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Abstract: Effective and accurate water demand prediction is an important part of the optimal
scheduling of a city water supply system. A novel deep architecture model called the continuous
deep belief echo state network (CDBESN) is proposed in this study for the prediction of hourly
urban water demand. The CDBESN model uses a continuous deep belief network (CDBN) as the
feature extraction algorithm and an echo state network (ESN) as the regression algorithm. The new
architecture can model actual water demand data with fast convergence and global optimization
ability. The prediction capacity of the CDBESN model is tested using historical hourly water demand
data obtained from an urban waterworks in Zhuzhou, China. The performance of the proposed
model is compared with those of ESN, continuous deep belief neural network, and support vector
regression models. The correlation coefficient (r2), normalized root-mean-square error (NRMSE),
and mean absolute percentage error (MAPE) are adopted as assessment criteria. Forecasting results
obtained in the testing stage indicate that the CDBESN model has the largest r2 value of 0.995912
and the smallest NRMSE and MAPE values of 0.027163 and 2.469419, respectively. The prediction
accuracy of the proposed model clearly outperforms those of the models it is compared with due to
the good feature extraction ability of CDBN and the excellent feature learning ability of ESN.

Keywords: hourly water demand prediction; continuous deep belief network; echo state network;
CDBESN model

1. Introduction

Precise short-term prediction of urban water demand provides guidance for the planning and
management of water resources and plays an important role in the economic operation of a water
supply system. Therefore, various water demand prediction models, such as support vector regression
(SVR) [1,2], random forests regression [3], artificial neural network (ANN) [4], Markov chain model [5],
and hybrid models [6–9], have been widely developed in the past few decades. Research regarding
water demand prediction generally focuses on methods involving ANN, which are nonparametric
data-driven approaches applicable for building nonlinear mapping from input to output variables for
estimating nonlinear continuous functions with an arbitrary accuracy [10].

For example, Jain et al. [11] compared ANNs, a time series model, and a regression model for the
weekly water demand prediction of the Indian Institute of Technology in Kanpur, India, and found
that the ANNs outperformed the two other methods. Adamowski [12] applied an ANN model to
forecast peak daily urban water demands and achieved a high prediction accuracy. Bennett et al. [13]
used an ANN model to predict the residential water end-use demand and confirmed that the ANN
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model is a useful predictive tool. Al-Zahrani and Abo-Monasar [14] developed a hybrid approach
of a time series model and ANNs to forecast the daily water demand of Al-Khobar City. The hybrid
approach provided better prediction than single ANN or time series models. Although the ANN model
has a favorable performance for water demand prediction, the use of ANN still suffers from some
disadvantages, including the difficulty associated with selecting optimal network parameters, a high
propensity for becoming trapped in local minima, and a poor global search capability. These difficulties
may lead to specific problems, such as overfitting.

The deep belief network (DBN) model, which was proposed by Hinton et al. [15], is a deep
learning algorithm based on a probability generative model. Unlike the ANN model, DBN effectively
avoids overfitting problems with a distinctive unsupervised training method. A DBN model has many
hidden layers that are constructed by the stacking of numerous restricted Boltzmann machines (RBMs).
A DBN extracts the latent features of the training dataset by using a greedy layer-wise unsupervised
learning method. Specifically, layer-by-layer independent training is implemented to pre-train the
initial network weights, with each layer acquiring the features of the previous layer; finally, the network
returns the features of the training sample. Following independent training, the weights are fine-tuned
using a back-propagation (BP) learning algorithm to achieve a powerful nonlinear expressive capacity.
In recent years, the DBN model has been successfully applied in many fields, such as natural language
understanding [16], image classification [17,18], fault diagnosis [19], financial prediction [20], load
prediction [21], and flow prediction [22,23]. Moreover, DBN models have demonstrated remarkable
potential for time series prediction [24]. Kuremoto et al. [25] developed a DBN model with three layers
applied to predict time series. Qin et al. [26] developed a combined approach based on DBN and an
autoregressive integrated moving average model for red tide time series prediction. Xu et al. [27]
constructed a continuous deep belief neural network (CDBNN) to forecast a daily water demand time
series. However, DBN or CDBNN models that use BP learning algorithms to adjust parameters have
slow convergence and easily fall into local optima, thereby resulting in an unsatisfactory prediction
accuracy [28,29].

