the simulated value, and Q is the average observed
value. Generally, when ENS is greater than or equal to 0.6, the simulation results are good; when ENS is
greater than or equal to 0.7, the simulation results are very good [58].

The accuracy of the simulated calibration results was evaluated using 35 peak flow results
occurring during the study period: in the calibration period, R2 is 0.81 and ENS is 0.81; in the validation
period, R2 is 0.88 and ENS is 0.65; in the peak simulation period (as shown in Figure 4), R2 is 0.77 and
ENS is 0.65. These results indicate that the simulation performance of the model for the flood peak
period of the river basin is not as accurate as the flat-water period, but the overall simulation results
are accurate during the study period. These values indicate that the model has a strong applicability
to the Xihe River Basin and well reflects the hydrological conditions of the basin. It provides a data
basis for further exploring the spatial variabilities between the runoff erosion capacity and underlying
surface conditions in the basin.

Water 2019, 11, x FOR PEER REVIEW 7 of 15 

 

Figure 3. Comparison of observed monthly runoff and simulated monthly runoff in Tianshui 

station. 

It can be seen from Figure 3 that the simulated monthly runoff values agree well with the 

observed monthly runoff values. However, the simulation of flood peaks is insufficient, and the 

simulated values are lower than the observed ones. To evaluate the accuracy of the simulations, the 

deterministic coefficient R² and Nash-Sutcliffe efficiency coefficient (ENS) were used to evaluate the 

applicability of the simulated results. When the the deterministic coefficient R² approaches 1, the 

simulated results became more accurate. ENS indicated the degree of deviation between the simulated 

and observed values. When the closer the ENS approach 1, the closer the simulated results were to the 

observed values. The ENS was calculated using the equation as shown below: 

𝐸𝑁𝑆 = 1 −
∑ (𝑄𝑜 − 𝑄𝑠)2𝑛

𝑖=1

∑ (𝑄𝑜 − 𝑄̅)2𝑛
𝑖=1

 (2) 

In the equation, 𝑄𝑜  is the observed value, 𝑄𝑠  is the simulated value, and 𝑄̅  is the average 

observed value. Generally, when ENS is greater than or equal to 0.6, the simulation results are good; 

when ENS is greater than or equal to 0.7, the simulation results are very good [58]. 

The accuracy of the simulated calibration results was evaluated using 35 peak flow results 

occurring during the study period: in the calibration period, R² is 0.81 and ENS is 0.81; in the validation 

period, R² is 0.88 and ENS is 0.65; in the peak simulation period (as shown in Figure 4), R2 is 0.77 and 

ENS is 0.65. These results indicate that the simulation performance of the model for the flood peak 

period of the river basin is not as accurate as the flat-water period, but the overall simulation results 

are accurate during the study period. These values indicate that the model has a strong applicability 

to the Xihe River Basin and well reflects the hydrological conditions of the basin. It provides a data 

basis for further exploring the spatial variabilities between the runoff erosion capacity and 

underlying surface conditions in the basin. 

  

Figure 4. Comparison between simulated values and runoff peak observed at Tianshui station. 

3.2. Spatial Pattern of Runoff Erosion Capacity 

The monthly runoff data of 51 sub-basins in the Xihe River Basin from 1993 to 2012 were 

collected based on the simulation results using the SWAT model. The annual runoff modulus and 

runoff erosion power of each sub-basin could be obtained according to equations (1) and (2) in Table 

2. To reflect the general rule of spatial distribution of runoff erosion capacity of the sub-basins, the 

20-year average calculations for the sub-basins were used to obtain the spatial distribution of annual 

average runoff modulus and runoff erosion power in the Xihe River Basin from 1993 to 2012, as 

shown in Figure 5. 

Figure 4. Comparison between simulated values and runoff peak observed at Tianshui station.