A new recurrent neural network model called the echo state network (ESN), which was proposed
by Jeager et al. [30–32], has a large, sparse, recursively connected reservoir and a linear output.
The reservoir serves as an echo for storing historical information. The input and the internal connection
weights of the reservoir remain unchanged after the initial setting. Only the output weight must be
solved by the linear regression method. Therefore, training the ESN model becomes a task of linear
regression. The learning algorithm is simple, the calculation speed is fast, and the solution is unique
and globally optimal; moreover, the algorithm shows an excellent performance in nonlinear time
series modeling and prediction [33–35]. Sun et al. [29] introduced the ESN algorithm to a DBN and
proposed the deep belief echo state network model for time series forecasting. However, the DBN
model composed of RBMs can only reconstruct symmetric analog data [36]. Actual water demand data
are continuous; therefore, an advanced deep learning architecture is needed for effectively forecasting
the urban water demand.

In this study, a hybrid deep architecture continuous deep belief ESN (CDBESN) model, which
is composed of continuous DBN (CDBN) and ESN models, is proposed and applied to forecast the
hourly urban water demand. In this new architecture, the CDBN model in the bottom layer is used to
extract features of the original water demand data, and the ESN model in the top layer is adopted for
feature regression. This method can process real continuous data and also avoid the local optimum
and slow convergence caused by BP learning algorithms.

The rest of this paper is organized as follows. Section 2 details the methodology of the CDBN,
ESN, and CDBESN models. Section 3 presents the study area, data, and the performance evaluation
indexes. Section 4 discusses the CDBESN model, forecasting results, and comparisons with other
models. Finally, Section 5 explains the conclusions.
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2. Methodology

2.1. Continuous Deep Belief Network

Chen and Murray found that an RBM with binary random units can only reconstruct symmetric
analog data, and they developed a continuous RBM (CRBM) [36] with visible and hidden layer units
with a continuous state, thereby enabling the CRBM to process real continuous data. Multiple CRBMs
are used to stack a CDBN model, which can deal with continuous data and be used to extract features
from original water demand data. The structure of the CDBN model is shown in Figure 1.
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Figure 1. CDBN model structure.

In Figure 1, a typical CDBN model is stacked by using l CRBMs, which present an input or visible
layer, an output layer, and l−1 hidden layers. Here, Wl represents the weight matrix of the layers l and
l−1. A typical CRBM model is marked by blue dashed lines in Figure 1, which is constructed from a
hidden layer h and a visible layer v. Symmetric connections of the weight matrix exist between the
two layers, but no such connections are present within a layer.

For a CRBM, sj and si denote the states of the hidden layer unit j and the visible layer unit i,
respectively; moreover, wij denotes the interconnected weights of the units j and i. A group of samples
is randomly chosen as input data, and the update rule of the states sj of the hidden layer unit is given
as follows:

sj = ϕj

(
∑

i
wijsi + σNj(0, 1)

)
, (1)

with
ϕj(xj) = θmin + (θmax − θmin)·

1

1 + e(−ajxj)
, (2)

where Nj(0, 1) stands for a Gaussian unit with unit variance and a zero mean, σ denotes a constant, and
ϕj(x) represents a sigmoid function with asymptotes at θmin and θmax. The noise-control parameters aj
controls the slope of the sigmoid function and thus the nature of the stochastic behavior of the unit [36].

sj is used to compute the states s′i of visible layer units:

s′i = ϕi

(
∑

j
wijsj + σNi(0, 1)

)
, (3)

with
ϕi(xi) = θmin + (θmax − θmin)·

1
1 + e(−aixi)

, (4)

where, as before, Ni(0, 1), ϕi(xi), and aj represent a Gaussian unit, a sigmoid function, and noise-control
parameters, respectively.
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s′i is used to compute the states s′j of the hidden layer units:

s′j = ϕj

(
∑

i
wijs′i + σNj(0, 1)

)
. (5)

After minimizing contrastive divergence [37], algorithms are introduced into the CRBM as a
simple training rule, the weights wij and the parameters ai and aj are updated as follows:

∆wij = ηw

(
< sisj > − < s′is

′
j >
)

(6)

∆aj =
ηa

a2
j

(
< s2

j > − < s′j
2
>
)

(7)

∆ai =
ηa

a2
i

(
< s2

i > − < s′i
2
>
)

(8)

where ηw and ηa stand for the learning rates of the weights and noise-control parameters, respectively;
s′j and s′i represent the states of a single-step sample of the hidden layer unit j and the visible layer unit
i, respectively; and < · > denotes the average value of the training dataset.

The next training process is carried out after the change of the weight matrix is minimal or the
preset maximum training time is achieved. Such conditions indicate that the current CRBM training is
completed, and its outputs are used as the inputs of the following CRBM. The aforementioned training
process is repeated until all CRBMs of the CDBN model are trained completely, and the training of the
CDBN model is ended.

2.2. Echo State Network

The ESN model is a novel large-scale recurrent neural network, whose core is a reservoir layer
consisting of numerous randomly generated and sparsely connected neurons [29]. The structure of the
ESN model is shown in Figure 2. In the figure, the ESN model consists of an input layer, an output
layer, and a reservoir layer. Here, Win represents the weight matrix of the input layer, W is the internal
weight matrix of the reservoir, Wo is the weight matrix of the output layer, and Wb is the feedback
weight matrix. The values of Win, W, and Wb are randomly produced during the initialization process
and cannot be changed after generation. Only the value of Wo must be adjusted during the training
process of the reservoir.
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M, N, and L denote the numbers of the input, reservoir, and output units, respectively. The input
vector u(t), state connection vector z(t), and output vector y(t) can be expressed as follows:

u(t) = (u1(t), u2(t), . . . , uM(t))T , (9)

z(t) = (z1(t), z2(t), . . . , zN(t))
T , (10)
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y(t) = (y1(t), y2(t), . . . , yL(t))
T . (11)

The reservoir state z(t + 1) and network output y(t + 1) at time t + 1 are updated in accordance
with the following rules:

z(t + 1) = f1

(
Winu(t + 1) + Wz(t) + Wby(t)

)
, (12)

y(t + 1) = f2(Woz(t + 1)), (13)

where f1(·) and f2(·) are the activation functions of the reservoir and output, respectively. In this
study, f1(·) is selected as the hyperbolic tangent, and f2(·) is the identity function.

To eliminate the influence of the random initial states of the reservoir, a small number of the
reservoir states are abandoned. Moreover, the rest states of the reservoir are collected into a matrix
Z and used as corresponding desired target outputs into a target output matrix Y. Then, the output
weight matrix Wo is computed using a linear regression approach by minimizing the target function of
error between the network output and the desired output Y, which is given by:

min‖ZWo −Y‖, (14)

where ‖·‖ stands for the Euclidean norm. The weight matrix Wo of the output layer can typically be
computed using the Moore–Penrose-inversion method:

Wo = Z†Y, (15)

where Z†= (ZTZ)−1ZT is the generalized inverse of Z.
At this point, ESN training is completed, and the model can be used for specific problems, such as

time series modeling.

2.3. CDBESN Model

The CDBN and ESN models are integrated to construct a new deep architecture CDBESN model
for the prediction of hourly urban water demand. The structure of the CDBESN model is shown
in Figure 3. The model consists of a CDBN with l CRBMs in the bottom layer and ESN in the top
layer. Accordingly, the learning process of the CDBESN model includes two stages: feature extraction
and regression.
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In the first stage, a CDBN model is trained in a greedy layer-by-layer unsupervised learning
approach and applied to learn the potential nonlinear feature of the original hourly urban water
demand data. The output states of the last CRBMs in the CDBN model are the most representative
features learned from the hourly water demand data. In the second stage, these features learned by
the CDBN model are used as the input of the ESN model for regression. Finally, the trained CDBESN
model can be applied for the prediction of hourly water demand.
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3. Application Example

3.1. Study Area and Data Collection

In this study, 7800 hourly water demand data were collected from an urban waterworks of
Zhuzhou, China from 1 January 2016 to 21 November 2016. The waterworks has a capacity of
15,000 m3/h, and supplies water to about 600,000 urban residents and factories in that region with
an area of about 500 km2. The original hourly water demand data were divided into two parts: 84%
of the data (the first 6552 hourly data, from 1 January 2016 to 30 September 2016) were used to train
the CDBESN model, and the remaining 16% were applied for the testing dataset. Figure 4 shows the
original hourly water demand records obtained from the urban waterworks.
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Figure 4. Original hourly water demand data from 1 January 2016 to 21 November 2016.