3.2. Spatial Pattern of Runoff Erosion Capacity

The monthly runoff data of 51 sub-basins in the Xihe River Basin from 1993 to 2012 were collected
based on the simulation results using the SWAT model. The annual runoff modulus and runoff erosion
power of each sub-basin could be obtained according to equations (1) and (2) in Table 2. To reflect the
general rule of spatial distribution of runoff erosion capacity of the sub-basins, the 20-year average
calculations for the sub-basins were used to obtain the spatial distribution of annual average runoff
modulus and runoff erosion power in the Xihe River Basin from 1993 to 2012, as shown in Figure 5.
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Figure 5. Spatial distribution of annual average runoff modulus (a) and annual average runoff erosion
power (b) in Xihe River basin.

Figure 5 shows that the spatial distribution of runoff modulus and runoff erosion power are
similar in the Xihe River Basin. Runoff erosion was more likely to occur in the northern part of the basin
than in the southern part. The runoff erosion capacity of most areas in the western part of the basin
was stronger than that of the eastern part, but there was also a tributary in the eastern part of the basin
with strong runoff erosion capacity. The area with strong runoff erosion capacity (0.17 < Eyear < 0.35)
accounted for 29% of the whole basin area, and the area with very strong erosion capacity (Eyear > 0.35)
accounted for 13% of the whole basin area.

3.3. Gradient Analysis of Runoff Erosion Capacity and Topographic Factors

Based on the elevation of the river basin ranging from 1013 to 2715 m, 545 HRUs were grouped
based on elevation gradients as < 1500 m, 1500~2000 m, 2000~2500 m, and > 2500 m; and grouped
based on slope gradients as <5◦, 5~15◦, 15~25◦, and >25◦. The Mean and Standard Deviation (SD) of
runoff modulus and runoff erosion power based on the hydrological response unit were calculated
and shown in Figure 6.
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Figure 6a shows that the runoff modulus increases with the increase of elevation and slope.
When the elevation reached 2000 m, the runoff modulus generally tended to be stable and the dispersion
degree did not change much, but it decreased in the high elevation and low slope areas (elevation
2500 m and slope < 5◦), which accounted for about 0.1% of the total watershed area. When the elevation
was below 2000 m, the dispersion degree of runoff modulus increased with the increase of slope under
the same terrain gradient. When the elevation was between 1500 and 2000 m, the dispersion degree
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of runoff modulus was the strongest. Figure 6b shows that the runoff erosion power increases with
the increase of altitude at the same slope gradient. When the elevation was lower than 2000 m, the
dispersion of runoff erosion power between different slope gradients was notable, and the dispersion
degree increased with the increase of slope gradients. When the altitude was in a range from 1500 m to
2000 m, the runoff erosion power varied regularly with the slope gradient, and the dispersion degree
was the highest.

3.4. Relationship between Runoff Erosion Capacity and Vegetation Factors

3.4.1. Vegetation Coverage in the Basin

The average value of NDVI in the basin from 2000 to 2012 was calculated to determine the
vegetation coverage in the study period of the Xihe River Basin. The results shown in Figure 7 indicate
that the vegetation coverage in the West and Southeast regions, which account for 32.6% of the basin
area, was good (NDVI > 0.5). The northern region (about 25% of the basin area) had less vegetation
coverage than the southern region.
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3.4.2. Spatial Correlation with Vegetation Index

In this study, the local correlation between runoff modulus and runoff erosion power of
51 sub-basins and multi-year average NDVI was analyzed by using the Geographically Weighted
Regression (GWR) model. The spatial relationship between runoff erosion capacity and surface
vegetation was clarified to ensure the accuracy and credibility of the analysis results. An optimal
bandwidth of 3.45 km was determined by using the local correlation coefficient R2 of the GWR model
as a reference. The spatial variation between runoff erosion capacity and surface vegetation coverage
in the Xihe River Basin was obtained as shown in Figure 8a,b.