3.2. Performance Index

In the experiments, the correlation coefficient (r2), normalized root mean-square error (NRMSE),
and mean absolute percentage error (MAPE) were employed to measure the prediction accuracy of the
hourly urban water demand forecasting model. The respective equations were defined as follows:

r2 =
∑n

t=1 (y(t)− y(t))
(
ŷ(t)− ŷ(t)

)√
∑n

t=1 (y(t)− y(t))2∑n
t=1
(
ŷ(t)− ŷ(t)

)2
, (16)

NRMSE =

√
1
n ∑n

t=1(y(t)− ŷ(t))2

1
n ∑n

t=1 y(t)
, (17)

MAPE =
100
n

n

∑
t=1

∣∣∣∣y(t)− ŷ(t)
y(t)

∣∣∣∣, (18)

where y(t) and ŷ(t) are the actual data and prediction data, respectively; y(t) and ŷ(t) are the means
of the actual data and prediction data, respectively; and n is the number of prediction data. r2

describes the linearity between the actual data and prediction data, NRMSE signifies the total accuracy
of the prediction, and MAPE represents an unbiased estimator for assessing the predictive ability
of a model. A large r2 and small NRMSE and MAPE values indicate that the model has superior
predictive capability.

4. Results and Discussions

4.1. CDBESN Modeling

The modeling process of CDBESN selects the optimal parameters of the CDBN and ESN models.
The numbers of input layer units, hidden layers, and hidden layer units are the major parameters
in the CDBN architecture. Currently, no mature theory guides the selection of the numbers of input
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layer units, hidden layers, and hidden layer units. Thus, an experiment was conducted to determine
the three parameters in this study. The numbers of input layer units ranged from 3 to 10, which
corresponds to the number of actual historical data related to the prediction data. The numbers of
hidden layer units were set to 5, 10, 15, 20, and 25, and the numbers of hidden layers were set to vary
from 1 to 3. The update approach and initial values of wij in Equation (1) need to be set. A set of
random initial values of wij was used in the first CRBM, and the weight matrix was constantly adjusted
until it reached stability. Then, the next CRBM’s weight matrix was initialized by using the previously
trained CRBM’s weight matrix, and layer-wise training was performed until all CRBMs were trained
completely. Fixed values of the parameters θmin and θmax in Equations (2) and (4) were adopted, and
set to be the minimum and maximum values of the original hourly water demand data, respectively.
The constant σ in Equations (3) and (5), the learning rates ηw in Equation (6), ηa in Equations (7) and
(8), and the noise-control parameters aj and ai in Equations (7) and (8), respectively, were determined
by utilizing the fivefold cross-validation strategy and were also considered.

The output states of the last CRBM in the CDBN model were used as the input states of the
ESN model. Single-step prediction was utilized, and the ESN model with one output unit was set.
The weight matrixes Win, W, and Wb were randomly initialized and remained constant until the ESN
training was complete. The relevant optimal parameters of the reservoir were determined by the grid
search method and fivefold cross-validation method.

The three evaluation criteria (r2, NRMSE, and MAPE) were used to assess the learning
performance of the CDBESN model with different parameters and select the parameters with the best
learning performance. According to the method described above, the optimal architecture of the CDBN
is 10–5–10; that is, 10 input layer units, 5 units in the first hidden layer, and 10 units in the second
hidden layer. The optimal parameters of the ESN are the reservoir units N = 1000, the spectral radius
λ = 0.9, and the leaking rate α = 0.3. The results of three performance indexes of the CDBESN model
for the hourly water demand prediction in the training stage are r2 = 0.995753, NRMSE = 0.027649, and
MAPE = 2.354166.

4.2. Prediction and Results

Figure 5 depicts the prediction results of the hourly water demand data by the proposed CDBESN
model in the training stage. As shown in the Figure 5a, the prediction data can accurately follow the
changes of the actual hourly water demand data. Figure 5b plots the correlations between the prediction
data and the actual data for the training data. Evidently, the prediction data are in good agreement
with the actual data. Figure 6 presents the forecasting results of the proposed CDBESN in the testing
stage. Figure 6a shows the periodicity and trends of the prediction and actual hourly water demand
data are successfully matched. As displayed in Figure 6b, the correlations between the prediction data
and the actual data in the testing stage show good agreement. This match further confirms that the
CDBESN model has a satisfactory feature extraction ability and prediction performance. The three
performance indexes of the CDBESN for the hourly water demand prediction in the testing stage are
r2 = 0.995912, NRMSE = 0.027163, and MAPE = 2.469419.

4.3. Comparison Experiment

The predictive ability of the CDBESN model was further evaluated by comparisons with the
corresponding performance of the ESN, CDBNN, and SVR models using the same dataset. The ESN
model is introduced in Section 2.2, and the numbers of input, reservoir, and output units, as well as the
values of the spectral radius, were similarly set to those of the ESN in the CDBESN model. The CDBNN
model [27], which consists of CDBN and BP neural networks, uses the same modeling method as the
CDBN in the CDBESN model to select the numbers of units and hidden layers. The sigmoid activation
function is applied to all hidden layers, and the linear transfer function to the output layer. The BP
algorithm is used to adjust the parameters. Finally, the structure of the CDBNN is set to 8–15–10–1.
The SVR model is widely applied for water demand forecasting [1]. The insensitive loss function
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and kernel function are selected by using the particle swarm optimization algorithm, and the inputs
utilized are similar to those in the CDBESN model.
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Figure 7 plots the forecasting results of the hourly water demand with the ESN, CDBNN, and
SVR models in the testing stage. Figure 7a,c,e show the prediction data and actual data of the hourly
water demand using the ESN, CDBNN, and SVR models, respectively. Figure 7b,d,f present the scatter
plots of the prediction data and actual data with the ESN, CDBNN, and SVR models, respectively.
Notably, the ESN, CDBNN, and SVR models follow the trends of the actual hourly water demand data.
However, the values of r2 shown in the figure reveal that the CDBESN model slightly outperforms the
comparison models in predicting the hourly water demand during the testing stage.
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The performance evaluation indexes r2, NRMSE, and MAPE are employed to estimate the
forecasting performances of the ESN, CDBNN, and SVR models by using the same testing dataset, as
shown in Table 1. The CDBESN model has the best predictive performance, having the largest r2 value
and the smallest NRMSE and MAPE values among all models. Compared with the ESN, CDBNN,
and SVR models, the proposed CDBESN model shows increases in r2 of approximately 0.27%, 0.53%,
and 1.12%; reductions in NRMSE of 21.91%, 33.28%, and 55.05%; and reductions in MAPE of 25.18%,
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36.20%, and 56.55%. The CDBESN approach also has a higher prediction accuracy than the other
comparison models in predicting the hourly water demand during the testing stage, partly because of
the excellent feature extraction capabilities of the CDBN model and the good regression performance
of ESN model in the new deep learning architecture.

Table 1. Forecasting results of the CDBESN, ESN, CDBNN, and SVR models in the testing stage.

Model r2 NRMSE MAPE

CDBESN 0.995912 0.027163 2.469419
ESN 0.993212 0.034783 3.300566

CDBNN 0.990701 0.040711 3.870726
SVR 0.984903 0.060430 5.683949

5. Conclusions

In this study, a new CDBESN model is proposed for the prediction of the original hourly urban
water demand. The model is constructed by integrating a CDBN-based feature extraction model and
an ESN-based regression model. The CDBN model is a stack of multiple CRBMs with continuous
state values, which can deal with actual hourly water demand data. The ESN model replaces the BP
algorithm of the traditional CDBN model for regression, and can thus effectively overcome the local
optimum and slow convergence of the classical BP learning algorithm. The original hourly water
demand records obtained from an urban waterworks in Zhuzhou, China are adopted to exploit the
proposed CDBESN model. The forecasting performance of the CDBESN model is compared with those
of the ESN, CDBNN, and SVR models. Three performance evaluation indexes, namely, r2, NRMSE,
and MAPE, are used to estimate the forecasting performances of these models. The empirical results
show that the proposed CDBESN model more accurately predicts the hourly urban water demand of
the urban waterworks in Zhuzhou, China than the other models. The excellent performance of the
proposed CDBESN model is due to the powerful feature extraction capacity of the CDBN model and
the good feature regression ability of the ESN model.
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