The results show that the spatial correlation between runoff modulus (Figure 8a), runoff erosion
power (Figure 8b), and multi-year annual average NDVI was similar to each other. The difference
between areas with positive correlation and areas with negative correlation of runoff modulus and
annual NDVI was not significant. The positive correlation area accounted for about 50.9% of the total
area of the basin. It was mainly located in the southwest and central regions of the basin. The positive
correlation was stronger in the central region than in the southwest region. The correlation between
runoff erosion power and annual average NDVI was mainly negative, with an area accounting for
approximately 56.6% of the whole basin area. The negative correlation area was mainly located in
the eastern and northern parts of the basin. Since most of the land in the central region was used as
agricultural land with weak ability of water storage and soil conservation, the runoff erosion capability
showed a positive correlation in this region.
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steady-state rate. (d) Regression coefficients from runoff erosion power to soil steady-state rate.

3.5. Spatial Variability of Runoff Erosion Capacity and Soil Factors

Soil infiltration is an important aspect in the process of mutual transformation of precipitation,
surface water, soil water, groundwater, and plant water. Soil infiltration rate can indirectly indicate
the soil erosion resistance. The spatial distribution characteristics of soil types in this basin are shown
in Figure 2. In this study, the local correlation between runoff modulus, runoff erosion power, and
stable soil infiltration rate of 51 sub-basins was analyzed by using the GWR model with an optimal
bandwidth of 3.7 km, as shown in Figure 8c,d.

The results in the Figure 8c,d show that the spatial distribution of positive and negative correlation
between runoff modulus, runoff erosion power, and stable soil infiltration rate was consistent.
The correlation was mainly negative, accounting for 73.8% of the total area, and was mainly in the upper
and middle reaches of the basin. The negative correlation was the strongest in the southwest of the
basin. The outlet location of the basin showed a relatively strong positive correlation. The correlation
between runoff erosion power and steady soil infiltration rate was weak based on numerical analyses
of regression coefficients using the GWR model. Compared with topographic and vegetation factors,
the influence of steady soil infiltration rate on runoff erosion capacity was weaker.

Based on results shown in Figures 2 and 5, taking the runoff modulus and runoff erosion power
of different soil types into consideration, the runoff erosion capacities of different soil types in the Xihe
River basin were obtained as shown in Table 3.

Based on Table 3, the red clay and mountain soil in this region have strong runoff erosion capacities,
with average runoff modulus of 1.790 × 10−3 m3/s·km2 and 1.680 × 10−3 m3/s·km2, respectively,
and average runoff erosion power of 0.480 × 10−4 m4/s·km2 and 0.34 × 10−4 m4/s·km2. The runoff
erosion capacity of the alluvial soil is weak, with an average runoff modulus of 0.960 × 10−3 m3/s·km2

and average erosion power of 0.198 × 10−4 m4/s·km2.
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Table 3. Runoff Erosion capacities of different soil types in the Xihe River Basin. The units of runoff
module and the runoff erosion power is 10−3 m3/s·km2 and 10−4 m4/s·km2, respectively.

Soiltype
Runoff Module Runoff Erosion Power

Max Mean Max Mean

loessial soil 2.746 1.003 0.826 0.200
skeletal soil 4.830 1.009 2.254 0.318

cinnamon soil 4.830 1.068 2.254 0.292
red clay 2.740 1.790 0.826 0.480

alluvial soil 2.830 0.960 2.254 0.198
mountain soil 1.680 1.680 0.318 0.340

brown soil 4.834 0.980 2.254 0.297

4. Discussion

In this study, parameters with great influences on the runoff simulation were determined by
multiple calibrations, so that the SWAT model could fully exert its advantages to achieve better
simulation results. The SWAT model is different from commonly used empirical soil erosion models
such as the RUSLE model, which has simple input requirements and can conveniently calculate the
soil erosion modulus of a small watershed, but cannot be applied to accurately simulate soil erosion
at different regions. While the SWAT model is a watershed-based model, the RUSLE model which is
mainly used as a hillslope-based model even though in both models’ similar components are taken
into consideration. Based on the input of long-term sequence data, the watershed is divided into
response units according to the information of land use type, soil type, and terrain slope by using
the SWAT mode. The SWAT model uses measured runoff data to calibrate the simulated results and
achieve consistence with real situations. Because of its accuracy, the SWAT model has been widely
used to achieve convincing results. In the large-scale watershed, Ajaaj et al. [59] used SWAT model
evaluated the accuracy of four widely used satellite and gauged-based precipitation products in the
poorly gauged Tigris River basin, Middle East. Tang et al. [60] used the SWAT model to evaluate the
suitability of five widely used global high-resolution precipitation products in Lancang river basin,
China. In the middle-scale watershed, Lyu et al. [61] simulated the hydrological cycle and analyzed
the influence of climate variability and land use change on green water resources from 1995 to 2015 in
the Xihe River Basin, China. Nunes et al. [62] got a successful result and determined the watershed’s
use efficiency by using the meteorological data which from 2000 to 2010 in the Capim River watershed,
Brazil. In the small-scale watershed, Qiao et al. [63] developed a model for heavy metal migration
simulation based on the SWAT in Huanjiang watershed, China. Though the SWAT model has been
widely used in many fields, it still has a complex calibration process. The calibration can be facilitated
by calculating the K factor, C factor, and P factor in the RUSLE model.

In this paper, the spatial pattern of runoff erosion capacity and its relationship with spatial
variabilities of different underlying surface factors in the Xihe River Basin have been studied.
The simulated results agree with the real observations. The runoff modulus and runoff erosion
power were used to effectively characterize the runoff erosion capacity of the region. The GWR model
was used to quantitatively analyze the spatial correlation between runoff erosion indexes, vegetation
coverage, and soil factors. This study contributes to the purposeful utilization of water and soil
resources in the Xihe River Basin and provides a theoretical support for controlling the soil erosion in
the Hilly-gully region of the Loess Plateau.

5. Conclusions

In this study, the runoff process in Xihe River basin was simulated by using the SWAT model
based on the hydrological observation data from 1990 to 2012. The runoff modulus and runoff erosion
power, which are two indicators for the runoff erosion capacity, were calculated from the simulation
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results. The runoff erosion was discussed in combination with topography, vegetation, and underlying
surface factors. The spatial variabilities characteristics are as follows:

1. The SWAT model has a good applicability in the arid Xihe River Basin in the Loess Plateau.
The spatial pattern of runoff erosion capacity in the Xihe River Basin has the following
characteristics: strong in the north, weak in the south, strong in the west, and weak in the
east. Approximately 13% of the total area of the basin is prone to runoff erosion.

2. The runoff modulus increases with the increase of elevation and slope. Surface vegetation
coverage (NDVI) is closely related to the runoff erosion capacity. However, not all areas with
high vegetation coverage have weak runoff erosion capacity, indicating that merely increasing
vegetation coverage cannot improve soil erosion in the areas where runoff erosion capacity is
positively correlated with NDVI. The correlation between runoff erosion capacity and stable soil
infiltration rate is mainly negative (accounting for 73.8% of total area). However, compared with
other factors, the influence of soil factor on runoff erosion capacity is smaller. The red clay and
mountain soil in this region have strong runoff erosion capacities, while the alluvial soil has a
weak runoff erosion capacity.

3. In the upper reaches of the Xihe River, topographic factors such as elevation and slope gradient
are the dominant factors affecting the runoff erosion. In the northern part of the basin, the
runoff erosion is strong due to the low coverage of vegetation. In the middle reaches of the
basin, the land is mainly used for cultivation, strong runoff is caused by the combination of
topographic fluctuations and land use. Since runoff erosion is strong in this region, farming shall
be replaced with forest and grass learning from adjacent sub-basins to reduce the soil erosion.
In the downstream area, the runoff erosion is weak due to lower altitude, small topographic
fluctuation, good vegetation coverage, and good soil infiltration.
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